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Infinite Two-Player Win-Loss Games

G = (V, V0, (fa)a∈A,W0)

game played on a finite graph with labelled edges

by two antagonistic players 0 and 1,

choosing deterministic actions from the set A

for ω many rounds,

with player 0 having the goal to establish a play in W0 ⊆ V ω.

As usual, game graphs are non-terminating.
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Strategies

Strategy for player i:

Function f : V ∗Vi → A with f(πvi) ∈ act(vi),

prescribing a next move for each finite play prefix where it is
player i’s turn

and being compatible with the knowledge of player i.

The knowledge of player i in the game is modelled by an
equivalence relation on V ∗.

π ∼i π
′ means, that after π has been played and after π′ has

been played, player i has exactly the same information.

π ∼i π
′ =⇒ f(π) = f(π′)
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Knowledge Representation

In principle, any equivalence relation can be used here, but:

we would like to impose certain natural restrictions on ∼i.

for algorithms, we need a finite representation of ∼i.

Finite representation of game graphs: finite graphs, pushdown
graphs, graphs generated by finitary construction rules, . . .

Finite representation of winning conditions : LTL, S1S, parity
conditions, . . .

Finite representation of knowledge:
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Knowledge Representation

1st Define the information that a player has about the positions in
the game graph:
Equivalence relation ∼V

i on V .

Now we make some natural assumptions:

(1) v ∼i w =⇒ v, w ∈ Vi or v, w /∈ Vi

(2) v, w ∈ Vi with v ∼i w, a 6= b =⇒ fa(v) 6∼i fb(w)

(3) v, w ∈ Vi with v ∼i w =⇒ act(v) = act(w)

2nd Extend ∼V
i to ∼i.
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Knowledge Representation

∼ If player i does observe any move, then

π ∼i π
′ iff |π| = |π′| and π(j) ∼V

i π′(j) for all j.

(Synchronous case, player share a clock.)

←−∼ Now, hide moves from player i in which he can’t observe
anything that happens:

π ←−∼ i π
′ iff ←−π ∼i

←−π ′ where
←−π is obtained from π by deleting all moves u→ v from π
such that u ∈ V1−i and u ∼V

i v.

(Asynchronous case.)

6 / 25



The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

Knowledge Representation

∼ If player i does observe any move, then

π ∼i π
′ iff |π| = |π′| and π(j) ∼V

i π′(j) for all j.

(Synchronous case, player share a clock.)

←−∼ Now, hide moves from player i in which he can’t observe
anything that happens:

π ←−∼ i π
′ iff ←−π ∼i

←−π ′ where
←−π is obtained from π by deleting all moves u→ v from π
such that u ∈ V1−i and u ∼V

i v.

(Asynchronous case.)

6 / 25



The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

Knowledge Representation

∼ If player i does observe any move, then

π ∼i π
′ iff |π| = |π′| and π(j) ∼V

i π′(j) for all j.

(Synchronous case, player share a clock.)

←−∼ Now, hide moves from player i in which he can’t observe
anything that happens:

π ←−∼ i π
′ iff ←−π ∼i

←−π ′ where
←−π is obtained from π by deleting all moves u→ v from π
such that u ∈ V1−i and u ∼V

i v.

(Asynchronous case.)

6 / 25



The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

Knowledge Representation

∼ If player i does observe any move, then

π ∼i π
′ iff |π| = |π′| and π(j) ∼V

i π′(j) for all j.

(Synchronous case, player share a clock.)

←−∼ Now, hide moves from player i in which he can’t observe
anything that happens:

π ←−∼ i π
′ iff ←−π ∼i

←−π ′ where
←−π is obtained from π by deleting all moves u→ v from π
such that u ∈ V1−i and u ∼V

i v.

(Asynchronous case.)

6 / 25



The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

The Question

Given a finite game G = (G, (∼V
i )i=0,1) and a position v, does

player 0 have a strategy for G from v which is winning against all
strategies of player 1?

However, this is the same as asking:
Given a finite game G = (G, (∼V

i )i=0,1) and a position v, does
player 0 have a strategy for G from v which is winning?

Thus, we can ignore the partial information of player 1 here!

; G = (G,∼V )
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The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

Aim

For large classes of games, find

(efficient) algorithms for the strategy problem.

(efficient) methods to implement winning strategies with
(small) finite memory.

Idea:
Turn a game with partial information into a game with full
information such that the existence of winning strategies for player
0 is preserved.

; Powerset Construction
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Synchronous Case

G = (G,∼V ) ; G = (V , V 0, (E)a∈A,W 0)

Positions in V are subsets of ∼V -classes.

The set of E-successors of u is obtained from the set of all
successors of positions in u, divided by ∼V .

W 0 : for parity conditions with observable colors, let
col(u) = col(u) for any u ∈ u.

Arbitrary winning conditions?

Let u1u2 . . . ∈W 0 :⇐⇒
∀ u1u2 . . . ∈ V ω : [ ui ∈ ui ∀i ] =⇒ u1u2 . . . ∈W0.
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The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

Synchronous Case

For parity conditions with observable colors, this is equivalent
to coloring the positions in G.

Also true for more general notions of observable winning
conditions.

For arbitrary ω-regular winning conditions?

u1u2 . . . /∈W 0 ⇐⇒

∃ u1u2 . . . ∈ V ω \W0 : ui ∈ ui ∀i

Given a Büchi automaton B with L(B) = W0, one can
construct a Büchi automaton B with L(B) = W 0.
(ω-regular languages are closed under complementation.)
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Given a Büchi automaton B with L(B) = W0, one can
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Synchronous Case

Theorem

The strategy problem for ω-regular games with partial
information is decidable.

Finite memory strategies can be synthesized.
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Asynchronous Case

G = (G,∼V ) ; G̃ = (Ṽ , Ṽ0, (Ẽ)a∈A, W̃0)

Positions in Ṽ are subsets of ∼V -classes.

We call a position v an extended successor of a position u, if
v is reachable from a successor u′ of u via a sequence of
moves which are hidden from player 0.

The set of Ẽ-successors of ũ is obtained from the set of all
extended successors of positions in ũ, divided by ∼V .

W̃0 : for parity conditions with observable colors, let
col(ũ) = col(u) for any u ∈ ũ.

Arbitrary winning conditions?
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W̃0 : for parity conditions with observable colors, let
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Asynchronous Case

Let ũ1ũ2 . . . ∈ W̃0 :⇐⇒

∀ u1u2 . . . ∈ V ω :

[ ∃ 0 =: k0 < k1 < k2 < . . . with uki
, . . . , uki+1−1 ∈ ũi ∀ i and

ki+1 − ki = 1 if ũi ∈ Ṽ0 ]
=⇒ u1u2 . . . ∈W0

For parity conditions with observable colors, this is equivalent
to coloring the positions in G.

Also true for more general notions of observable winning
conditions.

For arbitrary ω-regular winning conditions?
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ki+1 − ki = 1 if ũi ∈ Ṽ0 ]

=⇒ u1u2 . . . ∈W0

For parity conditions with observable colors, this is equivalent
to coloring the positions in G.

Also true for more general notions of observable winning
conditions.

For arbitrary ω-regular winning conditions?

13 / 25



The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

Asynchronous Case
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ki+1 − ki = 1 if ũi ∈ Ṽ0 ]
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u1u2 . . . /∈W 0 ⇐⇒

∃ u1u2 . . . ∈ V ω \W0

[ ∃ 0 =: k0 < k1 < k2 < . . . with uki
, . . . , uki+1−1 ∈ ũi ∀ i

and ki+1 − ki = 1 if ũi ∈ Ṽ0 ]

Given a Büchi automaton B with L(B) = W0, one can
construct a Büchi automaton B with L(B) = W 0.

In the synchronous case, from a given S1S-formula ϕ with
L(ϕ) = W0, one can construct an S1S-formula ϕ with
L(ϕ) = W 0 directly.

In the asynchronous case?
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construct a Büchi automaton B with L(B) = W 0.

In the synchronous case, from a given S1S-formula ϕ with
L(ϕ) = W0, one can construct an S1S-formula ϕ with
L(ϕ) = W 0 directly.

In the asynchronous case?

14 / 25



The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

Asynchronous Case

u1u2 . . . /∈W 0 ⇐⇒

∃ u1u2 . . . ∈ V ω \W0

[ ∃ 0 =: k0 < k1 < k2 < . . . with uki
, . . . , uki+1−1 ∈ ũi ∀ i
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construct a Büchi automaton B with L(B) = W 0.

In the synchronous case, from a given S1S-formula ϕ with
L(ϕ) = W0, one can construct an S1S-formula ϕ with
L(ϕ) = W 0 directly.

In the asynchronous case?

14 / 25



The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

Asynchronous Case

u1u2 . . . /∈W 0 ⇐⇒

∃ u1u2 . . . ∈ V ω \W0

[ ∃ 0 =: k0 < k1 < k2 < . . . with uki
, . . . , uki+1−1 ∈ ũi ∀ i
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Asynchronous Case

Theorem

The asynchronous strategy problem for ω-regular games with
partial information is decidable.

Finite memory strategies can be synthesized.
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First Lower Bound

Gn:

The number of positions and the time bound are linear in n.

Player 0 has a winning strategy which uses 2n − 1 memory
states.

Player 0 does not have a winning strategy which uses at most
2n − 2 memory states.

Player 0 has a memoryless winning strategy for the underlying
game with full information.

However:

There are O(n!) many actions in the game.

It is not a reachability game.

; 2
3√n
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The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

Nondeterministic Tree-Automata

Nonemptiness for nondeterministic tree automaton A:

L(A) 6= ∅ ⇐⇒
∃ tree t ∃ run ρ of A on t :
all infinite paths through ρ are accepting.

Game:

Player ∃ : Chooses tree and run
(by choosing transitions)

Player ∀ : Chooses path
(by choosing directions in the tree = directions in the run)

L(A) 6= ∅ ⇐⇒ Player ∃ wins the game.
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The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

From Automata to Games

Alternating tree automaton:

Directions in the input tree 6= directions in the run.
(Several directions in the run may correspond to one direction
in the tree.)

Labelling of the input tree may depend on the directions of
the input tree that ∀ chooses but it must not depend on the
directions of the run that ∀ chooses.

Idea:
Split ∃ into players T , guessing the tree and A, guessing the run of
the automaton.

; Three player game with partial information.
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The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

From Automata to Games

Players ∀ and A have full information

Player T sees only the branches of the input tree which are
chosen

L(A) 6= ∅ if and only if T and A can cooperate to win.

If A is universal, then the game is a two-player game with partial
information!
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The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

From Games to Automata

Problem:
Given three-player game with partial information where only player
0 has partial information, position v, can player 0 and 1 cooperate
to win from v?

(1) Construct nondeterministic tree automaton such that a tree is
accepted ⇐⇒

it is the unravelling of the game graph from v
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From Games to Automata

Technique for (2):

“Narrowing”
(Kupferman, Vardi: “Church’s Problem Revisited”. (’99))

If the game is a two-player game:

The automaton from the first step is deterministic.

The “narrowing” of a deterministic automaton is universal.

24 / 25



The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

From Games to Automata

Technique for (2):

“Narrowing”
(Kupferman, Vardi: “Church’s Problem Revisited”. (’99))

If the game is a two-player game:

The automaton from the first step is deterministic.

The “narrowing” of a deterministic automaton is universal.

24 / 25



The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

From Games to Automata

Technique for (2):

“Narrowing”
(Kupferman, Vardi: “Church’s Problem Revisited”. (’99))

If the game is a two-player game:

The automaton from the first step is deterministic.

The “narrowing” of a deterministic automaton is universal.

24 / 25



The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

From Games to Automata

Technique for (2):

“Narrowing”
(Kupferman, Vardi: “Church’s Problem Revisited”. (’99))

If the game is a two-player game:

The automaton from the first step is deterministic.

The “narrowing” of a deterministic automaton is universal.

24 / 25



The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

Future Work

Stochastic Games

Stochastic Moves

Randomized Strategies

Efficient Algorithms for Interesting Classes of Games

Generalization of ∼i and ←−∼ i

Automata over Relations
Logical Formulas

Connection to Logic

Dynamic/Temporal Process/Epistemic Logic

IF-Logic, Dependence Logic, . . .

25 / 25



The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

Future Work

Stochastic Games

Stochastic Moves

Randomized Strategies

Efficient Algorithms for Interesting Classes of Games

Generalization of ∼i and ←−∼ i

Automata over Relations
Logical Formulas

Connection to Logic

Dynamic/Temporal Process/Epistemic Logic

IF-Logic, Dependence Logic, . . .

25 / 25



The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

Future Work

Stochastic Games

Stochastic Moves

Randomized Strategies

Efficient Algorithms for Interesting Classes of Games

Generalization of ∼i and ←−∼ i

Automata over Relations
Logical Formulas

Connection to Logic

Dynamic/Temporal Process/Epistemic Logic

IF-Logic, Dependence Logic, . . .

25 / 25



The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

Future Work

Stochastic Games

Stochastic Moves

Randomized Strategies

Efficient Algorithms for Interesting Classes of Games

Generalization of ∼i and ←−∼ i

Automata over Relations
Logical Formulas

Connection to Logic

Dynamic/Temporal Process/Epistemic Logic

IF-Logic, Dependence Logic, . . .

25 / 25



The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

Future Work

Stochastic Games

Stochastic Moves

Randomized Strategies

Efficient Algorithms for Interesting Classes of Games

Generalization of ∼i and ←−∼ i

Automata over Relations
Logical Formulas

Connection to Logic

Dynamic/Temporal Process/Epistemic Logic

IF-Logic, Dependence Logic, . . .

25 / 25



The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

Future Work

Stochastic Games

Stochastic Moves

Randomized Strategies

Efficient Algorithms for Interesting Classes of Games

Generalization of ∼i and ←−∼ i

Automata over Relations

Logical Formulas

Connection to Logic

Dynamic/Temporal Process/Epistemic Logic

IF-Logic, Dependence Logic, . . .

25 / 25



The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

Future Work

Stochastic Games

Stochastic Moves

Randomized Strategies

Efficient Algorithms for Interesting Classes of Games

Generalization of ∼i and ←−∼ i

Automata over Relations
Logical Formulas

Connection to Logic

Dynamic/Temporal Process/Epistemic Logic

IF-Logic, Dependence Logic, . . .

25 / 25



The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

Future Work

Stochastic Games

Stochastic Moves

Randomized Strategies

Efficient Algorithms for Interesting Classes of Games

Generalization of ∼i and ←−∼ i

Automata over Relations
Logical Formulas

Connection to Logic

Dynamic/Temporal Process/Epistemic Logic

IF-Logic, Dependence Logic, . . .

25 / 25



The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

Future Work

Stochastic Games

Stochastic Moves

Randomized Strategies

Efficient Algorithms for Interesting Classes of Games

Generalization of ∼i and ←−∼ i

Automata over Relations
Logical Formulas

Connection to Logic

Dynamic/Temporal Process/Epistemic Logic

IF-Logic, Dependence Logic, . . .

25 / 25



The Model Powerset Construction Finite Memory Alternating Tree Automata Future Prospects

Future Work

Stochastic Games

Stochastic Moves

Randomized Strategies

Efficient Algorithms for Interesting Classes of Games

Generalization of ∼i and ←−∼ i

Automata over Relations
Logical Formulas

Connection to Logic

Dynamic/Temporal Process/Epistemic Logic

IF-Logic, Dependence Logic, . . .

25 / 25


	The Model
	Powerset Construction
	Finite Memory
	Alternating Tree Automata
	Future Prospects

