# Winning Strategies in Two-Player Games with Partial Information

#### LINT Workshop, Amsterdam 04. Dec. - 06. Dec. 2008

Bernd Puchala

**RWTH Aachen University** 

The Model

#### Infinite Two-Player Win-Loss Games

#### $G = (V, V_0, (f_a)_{a \in A}, W_0)$

$$G = (V, V_0, (f_a)_{a \in A}, W_0)$$

• game played on a finite graph with labelled edges

$$G = (V, V_0, (f_a)_{a \in A}, W_0)$$

- game played on a finite graph with labelled edges
- $\bullet\,$  by two antagonistic players 0 and 1,

$$G = (V, V_0, (f_a)_{a \in A}, W_0)$$

- game played on a finite graph with labelled edges
- by two antagonistic players 0 and 1,
- $\bullet\,$  choosing deterministic actions from the set A

$$G = (V, V_0, (f_a)_{a \in A}, W_0)$$

- game played on a finite graph with labelled edges
- by two antagonistic players 0 and 1,
- ${\ensuremath{\, \bullet }}$  choosing deterministic actions from the set A
- for  $\omega$  many rounds,

$$G = (V, V_0, (f_a)_{a \in A}, W_0)$$

- game played on a finite graph with labelled edges
- by two antagonistic players 0 and 1,
- ${\ensuremath{\, \bullet }}$  choosing deterministic actions from the set A
- for  $\omega$  many rounds,
- with player 0 having the goal to establish a play in  $W_0 \subseteq V^{\omega}$ .

$$G = (V, V_0, (f_a)_{a \in A}, W_0)$$

- game played on a finite graph with labelled edges
- by two antagonistic players 0 and 1,
- ${\ensuremath{\, \bullet }}$  choosing deterministic actions from the set A
- for  $\omega$  many rounds,
- with player 0 having the goal to establish a play in  $W_0 \subseteq V^{\omega}$ .
- As usual, game graphs are non-terminating.

| The Model | Powerset Construction | Finite Memory | Alternating Tree Automata | Future Prospects |
|-----------|-----------------------|---------------|---------------------------|------------------|
| Strategi  | es                    |               |                           |                  |

| The Model | Powerset Construction | Finite Memory | Alternating Tree Automata | Future Prospects |
|-----------|-----------------------|---------------|---------------------------|------------------|
| Strategi  | es                    |               |                           |                  |

Function  $f: V^*V_i \to A$  with  $f(\pi v_i) \in \operatorname{act}(v_i)$ ,

prescribing a next move for each finite play prefix where it is player  $i{\rm 's\ turn}$ 

| The Model | Powerset Construction | Finite Memory | Alternating Tree Automata | Future Prospects |
|-----------|-----------------------|---------------|---------------------------|------------------|
| Strategi  | es                    |               |                           |                  |

Function  $f: V^*V_i \to A$  with  $f(\pi v_i) \in \operatorname{act}(v_i)$ ,

prescribing a next move for each finite play prefix where it is player  $i{\rm 's\ turn}$ 

and being compatible with the knowledge of player i.

| The Model | Powerset Construction | Finite Memory | Alternating Tree Automata | Future Prospects |
|-----------|-----------------------|---------------|---------------------------|------------------|
| Strategi  | es                    |               |                           |                  |

Function  $f: V^*V_i \to A$  with  $f(\pi v_i) \in \operatorname{act}(v_i)$ ,

prescribing a next move for each finite play prefix where it is player  $i{\rm 's\ turn}$ 

and being compatible with the knowledge of player i.

• The knowledge of player i in the game is modelled by an equivalence relation on  $V^*$ .

| The Model | Powerset Construction | Finite Memory | Alternating Tree Automata | Future Prospects |
|-----------|-----------------------|---------------|---------------------------|------------------|
| Strategi  | es                    |               |                           |                  |

Function  $f: V^*V_i \to A$  with  $f(\pi v_i) \in \operatorname{act}(v_i)$ ,

prescribing a next move for each finite play prefix where it is player i's turn

and being compatible with the knowledge of player *i*.

• The knowledge of player i in the game is modelled by an equivalence relation on  $V^*$ .

 $\pi\sim_i\pi'$  means, that after  $\pi$  has been played and after  $\pi'$  has been played, player i has exactly the same information.

Function  $f: V^*V_i \to A$  with  $f(\pi v_i) \in \operatorname{act}(v_i)$ ,

prescribing a next move for each finite play prefix where it is player i's turn

and being compatible with the knowledge of player i.

• The knowledge of player i in the game is modelled by an equivalence relation on  $V^*$ .

 $\pi\sim_i\pi'$  means, that after  $\pi$  has been played and after  $\pi'$  has been played, player i has exactly the same information.

$$\pi \sim_i \pi' \Longrightarrow f(\pi) = f(\pi')$$

In principle, any equivalence relation can be used here, but:

• we would like to impose certain natural restrictions on  $\sim_i$ .

- we would like to impose certain natural restrictions on  $\sim_i$ .
- for algorithms, we need a finite representation of  $\sim_i$ .

- we would like to impose certain natural restrictions on  $\sim_i$ .
- for algorithms, we need a finite representation of  $\sim_i$ .
- Finite representation of game graphs: finite graphs, pushdown graphs, graphs generated by finitary construction rules, ...

- we would like to impose certain natural restrictions on  $\sim_i$ .
- for algorithms, we need a finite representation of  $\sim_i$ .
- Finite representation of game graphs: finite graphs, pushdown graphs, graphs generated by finitary construction rules, ...
- $\bullet$  Finite representation of winning conditions : LTL, S1S, parity conditions, . . .

- we would like to impose certain natural restrictions on  $\sim_i$ .
- for algorithms, we need a finite representation of  $\sim_i$ .
- Finite representation of game graphs: finite graphs, pushdown graphs, graphs generated by finitary construction rules, ...
- $\bullet$  Finite representation of winning conditions : LTL, S1S, parity conditions,  $\ldots$
- Finite representation of knowledge:

 $1^{st}$  Define the information that a player has about the positions in the game graph: Equivalence relation  $\sim_i^V$  on V.

 $1^{st}$  Define the information that a player has about the positions in the game graph: Equivalence relation  $\sim_i^V$  on V.

 $1^{st}$  Define the information that a player has about the positions in the game graph: Equivalence relation  $\sim_i^V$  on V.

(1) 
$$v \sim_i w \Longrightarrow v, w \in V_i \text{ or } v, w \notin V_i$$

 $1^{st}$  Define the information that a player has about the positions in the game graph: Equivalence relation  $\sim_i^V$  on V.

(1) 
$$v \sim_i w \Longrightarrow v, w \in V_i \text{ or } v, w \notin V_i$$
  
(2)  $v, w \in V_i \text{ with } v \sim_i w, a \neq b \Longrightarrow f_a(v) \not\sim_i f_b(w)$ 

 $1^{st}$  Define the information that a player has about the positions in the game graph: Equivalence relation  $\sim_i^V$  on V.

(1) 
$$v \sim_i w \Longrightarrow v, w \in V_i \text{ or } v, w \notin V_i$$
  
(2)  $v, w \in V_i \text{ with } v \sim_i w, a \neq b \Longrightarrow f_a(v) \not\sim_i f_b(w)$   
(3)  $v, w \in V_i \text{ with } v \sim_i w \Longrightarrow \operatorname{act}(v) = \operatorname{act}(w)$ 

 $1^{st}$  Define the information that a player has about the positions in the game graph: Equivalence relation  $\sim_i^V$  on V.

(1) 
$$v \sim_i w \Longrightarrow v, w \in V_i \text{ or } v, w \notin V_i$$
  
(2)  $v, w \in V_i \text{ with } v \sim_i w, a \neq b \Longrightarrow f_a(v) \not\sim_i f_b(w)$   
(3)  $v, w \in V_i \text{ with } v \sim_i w \Longrightarrow \operatorname{act}(v) = \operatorname{act}(w)$   
 $2^{nd}$  Extend  $\sim_i^V$  to  $\sim_i$ .

 $\sim~$  If player i does observe any move, then

~ If player *i* does observe any move, then  $\pi \sim_i \pi'$  iff  $|\pi| = |\pi'|$  and  $\pi(j) \sim_i^V \pi'(j)$  for all *j*. (Synchronous case, player share a clock.)

- ~ If player *i* does observe any move, then  $\pi \sim_i \pi'$  iff  $|\pi| = |\pi'|$  and  $\pi(j) \sim_i^V \pi'(j)$  for all *j*. (Synchronous case, player share a clock.)
- $\sim$  Now, hide moves from player *i* in which he can't observe anything that happens:

- ~ If player *i* does observe any move, then  $\pi \sim_i \pi'$  iff  $|\pi| = |\pi'|$  and  $\pi(j) \sim_i^V \pi'(j)$  for all *j*. (Synchronous case, player share a clock.)
- $\sim$  Now, hide moves from player *i* in which he can't observe anything that happens:

$$\pi \overleftarrow{\sim}_i \pi'$$
 iff  $\overleftarrow{\pi} \sim_i \overleftarrow{\pi}'$  where

 $\overleftarrow{\pi}$  is obtained from  $\pi$  by deleting all moves  $u \to v$  from  $\pi$  such that  $u \in V_{1-i}$  and  $u \sim_i^V v$ .

(Asynchronous case.)

Given a finite game  $\mathcal{G} = (G, (\sim_i^V)_{i=0,1})$  and a position v, does player 0 have a strategy for  $\mathcal{G}$  from v which is winning against all strategies of player 1?

#### The Question

Given a finite game  $\mathcal{G} = (G, (\sim_i^V)_{i=0,1})$  and a position v, does player 0 have a strategy for  $\mathcal{G}$  from v which is winning against all strategies of player 1?

However, this is the same as asking: Given a finite game  $\mathcal{G} = (G, (\sim_i^V)_{i=0,1})$  and a position v, does player 0 have a strategy for  $\mathcal{G}$  from v which is winning?

#### The Question

Given a finite game  $\mathcal{G} = (G, (\sim_i^V)_{i=0,1})$  and a position v, does player 0 have a strategy for  $\mathcal{G}$  from v which is winning against all strategies of player 1?

However, this is the same as asking: Given a finite game  $\mathcal{G} = (G, (\sim_i^V)_{i=0,1})$  and a position v, does player 0 have a strategy for  $\mathcal{G}$  from v which is winning?

Thus, we can ignore the partial information of player 1 here!

$$\rightsquigarrow \mathcal{G} = (G, \sim^V)$$



#### For large classes of games, find



#### For large classes of games, find

• (efficient) algorithms for the strategy problem.



For large classes of games, find

- (efficient) algorithms for the strategy problem.
- (efficient) methods to implement winning strategies with (small) finite memory.


For large classes of games, find

- (efficient) algorithms for the strategy problem.
- (efficient) methods to implement winning strategies with (small) finite memory.

Idea:

Turn a game with partial information into a game with full information such that the existence of winning strategies for player 0 is preserved.



For large classes of games, find

- (efficient) algorithms for the strategy problem.
- (efficient) methods to implement winning strategies with (small) finite memory.

Idea:

Turn a game with partial information into a game with full information such that the existence of winning strategies for player 0 is preserved.

 $\rightsquigarrow$  Powerset Construction

$$\mathcal{G} = (G, \sim^V) \rightsquigarrow \overline{G} = (\overline{V}, \overline{V}_0, (\overline{E})_{a \in A}, \overline{W}_0)$$

$$\mathcal{G} = (G, \sim^V) \rightsquigarrow \overline{G} = (\overline{V}, \overline{V}_0, (\overline{E})_{a \in A}, \overline{W}_0)$$

$$\mathcal{G} = (G, \sim^V) \rightsquigarrow \overline{G} = (\overline{V}, \overline{V}_0, (\overline{E})_{a \in A}, \overline{W}_0)$$

 $\bullet$  Positions in  $\overline{V}$  are subsets of  $\sim^V\text{-classes.}$ 

• The set of  $\overline{E}$ -successors of  $\overline{u}$  is obtained from the set of all successors of positions in  $\overline{u}$ , divided by  $\sim^{V}$ .

$$\mathcal{G} = (G, \sim^V) \rightsquigarrow \overline{G} = (\overline{V}, \overline{V}_0, (\overline{E})_{a \in A}, \overline{W}_0)$$

- The set of  $\overline{E}$ -successors of  $\overline{u}$  is obtained from the set of all successors of positions in  $\overline{u}$ , divided by  $\sim^{V}$ .
- $\overline{W}_0$ : for parity conditions with observable colors, let  $\operatorname{col}(\overline{u}) = \operatorname{col}(u)$  for any  $u \in \overline{u}$ .

$$\mathcal{G} = (G, \sim^V) \rightsquigarrow \overline{G} = (\overline{V}, \overline{V}_0, (\overline{E})_{a \in A}, \overline{W}_0)$$

- The set of  $\overline{E}$ -successors of  $\overline{u}$  is obtained from the set of all successors of positions in  $\overline{u}$ , divided by  $\sim^{V}$ .
- $\overline{W}_0$ : for parity conditions with observable colors, let  $\operatorname{col}(\overline{u}) = \operatorname{col}(u)$  for any  $u \in \overline{u}$ .
- Arbitrary winning conditions?

$$\mathcal{G} = (G, \sim^V) \rightsquigarrow \overline{G} = (\overline{V}, \overline{V}_0, (\overline{E})_{a \in A}, \overline{W}_0)$$

- The set of  $\overline{E}$ -successors of  $\overline{u}$  is obtained from the set of all successors of positions in  $\overline{u}$ , divided by  $\sim^{V}$ .
- $\overline{W}_0$ : for parity conditions with observable colors, let  $\operatorname{col}(\overline{u}) = \operatorname{col}(u)$  for any  $u \in \overline{u}$ .
- Arbitrary winning conditions?
- Let  $\overline{u}_1\overline{u}_2\ldots\in\overline{W}_0:\iff$

$$\mathcal{G} = (G, \sim^V) \rightsquigarrow \overline{G} = (\overline{V}, \overline{V}_0, (\overline{E})_{a \in A}, \overline{W}_0)$$

- The set of  $\overline{E}$ -successors of  $\overline{u}$  is obtained from the set of all successors of positions in  $\overline{u}$ , divided by  $\sim^{V}$ .
- $\overline{W}_0$ : for parity conditions with observable colors, let  $\operatorname{col}(\overline{u}) = \operatorname{col}(u)$  for any  $u \in \overline{u}$ .
- Arbitrary winning conditions?

• Let 
$$\overline{u}_1 \overline{u}_2 \ldots \in \overline{W}_0 :\iff$$
  
  $\forall \ u_1 u_2 \ldots \in V^{\omega} : [u_i \in \overline{u}_i \ \forall i] \Longrightarrow u_1 u_2 \ldots \in W_0.$ 



• For parity conditions with observable colors, this is equivalent to coloring the positions in  $\overline{G}$ .



- For parity conditions with observable colors, this is equivalent to coloring the positions in  $\overline{G}$ .
- Also true for more general notions of observable winning conditions.



- For parity conditions with observable colors, this is equivalent to coloring the positions in  $\overline{G}$ .
- Also true for more general notions of observable winning conditions.
- For arbitrary  $\omega$ -regular winning conditions?



- For parity conditions with observable colors, this is equivalent to coloring the positions in  $\overline{G}$ .
- Also true for more general notions of observable winning conditions.
- For arbitrary  $\omega$ -regular winning conditions?
- $\overline{u}_1\overline{u}_2\ldots\notin\overline{W}_0\iff$



- For parity conditions with observable colors, this is equivalent to coloring the positions in  $\overline{G}$ .
- Also true for more general notions of observable winning conditions.
- For arbitrary  $\omega$ -regular winning conditions?

• 
$$\overline{u}_1\overline{u}_2\ldots\notin\overline{W}_0\iff$$

 $\exists \ u_1 u_2 \ldots \in V^{\omega} \setminus W_0 : \ u_i \in \overline{u}_i \ \forall i$ 



- For parity conditions with observable colors, this is equivalent to coloring the positions in  $\overline{G}$ .
- Also true for more general notions of observable winning conditions.
- For arbitrary  $\omega$ -regular winning conditions?

• 
$$\overline{u}_1\overline{u}_2\ldots\notin\overline{W}_0$$

 $\exists u_1 u_2 \ldots \in V^{\omega} \setminus W_0 : u_i \in \overline{u}_i \ \forall i$ 

Given a Büchi automaton B with L(B) = W<sub>0</sub>, one can construct a Büchi automaton B with L(B) = W
<sub>0</sub>.
 (ω-regular languages are closed under complementation.)

#### Theorem

- The strategy problem for ω-regular games with partial information is decidable.
- Finite memory strategies can be synthesized.

$$\mathcal{G} = (G, \sim^V) \rightsquigarrow \tilde{G} = (\tilde{V}, \tilde{V}_0, (\tilde{E})_{a \in A}, \tilde{W}_0)$$

$$\mathcal{G} = (G, \sim^V) \rightsquigarrow \tilde{G} = (\tilde{V}, \tilde{V}_0, (\tilde{E})_{a \in A}, \tilde{W}_0)$$

• Positions in  $\tilde{V}$  are subsets of  $\sim^V\text{-classes.}$ 

$$\mathcal{G} = (G, \sim^V) \rightsquigarrow \tilde{G} = (\tilde{V}, \tilde{V}_0, (\tilde{E})_{a \in A}, \tilde{W}_0)$$

- Positions in  $\tilde{V}$  are subsets of  $\sim^V\text{-classes.}$
- We call a position v an extended successor of a position u, if v is reachable from a successor u' of u via a sequence of moves which are hidden from player 0.

$$\mathcal{G} = (G, \sim^V) \rightsquigarrow \tilde{G} = (\tilde{V}, \tilde{V}_0, (\tilde{E})_{a \in A}, \tilde{W}_0)$$

- Positions in  $\tilde{V}$  are subsets of  $\sim^V\text{-classes.}$
- We call a position v an extended successor of a position u, if v is reachable from a successor u' of u via a sequence of moves which are hidden from player 0.
- The set of  $\tilde{E}$ -successors of  $\tilde{u}$  is obtained from the set of all extended successors of positions in  $\tilde{u}$ , divided by  $\sim^{V}$ .

$$\mathcal{G} = (G, \sim^V) \rightsquigarrow \tilde{G} = (\tilde{V}, \tilde{V}_0, (\tilde{E})_{a \in A}, \tilde{W}_0)$$

- Positions in  $\tilde{V}$  are subsets of  $\sim^V\text{-classes.}$
- We call a position v an extended successor of a position u, if v is reachable from a successor u' of u via a sequence of moves which are hidden from player 0.
- The set of  $\tilde{E}$ -successors of  $\tilde{u}$  is obtained from the set of all extended successors of positions in  $\tilde{u}$ , divided by  $\sim^{V}$ .
- $\tilde{W}_0$ : for parity conditions with observable colors, let  $\operatorname{col}(\tilde{u}) = \operatorname{col}(u)$  for any  $u \in \tilde{u}$ .

$$\mathcal{G} = (G, \sim^V) \rightsquigarrow \tilde{G} = (\tilde{V}, \tilde{V}_0, (\tilde{E})_{a \in A}, \tilde{W}_0)$$

- Positions in  $\tilde{V}$  are subsets of  $\sim^V\text{-classes.}$
- We call a position v an extended successor of a position u, if v is reachable from a successor u' of u via a sequence of moves which are hidden from player 0.
- The set of  $\tilde{E}$ -successors of  $\tilde{u}$  is obtained from the set of all extended successors of positions in  $\tilde{u}$ , divided by  $\sim^{V}$ .
- $\tilde{W}_0$ : for parity conditions with observable colors, let  $\operatorname{col}(\tilde{u}) = \operatorname{col}(u)$  for any  $u \in \tilde{u}$ .
- Arbitrary winning conditions?

Alternating Tree Automata

**Future Prospects** 

## Asynchronous Case

Let  $\tilde{u}_1 \tilde{u}_2 \ldots \in \tilde{W}_0 :\iff$ 

Alternating Tree Automata

Future Prospects

Let 
$$\tilde{u}_1 \tilde{u}_2 \ldots \in \tilde{W}_0 : \iff \forall u_1 u_2 \ldots \in V^{\omega} :$$

Let 
$$\tilde{u}_1 \tilde{u}_2 \ldots \in \tilde{W}_0 :\iff$$
  
 $\forall \ u_1 u_2 \ldots \in V^{\omega} :$   
 $[ \exists \ 0 =: k_0 < k_1 < k_2 < \ldots \text{ with } u_{k_i}, \ldots, u_{k_{i+1}-1} \in \tilde{u}_i \ \forall \ i \text{ and } k_{i+1} - k_i = 1 \text{ if } \tilde{u}_i \in \tilde{V}_0 ]$ 

Let 
$$\tilde{u}_1 \tilde{u}_2 \ldots \in \tilde{W}_0 :\iff$$
  
 $\forall \ u_1 u_2 \ldots \in V^{\omega} :$   
 $[ \exists \ 0 =: k_0 < k_1 < k_2 < \ldots \text{ with } u_{k_i}, \ldots, u_{k_{i+1}-1} \in \tilde{u}_i \ \forall \ i \text{ and}$   
 $k_{i+1} - k_i = 1 \text{ if } \tilde{u}_i \in \tilde{V}_0 ]$   
 $\Longrightarrow u_1 u_2 \ldots \in W_0$ 

Let 
$$\tilde{u}_1 \tilde{u}_2 \ldots \in \tilde{W}_0 :\iff$$
  
 $\forall \ u_1 u_2 \ldots \in V^{\omega} :$   
 $[ \exists \ 0 =: k_0 < k_1 < k_2 < \ldots \text{ with } u_{k_i}, \ldots, u_{k_{i+1}-1} \in \tilde{u}_i \ \forall \ i \text{ and } k_{i+1} - k_i = 1 \text{ if } \tilde{u}_i \in \tilde{V}_0 ]$   
 $\Longrightarrow u_1 u_2 \ldots \in W_0$ 

- For parity conditions with observable colors, this is equivalent to coloring the positions in  $\overline{G}$ .
- Also true for more general notions of observable winning conditions.

Let 
$$\tilde{u}_1 \tilde{u}_2 \ldots \in \tilde{W}_0 :\iff$$
  
 $\forall \ u_1 u_2 \ldots \in V^{\omega} :$   
 $[ \exists \ 0 =: k_0 < k_1 < k_2 < \ldots \text{ with } u_{k_i}, \ldots, u_{k_{i+1}-1} \in \tilde{u}_i \ \forall \ i \text{ and } k_{i+1} - k_i = 1 \text{ if } \tilde{u}_i \in \tilde{V}_0 ]$   
 $\Longrightarrow u_1 u_2 \ldots \in W_0$ 

- For parity conditions with observable colors, this is equivalent to coloring the positions in  $\overline{G}$ .
- Also true for more general notions of observable winning conditions.
- For arbitrary  $\omega$ -regular winning conditions?

Alternating Tree Automata

**Future Prospects** 

•  $\overline{u}_1\overline{u}_2\ldots\notin\overline{W}_0$ 

Alternating Tree Automata

**Future Prospects** 

• 
$$\overline{u}_1 \overline{u}_2 \dots \notin \overline{W}_0 \iff$$
  
 $\exists u_1 u_2 \dots \in V^{\omega} \setminus W_0$ 

• 
$$\overline{u}_1 \overline{u}_2 \dots \notin \overline{W}_0 \iff$$
  
 $\exists u_1 u_2 \dots \in V^{\omega} \setminus W_0$   
 $[ \exists 0 =: k_0 < k_1 < k_2 < \dots \text{ with } u_{k_i}, \dots, u_{k_{i+1}-1} \in \tilde{u}_i \forall i$   
and  $k_{i+1} - k_i = 1$  if  $\tilde{u}_i \in \tilde{V}_0$ ]

• 
$$\overline{u}_1 \overline{u}_2 \dots \notin \overline{W}_0 \iff$$
  
 $\exists u_1 u_2 \dots \in V^{\omega} \setminus W_0$   
 $[ \exists 0 =: k_0 < k_1 < k_2 < \dots \text{ with } u_{k_i}, \dots, u_{k_{i+1}-1} \in \tilde{u}_i \forall i$   
and  $k_{i+1} - k_i = 1$  if  $\tilde{u}_i \in \tilde{V}_0$  ]

• Given a Büchi automaton  $\mathcal{B}$  with  $L(\mathcal{B}) = W_0$ , one can construct a Büchi automaton  $\overline{\mathcal{B}}$  with  $L(\overline{\mathcal{B}}) = \overline{W}_0$ .

• 
$$\overline{u}_1 \overline{u}_2 \dots \notin \overline{W}_0 \iff$$
  
 $\exists u_1 u_2 \dots \in V^{\omega} \setminus W_0$   
 $[ \exists 0 =: k_0 < k_1 < k_2 < \dots \text{ with } u_{k_i}, \dots, u_{k_{i+1}-1} \in \tilde{u}_i \forall i$   
and  $k_{i+1} - k_i = 1$  if  $\tilde{u}_i \in \tilde{V}_0$  ]

- Given a Büchi automaton  $\mathcal{B}$  with  $L(\mathcal{B}) = W_0$ , one can construct a Büchi automaton  $\overline{\mathcal{B}}$  with  $L(\overline{\mathcal{B}}) = \overline{W}_0$ .
- In the synchronous case, from a given S1S-formula  $\varphi$  with  $L(\varphi) = W_0$ , one can construct an S1S-formula  $\overline{\varphi}$  with  $L(\overline{\varphi}) = \overline{W}_0$  directly.

• 
$$\overline{u}_1 \overline{u}_2 \dots \notin \overline{W}_0 \iff$$
  
 $\exists u_1 u_2 \dots \in V^{\omega} \setminus W_0$   
 $[ \exists 0 =: k_0 < k_1 < k_2 < \dots \text{ with } u_{k_i}, \dots, u_{k_{i+1}-1} \in \tilde{u}_i \forall i$   
and  $k_{i+1} - k_i = 1$  if  $\tilde{u}_i \in \tilde{V}_0$  ]

- Given a Büchi automaton  $\mathcal{B}$  with  $L(\mathcal{B}) = W_0$ , one can construct a Büchi automaton  $\overline{\mathcal{B}}$  with  $L(\overline{\mathcal{B}}) = \overline{W}_0$ .
- In the synchronous case, from a given S1S-formula  $\varphi$  with  $L(\varphi) = W_0$ , one can construct an S1S-formula  $\overline{\varphi}$  with  $L(\overline{\varphi}) = \overline{W}_0$  directly.
- In the asynchronous case?

Alternating Tree Automata

#### Asynchronous Case

#### Theorem

- The asynchronous strategy problem for ω-regular games with partial information is decidable.
- Finite memory strategies can be synthesized.

Alternating Tree Automata

# First Lower Bound
Alternating Tree Automata

**Future Prospects** 



Alternating Tree Automata

Future Prospects







 $\mathcal{G}_n$ :

• The number of positions and the time bound are linear in n.

 $\mathcal{G}_n$ :

- The number of positions and the time bound are linear in n.
- Player 0 has a winning strategy which uses  $2^n 1$  memory states.

 $\mathcal{G}_n$ :

- The number of positions and the time bound are linear in n.
- Player 0 has a winning strategy which uses  $2^n 1$  memory states.
- Player 0 does not have a winning strategy which uses at most  $2^n 2$  memory states.

 $\mathcal{G}_n$ :

- The number of positions and the time bound are linear in n.
- Player 0 has a winning strategy which uses  $2^n 1$  memory states.
- Player 0 does not have a winning strategy which uses at most  $2^n 2$  memory states.
- Player 0 has a memoryless winning strategy for the underlying game with full information.

 $\mathcal{G}_n$ :

- The number of positions and the time bound are linear in n.
- Player 0 has a winning strategy which uses  $2^n 1$  memory states.
- Player 0 does not have a winning strategy which uses at most  $2^n 2$  memory states.
- Player 0 has a memoryless winning strategy for the underlying game with full information.

However:

• There are O(n!) many actions in the game.

 $\mathcal{G}_n$ :

- The number of positions and the time bound are linear in n.
- Player 0 has a winning strategy which uses  $2^n 1$  memory states.
- Player 0 does not have a winning strategy which uses at most  $2^n 2$  memory states.
- Player 0 has a memoryless winning strategy for the underlying game with full information.

However:

- There are O(n!) many actions in the game.
- It is not a reachability game.

 $\mathcal{G}_n$ :

- The number of positions and the time bound are linear in n.
- Player 0 has a winning strategy which uses  $2^n 1$  memory states.
- Player 0 does not have a winning strategy which uses at most  $2^n 2$  memory states.
- Player 0 has a memoryless winning strategy for the underlying game with full information.

However:

- There are O(n!) many actions in the game.
- It is not a reachability game.

$$\sim 2^{\sqrt[3]{n}}$$

## Second Lower Bound (Berwanger et al.)

The Model

Alternating Tree Automata

Future Prospects

### Second Lower Bound (Berwanger et al.)



The Model

## Second Lower Bound (Berwanger et al.)



Nonemptiness for nondeterministic tree automaton  $\mathcal{A}$ :

Nonemptiness for nondeterministic tree automaton  $\mathcal{A}$ :

 $L(\mathcal{A}) \neq \emptyset \Longleftrightarrow$ 

Nonemptiness for nondeterministic tree automaton  $\mathcal{A}$ :

$$\begin{split} L(\mathcal{A}) \neq \emptyset & \Longleftrightarrow \\ \exists \text{ tree } t \exists \text{ run } \rho \text{ of } \mathcal{A} \text{ on } t : \\ \text{all infinite paths through } \rho \text{ are accepting.} \end{split}$$

Nonemptiness for nondeterministic tree automaton  $\mathcal{A}$ :

$$\begin{split} L(\mathcal{A}) \neq \emptyset & \Longleftrightarrow \\ \exists \text{ tree } t \exists \text{ run } \rho \text{ of } \mathcal{A} \text{ on } t : \\ \text{all infinite paths through } \rho \text{ are accepting.} \end{split}$$

Game:

Nonemptiness for nondeterministic tree automaton  $\mathcal{A}$ :

 $\begin{array}{l} L(\mathcal{A}) \neq \emptyset \iff \\ \exists \mbox{ tree } t \ \exists \mbox{ run } \rho \mbox{ of } \mathcal{A} \mbox{ on } t : \\ \mbox{ all infinite paths through } \rho \mbox{ are accepting.} \end{array}$ 

Game:

 Player ∃ : Chooses tree and run (by choosing transitions)

Nonemptiness for nondeterministic tree automaton  $\mathcal{A}$ :

 $\begin{array}{l} L(\mathcal{A}) \neq \emptyset \iff \\ \exists \mbox{ tree } t \ \exists \mbox{ run } \rho \mbox{ of } \mathcal{A} \mbox{ on } t : \\ \mbox{ all infinite paths through } \rho \mbox{ are accepting.} \end{array}$ 

Game:

- Player ∃ : Chooses tree and run (by choosing transitions)
- Player ∀ : Chooses path (by choosing directions in the tree = directions in the run)

Nonemptiness for nondeterministic tree automaton  $\mathcal{A}$ :

 $\begin{array}{l} L(\mathcal{A}) \neq \emptyset \iff \\ \exists \mbox{ tree } t \ \exists \mbox{ run } \rho \mbox{ of } \mathcal{A} \mbox{ on } t : \\ \mbox{ all infinite paths through } \rho \mbox{ are accepting.} \end{array}$ 

Game:

- Player ∃ : Chooses tree and run (by choosing transitions)
- Player ∀ : Chooses path (by choosing directions in the tree = directions in the run)

 $L(\mathcal{A}) \neq \emptyset \iff \mathsf{Player} \exists \mathsf{ wins the game.}$ 

Alternating tree automaton:

 Directions in the input tree ≠ directions in the run. (Several directions in the run may correspond to one direction in the tree.)

Alternating tree automaton:

- Directions in the input tree ≠ directions in the run. (Several directions in the run may correspond to one direction in the tree.)
- Labelling of the input tree may depend on the directions of the input tree that ∀ chooses but it must not depend on the directions of the run that ∀ chooses.

Alternating tree automaton:

- Directions in the input tree ≠ directions in the run. (Several directions in the run may correspond to one direction in the tree.)
- Labelling of the input tree may depend on the directions of the input tree that ∀ chooses but it must not depend on the directions of the run that ∀ chooses.

Idea:

Split  $\exists$  into players T, guessing the tree and A, guessing the run of the automaton.

Alternating tree automaton:

- Directions in the input tree ≠ directions in the run. (Several directions in the run may correspond to one direction in the tree.)
- Labelling of the input tree may depend on the directions of the input tree that ∀ chooses but it must not depend on the directions of the run that ∀ chooses.

Idea:

Split  $\exists$  into players T, guessing the tree and A, guessing the run of the automaton.

 $\rightsquigarrow$  Three player game with partial information.

Alternating Tree Automata

Future Prospects

#### From Automata to Games

 $\bullet$  Players  $\forall$  and A have full information

- $\bullet\,$  Players  $\forall$  and A have full information
- $\bullet\,$  Player T sees only the branches of the input tree which are chosen

- $\bullet$  Players  $\forall$  and A have full information
- Player T sees only the branches of the input tree which are chosen
- $L(\mathcal{A}) \neq \emptyset$  if and only if T and A can *cooperate* to win.

- $\bullet$  Players  $\forall$  and A have full information
- $\bullet\,$  Player T sees only the branches of the input tree which are chosen

 $L(\mathcal{A}) \neq \emptyset$  if and only if T and A can *cooperate* to win.

If  ${\mathcal A}$  is universal, then the game is a two-player game with partial information!

Problem:

Problem:

Given three-player game with partial information where only player 0 has partial information, position v, can player 0 and 1 cooperate to win from v?

(1) Construct nondeterministic tree automaton such that a tree is accepted  $\Longleftrightarrow$ 

Problem:

- (1) Construct nondeterministic tree automaton such that a tree is accepted  $\Longleftrightarrow$ 
  - it is the unravelling of the game graph from  $\boldsymbol{v}$

Problem:

- (1) Construct nondeterministic tree automaton such that a tree is accepted  $\Longleftrightarrow$ 
  - ${\ensuremath{\, \bullet }}$  it is the unravelling of the game graph from v
  - the labellings at the positions of player 0 define a full information strategy f for player 0

Problem:

- (1) Construct nondeterministic tree automaton such that a tree is accepted  $\Longleftrightarrow$ 
  - ${\ensuremath{\, \bullet }}$  it is the unravelling of the game graph from v
  - the labellings at the positions of player 0 define a full information strategy f for player 0
  - $\bullet\,$  there is a strategy g for player 1

Problem:

- (1) Construct nondeterministic tree automaton such that a tree is accepted  $\Longleftrightarrow$ 
  - ${\ensuremath{\, \bullet }}$  it is the unravelling of the game graph from v
  - the labellings at the positions of player 0 define a full information strategy f for player 0
  - ${\ensuremath{\bullet}}$  there is a strategy g for player 1
  - the composition of f and g is winning.

Problem:

- (1) Construct nondeterministic tree automaton such that a tree is accepted  $\Longleftrightarrow$ 
  - ${\ensuremath{\, \bullet }}$  it is the unravelling of the game graph from v
  - the labellings at the positions of player 0 define a full information strategy f for player 0
  - ${\ensuremath{\bullet}}$  there is a strategy g for player 1
  - $\bullet\,$  the composition of f and g is winning.
- (2) Restrict the strategies of player 0 to information based strategies.
Technique for (2):

"Narrowing" (Kupferman, Vardi: "Church's Problem Revisited". ('99))

Technique for (2):

#### "Narrowing" (Kupferman, Vardi: "Church's Problem Revisited". ('99))

If the game is a two-player game:

Technique for (2):

#### "Narrowing" (Kupferman, Vardi: "Church's Problem Revisited". ('99))

#### If the game is a two-player game:

• The automaton from the first step is deterministic.

Technique for (2):

#### "Narrowing" (Kupferman, Vardi: "Church's Problem Revisited". ('99))

#### If the game is a two-player game:

- The automaton from the first step is deterministic.
- The "narrowing" of a deterministic automaton is universal.

• Stochastic Games

- - Stochastic Games
    - Stochastic Moves

- Stochastic Games
  - Stochastic Moves
  - Randomized Strategies

- Stochastic Games
  - Stochastic Moves
  - Randomized Strategies
- Efficient Algorithms for Interesting Classes of Games

- Stochastic Games
  - Stochastic Moves
  - Randomized Strategies
- Efficient Algorithms for Interesting Classes of Games
- Generalization of  $\sim_i$  and  $\overleftarrow{\sim}_i$

- Stochastic Games
  - Stochastic Moves
  - Randomized Strategies
- Efficient Algorithms for Interesting Classes of Games
- Generalization of  $\sim_i$  and  $\overleftarrow{\sim}_i$ 
  - Automata over Relations

- Stochastic Games
  - Stochastic Moves
  - Randomized Strategies
- Efficient Algorithms for Interesting Classes of Games
- Generalization of  $\sim_i$  and  $\overleftarrow{\sim}_i$ 
  - Automata over Relations
  - Logical Formulas

- Stochastic Games
  - Stochastic Moves
  - Randomized Strategies
- Efficient Algorithms for Interesting Classes of Games
- Generalization of  $\sim_i$  and  $\overleftarrow{\sim}_i$ 
  - Automata over Relations
  - Logical Formulas
- Connection to Logic

- Stochastic Games
  - Stochastic Moves
  - Randomized Strategies
- Efficient Algorithms for Interesting Classes of Games
- Generalization of  $\sim_i$  and  $\overleftarrow{\sim}_i$ 
  - Automata over Relations
  - Logical Formulas
- Connection to Logic
  - Dynamic/Temporal Process/Epistemic Logic

- Stochastic Games
  - Stochastic Moves
  - Randomized Strategies
- Efficient Algorithms for Interesting Classes of Games
- Generalization of  $\sim_i$  and  $\overleftarrow{\sim}_i$ 
  - Automata over Relations
  - Logical Formulas
- Connection to Logic
  - Dynamic/Temporal Process/Epistemic Logic
  - IF-Logic, Dependence Logic, ...