Winning Strategies in Two-Player Games with
Partial Information
LINT Workshop, Amsterdam 04. Dec. - 06. Dec. 2008

Bernd Puchala

RWTH Aachen University

1/25

The Model
Infinite Two-Player Win-Loss Games

G = (V. Vo, (fa)aca, W)

2/25

The Model
Infinite Two-Player Win-Loss Games

G = (V. Vo, (fa)aca, W)

@ game played on a finite graph with labelled edges

2/25

The Model

Infinite Two-Player Win-Loss Games

G = (V. Vo, (fa)aca, W)

@ game played on a finite graph with labelled edges

@ by two antagonistic players 0 and 1,

2/25

The Model

Infinite Two-Player Win-Loss Games

G = (V7 ‘/07 (fa)aEAa WO)
@ game played on a finite graph with labelled edges

@ by two antagonistic players 0 and 1,

@ choosing deterministic actions from the set A

2/25

The Model

Infinite Two-Player Win-Loss Games

G = (V. Vo, (fa)aca, W)

@ game played on a finite graph with labelled edges
@ by two antagonistic players 0 and 1,
@ choosing deterministic actions from the set A

e for w many rounds,

2/25

The Model

Infinite Two-Player Win-Loss Games

G = (V. Vo, (fa)aca, W)

game played on a finite graph with labelled edges

@ by two antagonistic players 0 and 1,

choosing deterministic actions from the set A

for w many rounds,

with player 0 having the goal to establish a play in Wy C V“.

2/25

The Model

Infinite Two-Player Win-Loss Games

G = (V. Vo, (fa)aca, W)

game played on a finite graph with labelled edges

@ by two antagonistic players 0 and 1,

choosing deterministic actions from the set A

for w many rounds,

with player 0 having the goal to establish a play in Wy C V“.

As usual, game graphs are non-terminating.

2/25

The Model

Strategies

o Strategy for player i:

3/25

The Model

Strategies

o Strategy for player i:
Function f: V*V; — A with f(7v;) € act(v;),
prescribing a next move for each finite play prefix where it is
player i's turn

3/25

The Model

Strategies

o Strategy for player i:
Function f: V*V; — A with f(7v;) € act(v;),
prescribing a next move for each finite play prefix where it is
player i's turn

and being compatible with the knowledge of player i.

3/25

The Model

Strategies

o Strategy for player i:
Function f: V*V; — A with f(7v;) € act(v;),
prescribing a next move for each finite play prefix where it is
player i's turn
and being compatible with the knowledge of player i.

@ The knowledge of player 7 in the game is modelled by an
equivalence relation on V*.

3/25

The Model

Strategies

o Strategy for player i:
Function f: V*V; — A with f(7v;) € act(v;),
prescribing a next move for each finite play prefix where it is
player i's turn
and being compatible with the knowledge of player i.

@ The knowledge of player 7 in the game is modelled by an
equivalence relation on V*.

m ~; ™ means, that after 7 has been played and after 7’ has
been played, player i has exactly the same information.

3/25

The Model

Strategies

o Strategy for player i:
Function f: V*V; — A with f(7v;) € act(v;),
prescribing a next move for each finite play prefix where it is
player i's turn
and being compatible with the knowledge of player i.

@ The knowledge of player 7 in the game is modelled by an
equivalence relation on V*.
m ~; ™ means, that after 7 has been played and after 7’ has
been played, player i has exactly the same information.

T~ = f(m) = f(7)

3/25

The Model

Knowledge Representation

In principle, any equivalence relation can be used here, but:

4/25

The Model

Knowledge Representation

In principle, any equivalence relation can be used here, but:

e we would like to impose certain natural restrictions on ~;.

4/25

The Model

Knowledge Representation

In principle, any equivalence relation can be used here, but:

e we would like to impose certain natural restrictions on ~;.

e for algorithms, we need a finite representation of ~;.

4/25

The Model

Knowledge Representation

In principle, any equivalence relation can be used here, but:

e we would like to impose certain natural restrictions on ~;.

e for algorithms, we need a finite representation of ~;.

@ Finite representation of game graphs: finite graphs, pushdown
graphs, graphs generated by finitary construction rules, ...

4/25

The Model

Knowledge Representation

In principle, any equivalence relation can be used here, but:

e we would like to impose certain natural restrictions on ~;.

e for algorithms, we need a finite representation of ~;.

@ Finite representation of game graphs: finite graphs, pushdown
graphs, graphs generated by finitary construction rules, ...

@ Finite representation of winning conditions : LTL, S1S, parity
conditions, ...

4/25

The Model

Knowledge Representation

In principle, any equivalence relation can be used here, but:
e we would like to impose certain natural restrictions on ~;.
e for algorithms, we need a finite representation of ~;.
@ Finite representation of game graphs: finite graphs, pushdown
graphs, graphs generated by finitary construction rules, ...

@ Finite representation of winning conditions : LTL, S1S, parity
conditions, ...

o Finite representation of knowledge:

4/25

The Model

Knowledge Representation

1% Define the information that a player has about the positions in
the game graph:
Equivalence relation sz onV.

5/25

The Model

Knowledge Representation

1% Define the information that a player has about the positions in
the game graph:
Equivalence relation sz onV.

Now we make some natural assumptions:

5/25

The Model

Knowledge Representation

1% Define the information that a player has about the positions in
the game graph:
Equivalence relation sz onV.

Now we make some natural assumptions:

(1) v~vjw = v,weVorv,w ¢V,

5/25

The Model

Knowledge Representation

1% Define the information that a player has about the positions in
the game graph:
Equivalence relation sz onV.
Now we make some natural assumptions:
(1) v~vjw = v,weVorv,w ¢V,
(2) v,w e V; with v ~; w, a #b = f,(v) % fo(w)

5/25

The Model

Knowledge Representation

1% Define the information that a player has about the positions in
the game graph:
Equivalence relation sz onV.
Now we make some natural assumptions:
(1) v~vjw = v,weVorv,w ¢V,
(2) v,w e V; with v ~; w, a #b = f,(v) % fo(w)

(3) v,w € V; with v ~; w = act(v) = act(w)

5/25

The Model

Knowledge Representation

1% Define the information that a player has about the positions in
the game graph:
Equivalence relation sz onV.

Now we make some natural assumptions:

(1) v~vjw = v,weVorv,w ¢V,

(2) v,w e V; with v ~; w, a #b = f,(v) % fo(w)
(3) v,w € V; with v ~; w = act(v) = act(w)

24 Extend ~) to ~;.

5/25

The Model

Knowledge Representation

~ If player ¢ does observe any move, then

6/25

The Model

Knowledge Representation

~ If player ¢ does observe any move, then

7~ iff || = |7’ and 7w (5) ~V

7' () for all j.

(Synchronous case, player share a clock.)

6/25

The Model

Knowledge Representation

~ If player ¢ does observe any move, then

7~ iff || = |7’ and 7w (5) ~V

7' () for all j.

(Synchronous case, player share a clock.)

~ Now, hide moves from player i in which he can’t observe
anything that happens:

6/25

The Model

Knowledge Representation

~

4

If player i does observe any move, then

7~ iff || = |7’ and 7w (5) ~V

7' () for all j.

(Synchronous case, player share a clock.)

Now, hide moves from player i in which he can't observe
anything that happens:

7w) iff T ~; T where

T is obtained from 7 by deleting all moves u — v from 7
such that u € V1_; and u N7‘L/ .

(Asynchronous case.)

6/25

The Model

The Question

Given a finite game G = (G, (~))i—0.1) and a position v, does
player O have a strategy for G from v which is winning against all
strategies of player 1?7

7/25

The Model

The Question

Given a finite game G = (G, (~))i—0.1) and a position v, does
player O have a strategy for G from v which is winning against all
strategies of player 1?7

However, this is the same as asking:
Given a finite game G = (G, (N}/)i:g,l) and a position v, does
player O have a strategy for G from v which is winning?

7/25

The Model

The Question

Given a finite game G = (G, (~))i—0.1) and a position v, does
player O have a strategy for G from v which is winning against all
strategies of player 1?7

However, this is the same as asking:
Given a finite game G = (G, (N}/)i:g,l) and a position v, does
player O have a strategy for G from v which is winning?

Thus, we can ignore the partial information of player 1 here!

~ G = (G7 NV)

7/25

The Model

Aim

For large classes of games, find

8/25

The Model

Aim

For large classes of games, find

o (efficient) algorithms for the strategy problem.

8/25

The Model

Aim

For large classes of games, find
o (efficient) algorithms for the strategy problem.

o (efficient) methods to implement winning strategies with
(small) finite memory.

8/25

The Model

Aim

For large classes of games, find
o (efficient) algorithms for the strategy problem.
o (efficient) methods to implement winning strategies with

(small) finite memory.

Idea:

Turn a game with partial information into a game with full
information such that the existence of winning strategies for player
0 is preserved.

8/25

The Model

Aim

For large classes of games, find
o (efficient) algorithms for the strategy problem.

o (efficient) methods to implement winning strategies with
(small) finite memory.

Idea:

Turn a game with partial information into a game with full
information such that the existence of winning strategies for player
0 is preserved.

~» Powerset Construction

8/25

Powerset Construction

Synchronous Case

9/25

Powerset Construction

Synchronous Case

g = (Ga Nv) ~> é = (Vv VO) (E)GGA7WO)

@ Positions in V are subsets of ~V -classes.

9/25

Powerset Construction

Synchronous Case

g = (Ga Nv) ~> é = (Vv VO) (E)GGA7WO)
@ Positions in V are subsets of ~V -classes.

The set of E-successors of @ is obtained from the set of all
successors of positions in @, divided by ~V.

9/25

Powerset Construction

Synchronous Case

g - (Ga Nv) ~> é (V VO)()(lGAa WO)
@ Positions in V are subsets of ~V -classes.

@ The set of E-successors of @ is obtained from the set of all
successors of positions in @, divided by ~V

e Wy : for parity conditions with observable colors, let
col(w) = col(u) for any u € u.

9/25

Powerset Construction

Synchronous Case

g - (Ga Nv) ~> é (V VO)()(lGAa WO)
@ Positions in V are subsets of ~V -classes.

@ The set of E-successors of @ is obtained from the set of all
successors of positions in @, divided by ~V

e Wy : for parity conditions with observable colors, let
col(w) = col(u) for any u € u.

@ Arbitrary winning conditions?

9/25

Powerset Construction

Synchronous Case

g - (Ga Nv) ~> é (V VO)()(lGAa WO)
@ Positions in V are subsets of ~V -classes.

The set of E-successors of @ is obtained from the set of all
successors of positions in @, divided by ~V

W : for parity conditions with observable colors, let
col(w) = col(u) for any u € u.

Arbitrary winning conditions?

Let Tty ... € Wq <=

9/25

Powerset Construction

Synchronous Case

g - (Ga Nv) ~> é (V VO)()(lGAa WO)
@ Positions in V are subsets of ~V -classes.

@ The set of E-successors of @ is obtained from the set of all
successors of positions in @, divided by ~V

e Wy : for parity conditions with observable colors, let
col(w) = col(u) for any u € u.

@ Arbitrary winning conditions?

o Let wun... € Wy <=
Vuug... € VY 1 [u; €U Vi]| = wqug... € Wy.

9/25

Powerset Construction

Synchronous Case

@ For parity conditions with observable colors, this is equivalent
to coloring the positions in G.

10/25

Powerset Construction

Synchronous Case

@ For parity conditions with observable colors, this is equivalent
to coloring the positions in G.

@ Also true for more general notions of observable winning
conditions.

10/25

Powerset Construction

Synchronous Case

@ For parity conditions with observable colors, this is equivalent
to coloring the positions in G.

@ Also true for more general notions of observable winning
conditions.

e For arbitrary w-regular winning conditions?

10/25

Powerset Construction

Synchronous Case

@ For parity conditions with observable colors, this is equivalent
to coloring the positions in G.

@ Also true for more general notions of observable winning
conditions.

e For arbitrary w-regular winning conditions?

Oﬂlﬂ2...§§W0<:>

10/25

Powerset Construction

Synchronous Case

@ For parity conditions with observable colors, this is equivalent
to coloring the positions in G.

@ Also true for more general notions of observable winning
conditions.

e For arbitrary w-regular winning conditions?
@ UIUY ... §§W0 <
Hulug...GV""\Wo DU € u; Vi

10/25

Powerset Construction

Synchronous Case

@ For parity conditions with observable colors, this is equivalent
to coloring the positions in G.

@ Also true for more general notions of observable winning
conditions.

e For arbitrary w-regular winning conditions?
@ UIUY ... §§W0 <
Hulug...GV""\Wo DU € u; Vi

e Given a Biichi automaton B with L(B) = Wy, one can
construct a Biichi automaton B with L(B) = W,.
(w-regular languages are closed under complementation.)

10/25

Powerset Construction

Synchronous Case

@ The strategy problem for w-regular games with partial
information is decidable.

@ Finite memory strategies can be synthesized.

11/25

Powerset Construction
Asynchronous Case

g - (G7 NV) s é = (f/v %7 (E)GEAv WO)

12/25

Powerset Construction

Asynchronous Case

g - (G7 NV) s é = (f/v %7 (E)GEAv WO)

@ Positions in V are subsets of ~" -classes.

12/25

Powerset Construction

Asynchronous Case

g = (G7 NV) > é - (f/v %7 (E)aeA7 WO)
e Positions in V are subsets of ~"-classes.

We call a position v an extended successor of a position w, if
v is reachable from a successor u’ of u via a sequence of
moves which are hidden from player 0.

12/25

Powerset Construction

Asynchronous Case

g = (G7 NV) > é - (f/v %7 (E)aeA7 WO)
e Positions in V are subsets of ~"-classes.

@ We call a position v an extended successor of a position u, if
v is reachable from a successor u’ of u via a sequence of
moves which are hidden from player 0.

@ The set of E-successors of @ is obtained from the set of all
extended successors of positions in @, divided by ~V'.

12/25

Powerset Construction

Asynchronous Case

g = (G7 NV) > é - (f/v %7 (E)aeA7 WO)
e Positions in V are subsets of ~"-classes.

@ We call a position v an extended successor of a position u, if
v is reachable from a successor u’ of u via a sequence of
moves which are hidden from player 0.

@ The set of E-successors of @ is obtained from the set of all
extended successors of positions in @, divided by ~V'.

e W, : for parity conditions with observable colors, let
col(u) = col(u) for any u € .

12/25

Powerset Construction

Asynchronous Case

g = (G7 NV) > é - (f/v %7 (E)aeA7 WO)
e Positions in V are subsets of ~"-classes.

@ We call a position v an extended successor of a position u, if
v is reachable from a successor u’ of u via a sequence of
moves which are hidden from player 0.

@ The set of E-successors of @ is obtained from the set of all
extended successors of positions in @, divided by ~V'.

e W, : for parity conditions with observable colors, let
col(u) = col(u) for any u € .

Arbitrary winning conditions?

12/25

Powerset Construction

Asynchronous Case

Let wjts... € Wo <=

13/25

Powerset Construction

Asynchronous Case

Let &1&2...61/% <=
Y uiug ... € V¥

13/25

Powerset Construction

Asynchronous Case

Let &1&2...61/% <=

Y uiug ... € V¥

[3022 k0<k1<k2~<...with uki,...,ukiﬂ,lEﬂiViand
ki_:,_l—/{?i:lifﬂiEVo]

13/25

Powerset Construction

Asynchronous Case

Let &1&2...61/% <=

Y uiug ... € V¥
[30::k0<k1<k2<...withuki,...,uk
ki_:,_l—/{?i:liffLiEf/o]

= wuy... € Wy

1—1 € u; Vi and

13/25

Powerset Construction

Asynchronous Case

Let &1&2...61/% <=

Y uiug ... € V¥

[3022 k0<k1<k2~<...with uki,...,ukiﬂ,lEﬂiViand
ki_:,_l—/{?i:lifﬂiEVo]

= wuy... € Wy

@ For parity conditions with observable colors, this is equivalent
to coloring the positions in G.

@ Also true for more general notions of observable winning
conditions.

13/25

Powerset Construction

Asynchronous Case

Let &1&2...61/% <=

Y uiug ... € V¥

[3022 k0<k1<k2~<...with uki,...,ukiﬂ,lEﬂiViand
ki_:,_l—/{?i:lifﬂiEVo]

= wuy... € Wy

@ For parity conditions with observable colors, this is equivalent
to coloring the positions in G.

@ Also true for more general notions of observable winning
conditions.

e For arbitrary w-regular winning conditions?

13/25

Powerset Construction

Asynchronous Case

Oﬂlﬁg...§éW0<:>

14/25

Powerset Construction

Asynchronous Case

Oﬂlﬁg...§éW0<:>
Jujug... € ij\l@%

14/25

Powerset Construction

Asynchronous Case

Oﬂlﬁg...§éW0<:>
Hulug...eV“\Wo
[30=ko <k <ko<...withug,...,up, 1€ Vi
and kip1 — ki = 1if @; € V|

14/25

Powerset Construction

Asynchronous Case

Oﬂlﬁg...§éW0<:>
Hulug...eV“\Wo
[30=ko <k <ko<...withug,...,up, 1€ Vi
and kip1 — ki = 1if @; € V|

o Given a Biichi automaton B with L(B) = W), one can
construct a Biichi automaton B with L(B) = W,

14/25

Powerset Construction

Asynchronous Case

@ uUluy ... ¢W0 <~
Jujug... € ij\l@%
[30=ko <k <ko<...withug,...,up, 1€ Vi
and kiy1 — ki = 1if 4; € Vy |

o Given a Biichi automaton B with L(B) = W), one can
construct a Biichi automaton B with L(B) = W,

@ In the synchronous case, from a given S1S-formula ¢ with
L(p) = Wy, one can construct an S1S-formula @ with
L(p) = W directly.

14/25

Powerset Construction

Asynchronous Case

Oﬂlﬁg...§éW0<:>
Hulug...eV“\Wo
[30=ko <k <ko<...withug,...,up, 1€ Vi
and kip1 — ki = 1if @; € V|

o Given a Biichi automaton B with L(B) = W), one can
construct a Biichi automaton B with L(B) = W,

@ In the synchronous case, from a given S1S-formula ¢ with
L(p) = Wy, one can construct an S1S-formula @ with
L(p) = W directly.

@ In the asynchronous case?

14/25

Powerset Construction

Asynchronous Case

@ The asynchronous strategy problem for w-regular games with
partial information is decidable.

@ Finite memory strategies can be synthesized.

15/25

Finite Memory

First Lower Bound

16/25

Finite Memory

First Lower Bound

Finite Memory

First Lower Bound

Vo
al CLQ a3 a4
xl ;UQ xg 1‘4
€2,3,4 €1,2,3
yl @ @ y4
&1 Cq
d2,3,4 d
d1,2,3 dl 4

<

Finite Memory

First Lower Bound

Vo
al CLQ a3 a4
xl ;UQ xg 1‘4
& C1,2,3
234 by b1 b b1
yl y2 y3 y4
&1 Cq
d2,3,4 d
S d1,2,3 dl r 4

16/25

Finite Memory

First Lower Bound

Vo
al CLQ a3 a4

xl ;UQ xg 1‘4

b

234 by €123
b2 bg
yl y2 y3 y4
&1 Cq
d2,3,4 d
s d1,2,3 dl r 4

17/25

Finite Memory

First Lower Bound

On:

@ The number of positions and the time bound are linear in n.

18/25

Finite Memory

First Lower Bound

On:

@ The number of positions and the time bound are linear in n.

e Player 0 has a winning strategy which uses 2" — 1 memory
states.

18/25

Finite Memory

First Lower Bound

On:

@ The number of positions and the time bound are linear in n.

e Player 0 has a winning strategy which uses 2" — 1 memory
states.

@ Player 0 does not have a winning strategy which uses at most
2" — 2 memory states.

18/25

Finite Memory

First Lower Bound

On:

@ The number of positions and the time bound are linear in n.

e Player 0 has a winning strategy which uses 2" — 1 memory
states.

@ Player 0 does not have a winning strategy which uses at most
2" — 2 memory states.

o Player 0 has a memoryless winning strategy for the underlying
game with full information.

18/25

Finite Memory

First Lower Bound

On:

@ The number of positions and the time bound are linear in n.

e Player 0 has a winning strategy which uses 2" — 1 memory
states.

@ Player 0 does not have a winning strategy which uses at most
2" — 2 memory states.

o Player 0 has a memoryless winning strategy for the underlying
game with full information.

However:

@ There are O(n!) many actions in the game.

18/25

Finite Memory

First Lower Bound

On:

@ The number of positions and the time bound are linear in n.

e Player 0 has a winning strategy which uses 2" — 1 memory
states.

@ Player 0 does not have a winning strategy which uses at most
2" — 2 memory states.

o Player 0 has a memoryless winning strategy for the underlying
game with full information.

However:

@ There are O(n!) many actions in the game.

@ It is not a reachability game.

18/25

Finite Memory

First Lower Bound

On:

@ The number of positions and the time bound are linear in n.

e Player 0 has a winning strategy which uses 2" — 1 memory
states.

@ Player 0 does not have a winning strategy which uses at most
2" — 2 memory states.

o Player 0 has a memoryless winning strategy for the underlying
game with full information.

However:

@ There are O(n!) many actions in the game.

@ It is not a reachability game.
~> 2%

18/25

Finite Memory

Second Lower Bound (Berwanger et al.)

19/25

Finite Memory

Second Lower Bound (Berwanger et al.)

Finite Memory

Second Lower Bound (Berwanger et al.)

Vo
a/l a2
g5 S 2
Yo L\ {1} e ¥\ {2}
g5 SR () W 2
#
5
1
s r
U

19/25

Alternating Tree Automata

Nondeterministic Tree-Automata

Nonemptiness for nondeterministic tree automaton A:

20/25

Alternating Tree Automata

Nondeterministic Tree-Automata

Nonemptiness for nondeterministic tree automaton A:

L(A) # 0 <

20/25

Alternating Tree Automata

Nondeterministic Tree-Automata

Nonemptiness for nondeterministic tree automaton A:

L(A) #)
Jtreet drunpof Aont:
all infinite paths through p are accepting.

20/25

Alternating Tree Automata

Nondeterministic Tree-Automata

Nonemptiness for nondeterministic tree automaton A:

L(A) #)
Jtreet drunpof Aont:
all infinite paths through p are accepting.

Game:

20/25

Alternating Tree Automata

Nondeterministic Tree-Automata

Nonemptiness for nondeterministic tree automaton A:

L(A) #)
Jtreet drunpof Aont:
all infinite paths through p are accepting.

Game:

@ Player 3 : Chooses tree and run
(by choosing transitions)

20/25

Alternating Tree Automata

Nondeterministic Tree-Automata

Nonemptiness for nondeterministic tree automaton A:

L(A) #)
Jtreet drunpof Aont:
all infinite paths through p are accepting.

Game:

@ Player 3 : Chooses tree and run
(by choosing transitions)

@ Player V : Chooses path
(by choosing directions in the tree = directions in the run)

20/25

Alternating Tree Automata

Nondeterministic Tree-Automata

Nonemptiness for nondeterministic tree automaton A:

L(A) #)
Jtreet drunpof Aont:
all infinite paths through p are accepting.

Game:

@ Player 3 : Chooses tree and run
(by choosing transitions)

@ Player V : Chooses path
(by choosing directions in the tree = directions in the run)

L(A) # () <= Player 3 wins the game.

20/25

Alternating Tree Automata

From Automata to Games

Alternating tree automaton:

@ Directions in the input tree # directions in the run.
(Several directions in the run may correspond to one direction
in the tree.)

21/25

Alternating Tree Automata

From Automata to Games

Alternating tree automaton:
@ Directions in the input tree # directions in the run.
(Several directions in the run may correspond to one direction
in the tree.)

@ Labelling of the input tree may depend on the directions of
the input tree that V chooses but it must not depend on the
directions of the run that V chooses.

21/25

Alternating Tree Automata

From Automata to Games

Alternating tree automaton:
@ Directions in the input tree # directions in the run.
(Several directions in the run may correspond to one direction
in the tree.)

@ Labelling of the input tree may depend on the directions of
the input tree that V chooses but it must not depend on the
directions of the run that V chooses.

Idea:

Split 3 into players T, guessing the tree and A, guessing the run of
the automaton.

21/25

Alternating Tree Automata

From Automata to Games

Alternating tree automaton:
@ Directions in the input tree # directions in the run.
(Several directions in the run may correspond to one direction
in the tree.)
@ Labelling of the input tree may depend on the directions of
the input tree that V chooses but it must not depend on the
directions of the run that V chooses.

Idea:
Split 3 into players T, guessing the tree and A, guessing the run of
the automaton.

~» Three player game with partial information.

21/25

Alternating Tree Automata

From Automata to Games

@ Players V and A have full information

22/25

Alternating Tree Automata

From Automata to Games

@ Players V and A have full information

@ Player T sees only the branches of the input tree which are
chosen

22/25

Alternating Tree Automata

From Automata to Games

@ Players V and A have full information

@ Player T sees only the branches of the input tree which are
chosen

L(A) # 0 if and only if T and A can cooperate to win.

22/25

Alternating Tree Automata

From Automata to Games

@ Players V and A have full information

@ Player T sees only the branches of the input tree which are
chosen

L(A) # 0 if and only if T and A can cooperate to win.

If A is universal, then the game is a two-player game with partial
information!

22/25

Alternating Tree Automata

From Games to Automata

Problem:
Given three-player game with partial information where only player

0 has partial information, position v, can player 0 and 1 cooperate
to win from v?

23/25

Alternating Tree Automata

From Games to Automata

Problem:
Given three-player game with partial information where only player

0 has partial information, position v, can player 0 and 1 cooperate
to win from v?

(1) Construct nondeterministic tree automaton such that a tree is
accepted <—

23/25

Alternating Tree Automata

From Games to Automata

Problem:
Given three-player game with partial information where only player

0 has partial information, position v, can player 0 and 1 cooperate
to win from v?

(1) Construct nondeterministic tree automaton such that a tree is
accepted <—
e it is the unravelling of the game graph from v

23/25

Alternating Tree Automata

From Games to Automata

Problem:
Given three-player game with partial information where only player

0 has partial information, position v, can player 0 and 1 cooperate
to win from v?

(1) Construct nondeterministic tree automaton such that a tree is
accepted <—
e it is the unravelling of the game graph from v

o the labellings at the positions of player 0 define a full
information strategy f for player 0

23/25

Alternating Tree Automata

From Games to Automata

Problem:
Given three-player game with partial information where only player

0 has partial information, position v, can player 0 and 1 cooperate
to win from v?

(1) Construct nondeterministic tree automaton such that a tree is
accepted <—
e it is the unravelling of the game graph from v

o the labellings at the positions of player 0 define a full
information strategy f for player 0

o there is a strategy g for player 1

23/25

Alternating Tree Automata

From Games to Automata

Problem:

Given three-player game with partial information where only player
0 has partial information, position v, can player 0 and 1 cooperate
to win from v?

(1) Construct nondeterministic tree automaton such that a tree is
accepted <—
e it is the unravelling of the game graph from v

o the labellings at the positions of player 0 define a full
information strategy f for player 0

o there is a strategy g for player 1

e the composition of f and g is winning.

23/25

Alternating Tree Automata

From Games to Automata

Problem:

Given three-player game with partial information where only player
0 has partial information, position v, can player 0 and 1 cooperate
to win from v?

(1) Construct nondeterministic tree automaton such that a tree is
accepted <—
e it is the unravelling of the game graph from v

o the labellings at the positions of player 0 define a full
information strategy f for player 0

o there is a strategy g for player 1
e the composition of f and g is winning.

(2) Restrict the strategies of player 0 to information based
strategies.

23/25

Alternating Tree Automata

From Games to Automata

Technique for (2):

“Narrowing”
(Kupferman, Vardi: “Church’s Problem Revisited". ('99))

24/25

Alternating Tree Automata

From Games to Automata

Technique for (2):

“Narrowing”
(Kupferman, Vardi: “Church’s Problem Revisited". ('99))

If the game is a two-player game:

24/25

Alternating Tree Automata

From Games to Automata

Technique for (2):

“Narrowing”
(Kupferman, Vardi: “Church’s Problem Revisited". ('99))

If the game is a two-player game:

@ The automaton from the first step is deterministic.

24/25

Alternating Tree Automata

From Games to Automata

Technique for (2):

“Narrowing”
(Kupferman, Vardi: “Church’s Problem Revisited". ('99))

If the game is a two-player game:

@ The automaton from the first step is deterministic.

@ The “narrowing” of a deterministic automaton is universal.

24/25

Future Prospects

Future Work

@ Stochastic Games

25/25

Future Prospects

Future Work

@ Stochastic Games

e Stochastic Moves

25/25

Future Prospects

Future Work

@ Stochastic Games
e Stochastic Moves

o Randomized Strategies

25/25

Future Prospects

Future Work

@ Stochastic Games
e Stochastic Moves

o Randomized Strategies

o Efficient Algorithms for Interesting Classes of Games

25/25

Future Prospects

Future Work

@ Stochastic Games
e Stochastic Moves

o Randomized Strategies
o Efficient Algorithms for Interesting Classes of Games

e Generalization of ~; and <;

25/25

Future Prospects

Future Work

@ Stochastic Games
e Stochastic Moves
o Randomized Strategies
o Efficient Algorithms for Interesting Classes of Games

e Generalization of ~; and <;

o Automata over Relations

25/25

Future Prospects

Future Work

@ Stochastic Games

e Stochastic Moves

o Randomized Strategies
o Efficient Algorithms for Interesting Classes of Games
@ Generalization of ~; and <

o Automata over Relations
e Logical Formulas

25/25

Future Prospects

Future Work

@ Stochastic Games
e Stochastic Moves
o Randomized Strategies
o Efficient Algorithms for Interesting Classes of Games

e Generalization of ~; and <;

o Automata over Relations
e Logical Formulas

@ Connection to Logic

25/25

Future Prospects

Future Work

@ Stochastic Games

e Stochastic Moves

o Randomized Strategies
o Efficient Algorithms for Interesting Classes of Games
@ Generalization of ~; and <

o Automata over Relations
e Logical Formulas

@ Connection to Logic

o Dynamic/Temporal Process/Epistemic Logic

25/25

Future Prospects

Future Work

@ Stochastic Games
e Stochastic Moves

o Randomized Strategies
o Efficient Algorithms for Interesting Classes of Games

e Generalization of ~; and <;

o Automata over Relations
e Logical Formulas

@ Connection to Logic
o Dynamic/Temporal Process/Epistemic Logic

o IF-Logic, Dependence Logic, ...

25/25

	The Model
	Powerset Construction
	Finite Memory
	Alternating Tree Automata
	Future Prospects

