VAGUENESS IN QUANTITY

Stephanie Solt

Zentrum für Allgemeine Sprachwissenschaft, Berlin MIDiSoVa, March 26-28, 2010

The Study of Vagueness

Typical focus:

Vague adjectives: tall, expensive, thin, red, old, bald

- Vague nouns: heap
 - Dimensions: size, cost, age, hue, etc.
- Today's focus:

Vagueness in the expression of quantity and amount

<u>Dimensions</u>: cardinality (number); volume, mass

> additive dimensions

Game Plan

- Inherently vague and context-dependent quantity expressions:
 - Adjectives of quantity: many, few, much, little
- 2. Case study:
 - Most (vague) vs. more than half (not vague)

Not in the Game Plan (today)

- Approximate or vague use of (potentially) precise quantity expressions (Krifka 2009):
 - (1) a. There are 100 people in the room approximateb. There are 99 people in the room precise
 - Instead, focus on quantity expressions whose meaning is inherently vague – with the goal of exploring what they can tell us about vagueness more generally

1. Adjectives of Quantity

Adjectives of Quantity

(2) a. Many people I know like jazz
b. Few students came to the lecture
c. I don't have much money
d. There is little water in the bucket

(3) Fred is tall

Gradability

- (4) a. Fred read fewer books than Barney
 b. Barney drank the most wine
 (cf. taller than Barney/the tallest man here)
- (5) a. Barney drank **very little** wine
 - b. Betty read as many books as Wilma
 - c. Wilma read **too few** books

(cf. Fred is very tall/too tall/etc.)

Context sensitivity

(6) Many students came to the lecture

- Situation 1: In-class lecture in advanced Semantics class
- Situation 2: University-wide lecture by Bill Clinton

Borderline cases

- 1000 students coming to Clinton's lecture is many
- 3 is not many
- But what about 50? 100?

- Sorities Paradox
 - **a.** If 1000 students attend Clinton's lecture, that is many
 - b. If n students attending Clinton's lecture is many, then n - 1 students attending Clinton's lecture is many
 - c. 3 students attending Clinton's lecture is many

Compositional regulation of vagueness
 For phrases
 (7) a. Barney owns few books for a professor

b. Barney is **tall** for a jockey

- Compared to phrases
 - (8) a. Fred owns few books compared to Barneyb. Fred is tall compared to Barney

Distinctions vs. 'Ordinary' Adjectives

Predicative use

- (9) a. Fred is **tall**
- (10) a. I consider Fred **tall**
- (11) a. Every boy is **tall**

- b. The fans were **many**
- b. *I consider the fans many
- b. *Every fan is **few**

Differential use

(12) a. Fred drank much/little more than Barneyb. *Fred is tall taller than Barney

Framework

Degree-based approach (Cresswell 1977; Heim 2000; Kennedy 2007; a.o.)

□ Gradability modeled via...

- scales S consisting of...
- set of degrees d...
- ordered by ordering relationship >
- □ Gradable adjectives relate individuals to degrees

Semantics of Gradable Predicates

- Ordinary' gradable adjectives: gradable predicates over individuals
 - (13) a. [[tall]] = $\lambda d\lambda x.HEIGHT(x) \ge d$
 - b. [[short]] = $\lambda d\lambda x.HEIGHT(x) \le d$
- Adjectives of quantity: gradable predicates over scalar intervals
 - (14) a. [[many]] = $\lambda d\lambda I.MAX(I) \ge d$
 - b. [[few]] = $\lambda d\lambda I.MAX(I) \leq d$

The Positive Form

- Gradable expressions do not encode a standard of comparison
- In positive (unmodified) form, degree slot (d) filled by standard value R_{Std}
 - (15) [[Fred is tall]] = 1 iff HEIGHT(fred) \ge R_{Std} [[Barney is short]] = 1 iff HEIGHT(barney) \le R_{Std}

Where does R_{Std} come from?

Comparison Classes

Vague expressions interpreted with reference to a comparison class (Klein 1980)

(16) Barney is tall for a jockey

'Barney's height exceeds the standard for jockeys' 'Barney is (considerably) taller than the average jockey' 'Barney is taller than most jockeys'

Example

(17) a. Sue's apartment is <u>expensive</u> for an apartment on this street

b. Paul's apartment is <u>inexpensive</u> for an apartment on this street

<u>The facts</u>

Sue's apartment:	€800
Paul's apartment	€600
Median on this street:	€700

Example

□ (17a,b) true in this situation

Example

But false in this situation

Comparison Classes

Can be captured with a statistical analogy

(18) [[Barney is tall for a jockey]] = 1 iff HEIGHT(barney) $\geq R_{Std}$, where $R_{Std} = median_{x:jockey(x)}(d:HEIGHT(x)=d) \pm n \cdot MAD_{x:jockey(x)}(d:HEIGHT(x)=d)$

MAD = mean absolute deviation

Extended to Adjectives of Quantity

(19) Barney owns few books for a professor

'Barney owns fewer books than most professors'

(20) [(19)] = 1 iff # of books owned by Barney $< N_s$,

where $N_S = \text{median}_{x:\text{professor}(x)}(d:x \text{ owns d-many books}) \pm MAD_{x:\text{professor}(x)}(d:x \text{ owns d-many books})$

Consequence 1: Comparison Classes

- □ We need a broader view of comparison classes:
 - (21) a. Barney is tall for a jockey
 - CC = jockeys (subject of gradable expression ∈ CC)
 - b. Barney owns few books for a professor
 - CC = professors (subject of gradable expression ∉ CC)
 - c. For a Sunday, there aren't many cars in the lot

CC = Sundays (times t)

- d. Few students came to the lecture
 - Compared to what I expected
 - CC = situations consistent with my expectations (worlds w) (cf. Fernando & Kamp 1996)

A Complication

□ Cardinal vs. proportional readings (Partee 1989):

(22) Few Linguistics students are registered for the class

Cardinal: a small <u>number</u> of Linguistics students

Proportional: a small <u>proportion</u> of the Ling. students

□ Distinct:

...because there are few Linguistics students Cardinal
 Grammatically determined:

 (23) a. There are few Linguistics students
 b. Few of the Linguistics students are here c. Few students I know have blue eyes

Cardinal vs. Proportional

- Proposal: Proportional reading of Q-adjectives arises when domain of quantification is a topic/ presupposed
- Consequence for scale structure: upper bound Few Linguistics students are registered for Psychology of

Vagueness and the Proportional Reading

- Borderline cases remain:
 (24) Many of the people in this room have blue eyes

 How many out of 50?

 But context sensitivity reduced:

 (25) Few of the teachers I know are female < ~1/3
 (26) Few of the people in this room are right handed
 In the case where 50% are right handed??
- Suggests 'default' location for R_{Std} in proportional case

Consequence 2: Constraining Vagueness

Proportional case points to alternative possibility for constraining the interpretation of vague predicate – via scale structure
 Cf. Kennedy (2007): maximize the contribution of conventional elements

2. Most vs. More than Half

Case Study

3. Most vs. More than Half

- Two proportional quantifiers with (superficially) equivalent semantics
 - (27) a. **Most** Americans have broadband internet access
 - b. More than half of Americans have broadband internet access
 - (28) [[most]] = [[more than half]] = = $\lambda X \lambda Y. |X \cap Y| > \frac{1}{2} |X|$
 - (27a,b) true iff # of Americans who have broadband > ¹/₂ total # Americans

However...

 \Box Speakers' intuition: most > more than half

- More than half has sharp lower bound; most does not
 - (29) a. More than half of the U.S. population is female \checkmark
 - b. Most of the U.S. population is female ??
 - <u>The facts</u>: female 50.7% vs. male 49.3% (U.S. Census Bureau 2008)

Most vs. More than Half

\square Most > more than half

- (30) a. The survey showed that most students (81.5%) do not use websites for math-related assignments (Education, 129(1), pp. 56-79, 2008)
 - b. More than half of respondents (55%) say that making money is more important now than it was five years ago (Money, 21(3), p. 72, 1992)

Source: Corpus of Contemporary American English (COCA: Davies 2008-)

 400+ million word corpus covering multiple genres (magazine, newspaper, fiction, academic, spoken) for the years 1990-2009

Most vs. More than Half

Observation

In the pair most and more than half, we have the case study of a contrast between an expression with a vague lower bound (most) and a parallel expression whose lower bound is precise (more than half)

Most is readily followed directly by a plural noun, yielding a generic-like interpretation

(31) a. Most people follow the moral judgments of those around them (Writer, 121(7), pp. 30-33, 2008)

- b. Money is at least partly a control issue in most families (Money, 32(1), p. 106, 2003)
- c. Most teens want to fit in with their peers (CNN YourHealth, 31/8/2002)

- More than half is awkward in similar contexts, and (when acceptable) has a 'survey results' rather than generic flavor:
 - (32) a. **??More than half of people** follow the moral judgments of those around them
 - b. ??Money is at least partly a control issue in more than half of families
 - c. ??More than half of teens want to fit in with their peers

Most can occur with uncountable domains:

- (33) a. But like most things, obesity is not spread equally across social classes (Mens Health, 23(7), p. 164, 2008)
 - b. But he had enough material on his truck to handle **most problems** (Contractor, 47(4), p. 30, 2000)
 - c. Most beliefs, worries, and memories also operate outside awareness (Science News, 142(16), 1992)
 - d. In most situations the closer the test approximates actual job tasks, the better (Current Psychology, 14(2), 1995)

Source: COCA

- More than half requires a domain that can be individuated and counted (or otherwise measured):
 - (34) a. ??But like **more than half of things**, obesity is not spread equally across social classes
 - b. ?? But he had enough material on his truck to handle **more than half of problems**
 - c. ??More than half of beliefs, worries, and memories also operate outside awareness
 - d. ??In more than half of situations the closer the test approximates actual job tasks, the better

Corpus analysis

Use of more than half typically co-occurs with mention of a source of supporting data; this is not the case with most

	Source of Data Mentioned	
	(Data from COCA)	
	More than Half	<u>Most</u>
Americans	9 / 12	13 / 100
Men	4 / 6	5 / 100
Women	4 / 5	7 / 100
Students	5 / 5	36 / 100
Patients	5 / 5	39 / 100
Families	1 / 2	11/ 100
TOTAL	28 / 35	111 / 600
	80%	19%

Proposal

The observed differences in distribution and interpretation for *most* and *more than half* derive from a fundamental difference in logical form, which corresponds to a difference in possible verification strategies (cf. Hackl 2009)

Proposal

Most	More than half
'Most F are G'	'More than half of F are G'
is true iff	is true iff
$ F \cap G > F - G $	$ F \cap G > F /2$
'Most Americans have broadband' is true iff {Americans who have BB} > {Americans who do not have BB}	'More than half of Americans have broadband' is true iff {Americans who have BB} >
A comparison of sets	A comparison of numbers

Analogy

Suppose we have two rocks, A and B

	Does A weigh more than B?	Does A weigh more than ½ as much as B?
13 2× 1×5+9 7+5+4	 Weigh A Weigh B Compare the #s 	 Weigh A Weigh B Divide by 2 Compare the #s
	 Put A and B on 2 pans of a balance scale Determine which side hangs lower 	×

Some comparisons are inherently comparisons of #s

Some are comparisons of the 'stuff' itself

More than Half

Expresses a comparison between numbers
 Requires countable/measureable sets

 *more than half of beliefs, worries and memories...

 Consistent with precise comparison

 Allows use of more than half for proportions near 50%

 Favored in cases where numerical data reported; yields 'survey results'

Most

- Expresses a comparison between sets (only secondarily realized as a comparison between numbers/measures)
 - May occur with sets whose members cannot be individuated and counted

Most beliefs, worries and memories...

- May be verified through approximate strategies (e.g. visually, induction/generalization, lack of exceptions)
 - Imprecise; fail for two sets close in size (cf. infelicity of most for proportions near 50%)

Most

- Parallel in findings from the psychology of number cognition: humans possess two cognitive systems for the representation and processing of number: 1) precise; 2) approximate (Dehaene 1997)
- □ The approximate number system is...
 - Independent of knowledge of precise numbers (present in children, animals, etc.)
 - Involved in quantity comparison and approximate arithmetic
 - Ratio dependent: size and distance effects (cf. ratio effects with most)
 - Verification of more than half necessarily invokes precise system; verification of most favors approximate system

Conclusions: Most/More than Half

- Distinction between non-vague expression (more than half) and its vague counterpart (most) corresponds to distinction between counting/precise numerosity and approximate/non-numeric comparison
- Distributional and interpretative effects arise from possible verification strategies rather than directly from truth condition

Vagueness and Quantity Final Observations

- Role of comparison classes (broadly considered)
- Interpretive effect of scale structure
- Vagueness and the approximate number system
- Vagueness and verification strategy

Thank you!

Work on this project was funded by the European Science Foundation (ESF) and the Deutsche Forschungsgemeinschaft (DFG) under the EUROCORES call LogICCC