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Infinite Two-Player Win-Loss Games

G = (V. Vo, (fa)aca, W)

game played on a finite graph with labelled edges

@ by two antagonistic players 0 and 1,

choosing deterministic actions from the set A

for w many rounds,

with player 0 having the goal to establish a play in Wy C V“.

As usual, game graphs are non-terminating.
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@ The knowledge of player 7 in the game is modelled by an
equivalence relation on V*.
m ~; ™ means, that after 7 has been played and after 7’ has
been played, player i has exactly the same information.

T~ = f(m) = f(7)
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In principle, any equivalence relation can be used here, but:
e we would like to impose certain natural restrictions on ~;.
e for algorithms, we need a finite representation of ~;.
@ Finite representation of game graphs: finite graphs, pushdown
graphs, graphs generated by finitary construction rules, ...

@ Finite representation of winning conditions : LTL, S1S, parity
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o Finite representation of knowledge:
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1% Define the information that a player has about the positions in
the game graph:
Equivalence relation sz onV.

Now we make some natural assumptions:

(1) v~vjw = v,weVorv,w ¢V,

(2) v,w e V; with v ~; w, a #b = f,(v) % fo(w)
(3) v,w € V; with v ~; w = act(v) = act(w)

24 Extend ~) to ~;.
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The Model

Knowledge Representation

~

4

If player i does observe any move, then

7~ iff || = |7’ and 7w (5) ~V

7' () for all j.

(Synchronous case, player share a clock.)

Now, hide moves from player i in which he can't observe
anything that happens:

7w ) iff T ~; T where

T is obtained from 7 by deleting all moves u — v from 7
such that u € V1_; and u N7‘L/ .

(Asynchronous case.)
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player O have a strategy for G from v which is winning against all
strategies of player 1?7

However, this is the same as asking:
Given a finite game G = (G, (N}/)i:g,l) and a position v, does
player O have a strategy for G from v which is winning?

Thus, we can ignore the partial information of player 1 here!

~ G = (G7 NV)
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@ The set of E-successors of @ is obtained from the set of all
successors of positions in @, divided by ~V

e Wy : for parity conditions with observable colors, let
col(w) = col(u) for any u € u.

@ Arbitrary winning conditions?
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Powerset Construction

Synchronous Case

@ For parity conditions with observable colors, this is equivalent
to coloring the positions in G.

@ Also true for more general notions of observable winning
conditions.

e For arbitrary w-regular winning conditions?
@ UIUY ... §§W0 <
Hulug...GV""\Wo DU € u; Vi

e Given a Biichi automaton B with L(B) = Wy, one can
construct a Biichi automaton B with L(B) = W,.
(w-regular languages are closed under complementation.)
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However:

@ There are O(n!) many actions in the game.

@ It is not a reachability game.
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@ Labelling of the input tree may depend on the directions of
the input tree that V chooses but it must not depend on the
directions of the run that V chooses.

Idea:
Split 3 into players T, guessing the tree and A, guessing the run of
the automaton.

~» Three player game with partial information.
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Alternating Tree Automata

From Automata to Games

@ Players V and A have full information

@ Player T sees only the branches of the input tree which are
chosen

L(A) # 0 if and only if T and A can cooperate to win.

If A is universal, then the game is a two-player game with partial
information!
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Alternating Tree Automata

From Games to Automata

Problem:

Given three-player game with partial information where only player
0 has partial information, position v, can player 0 and 1 cooperate
to win from v?

(1) Construct nondeterministic tree automaton such that a tree is
accepted <—
e it is the unravelling of the game graph from v

o the labellings at the positions of player 0 define a full
information strategy f for player 0

o there is a strategy g for player 1
e the composition of f and g is winning.

(2) Restrict the strategies of player 0 to information based
strategies.
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Alternating Tree Automata

From Games to Automata

Technique for (2):

“Narrowing”
(Kupferman, Vardi: “Church’s Problem Revisited". ('99))

If the game is a two-player game:

@ The automaton from the first step is deterministic.

@ The “narrowing” of a deterministic automaton is universal.
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Future Work
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e Stochastic Moves

o Randomized Strategies
o Efficient Algorithms for Interesting Classes of Games

e Generalization of ~; and <;

o Automata over Relations
e Logical Formulas

@ Connection to Logic
o Dynamic/Temporal Process/Epistemic Logic

o IF-Logic, Dependence Logic, ...
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