VAGUENESS IN QUANTITY

Stephanie Solt
Zentrum für Allgemeine Sprachwissenschaft, Berlin MIDiSoVa, March 26-28, 2010

The Study of Vagueness

\square Typical focus:
\square Vague adjectives: tall, expensive, thin, red, old, bald

- Vague nouns: heap
> Dimensions: size, cost, age, hue, etc.
\square Today's focus:
- Vagueness in the expression of quantity and amount
> Dimensions: cardinality (number); volume, mass
> additive dimensions

Game Plan

1. Inherently vague and context-dependent quantity expressions:

- Adjectives of quantity: many, few, much, little

2. Case study:

- Most (vague) vs. more than half (not vague)

Not in the Game Plan (today)

\square Approximate or vague use of (potentially) precise quantity expressions (Krifka 2009):
(1) a. There are 100 people in the room approximate
b. There are 99 people in the room precise

- Instead, focus on quantity expressions whose meaning is inherently vague - with the goal of exploring what they can tell us about vagueness more generally

Adjectives of Quantity

(2) a. Many people I know like jazz
b. Few students came to the lecture
c. I don't have much money
d. There is little water in the bucket
(3) Fred is tall

Parallels to Gradable Adjectives

\square Gradability
(4) a. Fred read fewer books than Barney
b. Barney drank the most wine (cf. taller than Barney/the tallest man here)
(5) a. Barney drank very little wine
b. Betty read as many books as Wilma
c. Wilma read too few books
(cf. Fred is very tall/too tall/etc.)

Parallels to Gradable Adjectives

\square Context sensitivity
(6) Many students came to the lecture

- Situation 1: In-class lecture in advanced Semantics class
- Situation 2: University-wide lecture by Bill Clinton
\square Borderline cases
- 1000 students coming to Clinton's lecture is many
- 3 is not many
- But what about 50? 100?

Parallels to Gradable Adjectives

\square Sorities Paradox
a. If 1000 students attend Clinton's lecture, that is many
b. If n students attending Clinton's lecture is many, then $n-1$ students attending Clinton's lecture is many
c. 3 students attending Clinton's lecture is many

Parallels to Gradable Adjectives

\square Compositional regulation of vagueness
\square For phrases
(7) a. Barney owns few books for a professor
b. Barney is tall for a jockey

- Compared to phrases
(8) a. Fred owns few books compared to Barney
b. Fred is tall compared to Barney

Distinctions vs. 'Ordinary’ Adjectives

\square Predicative use
(9) a. Fred is tall
(10) a. I consider Fred tall
(11) a. Every boy is tall
b. The fans were many
b. *I consider the fans many
b. *Every fan is few
\square Differential use
(12) a. Fred drank much/little more than Barney
b. *Fred is tall taller than Barney

Framework

\square Degree-based approach (Cresswell 1977; Heim 2000; Kennedy 2007; a.o.)
\square Gradability modeled via...

- scales S consisting of...
- set of degrees d...
- ordered by ordering relationship >
\square Gradable adjectives relate individuals to degrees

Semantics of Gradable Predicates

\square＇Ordinary＇gradable adjectives：gradable predicates over individuals
$\begin{aligned} \text {（13）a．} \llbracket \text { tall】 } & =\lambda d \lambda x \cdot \operatorname{HEIGHT}(x) \geq d \\ \text { b．} \llbracket \text { short } \rrbracket & =\lambda d \lambda x \cdot \operatorname{HEIGHT}(x) \leq d\end{aligned}$
\square Adjectives of quantity：gradable predicates over scalar intervals
（14）a．【many】 $=\lambda d \lambda I \cdot M A X(I) \geq d$
b．$\llbracket f e w \rrbracket=\lambda d \lambda I \cdot M A X(I) \leq d$

The Positive Form

\square Gradable expressions do not encode a standard of comparison
\square In positive（unmodified）form，degree slot（d） filled by standard value $\mathrm{R}_{\text {Std }}$
（15）【Fred is tall】＝ 1 iff $\operatorname{HEIGHT}($ fred $) \geq R_{\text {std }}$
【Barney is short】 $=1$ iff $\mathrm{HEIGHT}($ barney $) \leq R_{\text {Std }}$

－Where does $R_{\text {Std }}$ come from？

Comparison Classes

\square Vague expressions interpreted with reference to a comparison class (Klein 1980)
(16) Barney is tall for a jockey
'Barney's height exceeds the standard for jockeys'
'Barney is (considerably) taller than the average jockey'
'Barney is taller than most jockeys'

HEIGHT

Example

(17) a. Sue's apartment is expensive for an apartment on this street
b. Paul's apartment is inexpensive for an apartment on this street

The facts
Sue's apartment: $\quad € 800$
Paul's apartment €600
Median on this street: €700

Example

$\square(17 a, b)$ true in this situation

Example

\square But false in this situation

Comparison Classes

Can be captured with a statistical analogy
(18) 【Barney is tall for a jockey $=1$
iff HEIGHT(barney) $\geq R_{\text {Std }}$

$$
\begin{aligned}
\text { where } R_{\text {Std }}= & \operatorname{median}_{x: i o c k e y(x)}(d: \operatorname{HEIGHT}(x)=d) \pm \\
& n \bullet M A D_{x: i o c k e y(x)}(d: H E I G H T(x)=d)
\end{aligned}
$$

MAD $=$ mean absolute deviation

Extended to Adjectives of Quantity

(19) Barney owns few books for a professor
'Barney owns fewer books than most professors'

(20) $\llbracket(19) \rrbracket=1$ iff $\#$ of books owned by Barney $<N_{\text {S }}$ where $N_{S}=$ median $_{\text {x:professor(x) }}$ (d:x owns d-many books) \pm $M A D_{x: p r o f e s s o r ~(x) ~}$ (d:x owns d-many books)

Consequence 1: Comparison Classes

\square We need a broader view of comparison classes:
(21) a. Barney is tall for a jockey
$■ C C=$ jockeys (subject of gradable expression $\in C C$)
b. Barney owns few books for a professor

- CC = professors (subject of gradable expression $\notin \mathrm{CC}$)
c. For a Sunday, there aren't many cars in the lot
- CC = Sundays (times t)
d. Few students came to the lecture
- Compared to what I expected

■ CC = situations consistent with my expectations (worlds w) (cf. Fernando \& Kamp 1996)

A Complication

\square Cardinal vs. proportional readings (Partee 1989):
(22) Few Linguistics students are registered for the class

■ Cardinal: a small number of Linguistics students
$■$ Proportional: a small proportion of the Ling. students
\square Distinct:
...because there are few Linguistics students
Cardinal
\square Grammatically determined:
(23)
a. There are few Linguistics students
b. Few of the Linguistics students are here
c. Few students I know have blue eyes

Cardinal
Proportional
Proportional

Cardinal vs. Proportional

\square Proposal: Proportional reading of Q-adjectives arises when domain of quantification is a topic/ presupposed
\square Consequence for scale structure: upper bound
Few Linguistics students are registered for Psychology of Language

Vagueness and the Proportional Reading

\square Borderline cases remain:
(24) Many of the people in this room have blue eyes

- How many out of 50 ?
\square But context sensitivity reduced:
(25) Few of the teachers I know are female $<\sim 1 / 3$
(26) Few of the people in this room are right handed

■ In the case where 50% are right handed?
\square Suggests 'default' location for $R_{\text {Std }}$ in proportional case

Consequence 2:
 Constraining Vagueness

\square Proportional case points to alternative possibility for constraining the interpretation of vague predicate - via scale structure

- Cf. Kennedy (2007): maximize the contribution of conventional elements

2. Most vs. More than Half

Case Study

3．Most vs．More than Half

\square Two proportional quantifiers with（superficially） equivalent semantics
（27）a．Most Americans have broadband internet access
b．More than half of Americans have broadband internet access
（28）【most】＝【more than half】＝

$$
=\lambda X \lambda Y .|X \cap Y|>1 / 2|X|
$$

－$(27 a, b)$ true iff \＃of Americans who have broadband $>$ $1 / 2$ total \＃Americans

However...

\square Speakers' intuition: most > more than half
\square More than half has sharp lower bound; most does not
(29) a. More than half of the U.S. population is female b. Most of the U.S. population is female ??

- The facts: female 50.7\% vs. male 49.3% (U.S. Census Bureau 2008)

Most vs. More than Half

\square Most > more than half
(30) a. The survey showed that most students (81.5\%) do not use websites for math-related assignments (Education, 129(1), pp. 56-79, 2008)
b. More than half of respondents (55\%) say that making money is more important now than it was five years ago (Money, $21(3)$, p. 72, 1992)

Source: Corpus of Contemporary American English (COCA: Davies 2008-)

- 400+ million word corpus covering multiple genres (magazine, newspaper, fiction, academic, spoken) for the years 1990-2009

Most vs. More than Half

Source: COCA

Observation

\square In the pair most and more than half, we have the case study of a contrast between an expression with a vague lower bound (most) and a parallel expression whose lower bound is precise (more than half)

Further Divergences

\square Most is readily followed directly by a plural noun, yielding a generic-like interpretation
(31) a. Most people follow the moral judgments of those around them (Writer, 121 (7), pp. 30-33, 2008)
b. Money is at least partly a control issue in most families (Moner, 32(1), p. 106, 2003)
c. Most teens want to fit in with their peers (CNN YourHealth, $31 / 8 / 2002$)

Further Divergences

\square More than half is awkward in similar contexts, and (when acceptable) has a 'survey results' rather than generic flavor:
(32) a. ??More than half of people follow the moral judgments of those around them
b. ?? Money is at least partly a control issue in more than half of families
c. ?? More than half of teens want to fit in with their peers

Further Divergences

\square Most can occur with uncountable domains:
(33) a. But like most things, obesity is not spread equally across social classes (Mens Health, 23(7), p. 164, 2008)
b. But he had enough material on his truck to handle most problems (Contractor, 47(4), p. 30, 2000)
c. Most beliefs, worries, and memories also operate outside awareness (Science News, 142(16), 1992)
d. In most situations the closer the test approximates actual job tasks, the better (Current Psychology, 14(2), 1995)

Further Divergences

\square More than half requires a domain that can be individuated and counted (or otherwise measured):
(34) a. ?? But like more than half of things, obesity is not spread equally across social classes
b. ?? But he had enough material on his truck to handle more than half of problems
c. ??More than half of beliefs, worries, and memories also operate outside awareness
d. ?? In more than half of situations the closer the test approximates actual job tasks, the better

Corpus analysis

\square Use of more than half typically co-occurs with mention of a source of supporting data; this is not the case with most

Source of Data Mentioned (Data from COCA)

	More than Half	Most
Americans	$9 / 12$	$13 / 100$
Men	$4 / 6$	$5 / 100$
Women	$4 / 5$	$7 / 100$
Students	$5 / 5$	$36 / 100$
Patients	$5 / 5$	$39 / 100$
Families	$1 / 2$	$11 / 100$
TOTAL	$\mathbf{2 8 / 3 5}$	$\mathbf{1 1 1 / 6 0 0}$
	$\mathbf{8 0 \%}$	$\mathbf{1 9 \%}$

Proposal

The observed differences in distribution and interpretation for most and more than half derive from a fundamental difference in logical form, which corresponds to a difference in possible verification strategies (cf. Hackl 2009)

Proposal

Most	More than half					
'Most F are G' is true iff $\|F \cap G\|>\|F-G\|$	'More than half of F are G ' is true iff $\|F \cap G\|>\|F\| / 2$					
'Most Americans have broadband' is true iff \|\{Americans who have BB\}	$>$ \|\{Americans who do not have BB\}		'More than half of Americans have broadband' is true iff \|\{Americans who have BB\}		\{Americans\}	/2
A comparison of sets	A comparison of numbers					

Analogy

\square Suppose we have two rocks, A and B

	Does A weigh more than B?	Does A weigh more than $1 / 2$ as much as B?

- Some comparisons are inherently comparisons of \#s
\square Some are comparisons of the 'stuff' itself

More than Half

\square Expresses a comparison between numbers
\square Requires countable/measureable sets
■ *more than half of beliefs, worries and memories...
\square Consistent with precise comparison

- Allows use of more than half for proportions near 50\%
\square Favored in cases where numerical data reported; yields 'survey results'

Most

\square Expresses a comparison between sets (only secondarily realized as a comparison between numbers/measures)

- May occur with sets whose members cannot be individuated and counted

■ Most beliefs, worries and memories...
\square May be verified through approximate strategies (e.g. visually, induction/generalization, lack of exceptions)
\Rightarrow Imprecise; fail for two sets close in size (cf. infelicity of most for proportions near 50\%)

Most

\square Parallel in findings from the psychology of number cognition: humans possess two cognitive systems for the representation and processing of number: 1) precise; 2) approximate (Dehaene 1997)

- The approximate number system is...
\square Independent of knowledge of precise numbers (present in children, animals, etc.)
\square Involved in quantity comparison and approximate arithmetic
\square Ratio dependent: size and distance effects (cf. ratio effects with most)
\rightarrow Verification of more than half necessarily invokes precise system; verification of most favors approximate system

Conclusions: Most/More than Half

- Distinction between non-vague expression (more than half) and its vague counterpart (most) corresponds to distinction between counting/precise numerosity and approximate/non-numeric comparison
- Distributional and interpretative effects arise from possible verification strategies rather than directly from truth condition

Vagueness and Quantity Final Observations

\square Role of comparison classes (broadly considered)
\square Interpretive effect of scale structure
\square Vagueness and the approximate number system
\square Vagueness and verification strategy

Thank you!

Work on this project was funded by the European Science Foundation (ESF) and the Deutsche Forschungsgemeinschaft (DFG) under the EUROCORES call LogICCC

