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Practice-based Philosophy of Logic?

What is the practice?

Huge effect of Computer Science on Logic over the past 5 decades:

• new ways of using logic

• new attitudes to logic

• new questions

• new methods

Hence new perspective on the question:

What logic is — and should be!
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Before (and while) trying to extract general points, some case studies:

• modal and temporal logic: verification and model-checking

• λ-calculus

• coalgebra

Aims: not to put forward any philosophical theses, but to provide some

materials and raise some questions.
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• From ‘philosophical logic’ to computer-assisted verification. From metaphysics

to (not just potentially but actually ) applied mathematics.

• From the ‘sacred’ to the ‘profane’. From logic as Guardian of The Truth to logic
out in the world, to be used as a tool for understanding many aspects of our

world.

• More concretely: from ‘possible worlds’ and ‘accessibility’ to states and

transitions . Systems of states evolving under discrete transitions turn up in a

huge variety of situations. (Communications protocols, hardware circuits,

software, nowadays biological and physical systems . . . ). Modal and temporal

logics are canonical formalisms for expressing and reasoning about properties

of such systems.

A transition system:

1 2
b ca
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• Note the reverse engineering here. Historically, formal systems of modal logic

were developed to study notions of necessity. Then Kripke semantics was

developed to shed light on these formal systems. Now we think of the

structures as the naturally occurring objects of study, the logics as tools for

reasoning about them.

• New questions: algorithmic feasibility. New methods:

• model-checking . Given a system description (a transition system) S,

and a property φ we wish the system to satisfy, check if S |= φ. This has

become an enormously influential paradigm over the past 25 years.

Much of the real value lies in cases where the property is not satisfied,

and we get a trace which can lead us to the bug.

• The automata-theoretical paradigm. Encode formulas as automata,

reduce satisfaction to language inclusion, ultimately to graph reachability.

• Huge expansion to cover real-time, probabilistic and hybrid systems, and of
applications to include biological systems, security, networks, agent-based

modelling, control systems etc.
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• The attitude that is is just ‘grubby engineering’ — engineers in

overalls infringing on the sacred groves — just won’t wash.
(Cf. 17th century vis-à-vis the Greeks. McCarthy!).

• Concrete interpretations grounded in tangible applications which
have an independent existence for their own reasons transform the

possibilities and give the subject new depth and new energies.

• There are passionate methodological debates within this applied

field, e.g. ‘linear time vs. branching time’, which are fertile ground

for conceptual and philosophical analysis. Feasibility becomes a

major new criterion, and approximate answers must be considered.

Such issues are already deeply embedded in physics, but rarely

studied philosophically — they should be!

• A deep conceptual issue of logic in CS: the ‘next 700 . . . problem’.
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After Peter Landin. ‘The next 700 Programming Languages’ (in 1966!)

A profusion of possibilities, in e.g.

• programming languages

• type systems

• process calculi

• behavioural equivalences

• logics

Is this profusion a ‘scandal’ of our subject?

Or are the underlying paradigms and templates, the methodological toolkits,

sufficient providers of unity?

The jury is still out . . .

Cf. André Weil: he compared finding the right definitions in algebraic number theory

— which was like carving adamantine rock — to making definitions in the theory of

uniform spaces (which he founded), which was like sculpting with snow.
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λ-calculus: a pure calculus of functions.

Variables x, y, z, . . .

Terms

t ::= x | tu
︸︷︷︸

application

| λx. t
︸︷︷︸

abstraction

The basic equation governing this calculus is β-conversion :

(λx. t)u = t[u/x]

E.g.

(λf. λx. f(fx))(λx. x + 1)0 = · · · 2.

By orienting this equation, we get a ‘dynamics’ — β-reduction

(λx. t)u → t[u/x]
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This calculus, encapsulated in one slide, is incredibly rich .

• A universal model of computation — incomparably more wieldy than Turing
machines. (Caveats: Church’s thesis, resources).

• Indeed, in sugared form the basis of all contemporary functional programming

languages (e.g. ML, Haskell).

• Kleene translated the basic results of recursion theory out of lambda calculus

into the familiar φn form.

• The untyped calculus allows e.g. terms like ω ≡ λx. xx — self-application.

Hence also Ω ≡ ωω, which diverges :

Ω → Ω → · · ·

Also, Y ≡ λf. (λx. f(xx))(λx. f(xx)) — recursion.

Yt → (λx. t(xx))(λx. t(xx)) → t((λx. t(xx))(λx. t(xx))) = t(Yt).

Historically, Curry extracted Y from an analysis of Russell’s Paradox .
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Simple Type System for ×, →.

Variable
Γ, x : t ⊢ x : T

Product

Γ ⊢ t : T Γ ⊢ u : U
Γ ⊢ 〈t, u〉 : T × U

Γ ⊢ v : T × U
Γ ⊢ π1v : T

Γ ⊢ v : T × U
Γ ⊢ π2v : U

Function
Γ, x : U ⊢ t : T

Γ ⊢ λx. t : U → T
Γ ⊢ t : U → T Γ ⊢ u : U

Γ ⊢ tu : T
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Natural Deduction System for ∧, ⊃
Identity

Γ, A ⊢ A
Id

Conjunction

Γ ⊢ A Γ ⊢ B
Γ ⊢ A ∧ B

∧-intro
Γ ⊢ A ∧ B

Γ ⊢ A
∧-elim-1

Γ ⊢ A ∧ B
Γ ⊢ B

∧-elim-2

Implication

Γ, A ⊢ B

Γ ⊢ A ⊃ B
⊃-intro

Γ ⊢ A ⊃ B Γ ⊢ A
Γ ⊢ B

⊃-elim
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If we equate
∧ ≡ ×
⊃ ≡ →

they are the same!
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• ‘The stone the builders rejected . . . ’
The λ-calculus and combinatory logic were a neglected corner of

logic studied by a handful of people until Computer Science —

initially Strachey and Landin, with a part played by Roger Penrose

— put it centre stage in logical methods in CS.

• These calculi in turn put the study of substitution centre-stage —

not such a humble topic! Russell’s paradox, cut-elimination,

linearity and resources, decidability, complexity, . . .

• Paradoxes: not just biting the bullet — not bugs but features!

Recursion, fixpoints, the creative uses of computationally specified

infinite objects.
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Providing extensional models for λ-calculus — spaces satisfying

D ∼= [D −→ D]

led Dana Scott to Domain Theory .

Many interesting conceptual aspects of Domain theory:

• Reconciling paradoxes with fixpoints by introducing additional partially
defined elements.

• A general theory of partial information, dynamics of information increase.

• Opens up the (analytical) topology of computation.

• Conceptual ambiguity between ontic and epistemic interpretations.

A discussion of domain theory emphasizing conceptual aspects in my article in the
Handbook of Philosophy of Information (ed. van Benthem and Adriaans, Elsevier

2008).
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• The λ-calculus is essentially canonical for functional computation

— no ‘700 problem’ there.

• What should Church’s thesis for concurrency be?

• The gap between intension and extension: λ-calculus and its

models vs. recursion theory. Applications of the recursion theory

framework to partial evaluation and mixed computation, program

specialization, computational learning theory, computer viruses!

All based on mining the computation content of the S−m−n
theorem and Kleene’s Second Recursion Theorem. λ-calculus and

its models are too extensional to allow access to this content. Can

we find a unified theory?

• Game Semantics, full abstraction and full completeness. Again,

see my article in the Handbook of Philosophy of Information (and,

hopefully, forthcoming article in SEP).
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• Category theory (and not just categorical logic) should be seen as part of logic

— or vice versa!

• Logicians should learn category theory!!

• Philosophers should learn category theory!!!

• Category theory is the language of structure. It enables us to see common

patterns far beyond what is otherwise possible.

‘Trivial’ example: isomorphism.

• Category theory has a strong normative force : methodologically, it compels

us to ask certain questions — is it functorial , natural , universal ? — which
point to the key notions in developing a theory.

• Category theory enables us to think bigger thoughts. Many of the most
interesting conceptual developments in modern mathematics cannot even be

articulated without category theory.

Examples: Cohomology, categorification, the microcosm principle.
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Category theory allows us to dualize our entire discussion of algebras to

obtain a notion of coalgebras of an endofunctor . However, while

algebras abstract a familiar set of notions (inductive data types, structural

recursion), colagebras open up a new and rather unexpected territory,

and provides an effective abstraction and mathematical theory for a
central class of computational phenomena:

• Programming over infinite data structures : streams, lazy lists,
infinite trees . . .

• A novel notion of coinduction

• Modelling state-based computations of all kinds

• The key notion of bisimulation equivalence between processes.
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Let F : C −→ C be a functor.

An F -coalgebra is an arrow γ : A −→ FA for some object A of C. We

say that A is the carrier of the coalgebra, while γ is the behaviour map .

An F -coalgebra homomorphism from γ : A −→ FA to

δ : B −→ FB is an arrow h : A −→ B such that

A
γ

- FA

B

h

?

δ
- FB

Fh

?

F -coalgebras and their homomorphisms form a category F−Coalg.
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An F -coalgebra γ is final if for every F -coalgebra δ there is a unique

homomorphism from δ to γ.

Proposition 1 If a final F -coalgebra exists, it is unique up to

isomorphism.

Proposition 2 (Lambek Lemma) If γ : A −→ FA is final, it is an

isomorphism



Labelled Transition Systems

Introduction

Case Study I: Modal
and Temporal Logic

Case Study II:
λ-calculus

Case Study III:
Category Theory and
Coalgebra

Basic Concepts

• F -Coalgebras

• Final F -coalgebras

• Labelled Transition
Systems

• Transition Graphs as
Coalgebras

• The Final Coalgebra

• Some Remarks and
Questions for P-B PoL

Final Remarks

Logic For Building Theories Practice-Based PoL: Amsterdam 2009 – 23 / 29

Let A be a set of actions . A labelled transition system over A is a

coalgebra for the functor

LTA : Set −→ Set :: X 7→ Pf(A × X).

Such a coalgebra

γ : S −→ Pf(A × S)

can be understood operationally as follows:

• S is a set of states

• For each state s ∈ S, γ(s) specifies the possible transitions from

that state. We write s
a

−→ s′ if (a, s′) ∈ γ(s). We think of such a

transition as consisting of the system performing the action a, and

changing state from s to s′. Note that we regard actions as directly
observable , while states are not.
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Note that any labelled transition graph (or “state machine”) with labels in

A is a coalgebra for LTA.

Examples 1.

1 2
b ca

This corresponds to the coalgebra ({1, 2}, γ)

γ : 1 7→ {(a, 1), (b, 2)}, 2 7→ {(c, 2)}

2.

1 2 3
b

a

ac

1 7→ {(b, 2), (c, 1)}, 2 7→ {(a, 1), (a, 3)}, 3 7→ ∅
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The key point is this.

Proposition 3 For any set A of actions, there is a final LTA-coalgebra

(ProcA, out).
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coalgebra provides a “universal semantics” for transition systems, which

is “fully abstract” with respect to observable behaviour.
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The key point is this.

Proposition 3 For any set A of actions, there is a final LTA-coalgebra

(ProcA, out).

We think of elements of the final coalgebra as processes . The final

coalgebra provides a “universal semantics” for transition systems, which

is “fully abstract” with respect to observable behaviour.

All of this generalizes to a large class of endofunctors.
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• Coalgebras naturally model state-based systems. They provide a

promising basis for reconciling ontic and epistemic views of

states. The final coalgebra is a universal solution — hence unique
up to isomorphism — to the problem of constructing states as

determined purely by their observational behaviour.

• Coalgebraic logic. A generalized modal logic which can be read off
systematically from the type functor T . Generalized duality theory.

• Corecursion, coinduction: mathematically well-founded treatment of

non-well-founded objects.

Examples: non-well-founded sets, even non-well-found proofs!
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essentially is logic, broadly (and properly) construed.
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Computer Science theories of:

• Processes of various kinds, how to mathematically describe and

reason about them.

• Information: statics of information representation, dynamics of
information flow.

The formulation and development of these theories uses a lot of logic —
essentially is logic, broadly (and properly) construed.

Logic in the mode of open-ended, outward-reaching modelling, rather

than conservative codification.

Considerable potential beyond Computer Science: in physics, biology,

cognitive and social sciences etc.
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