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Dependence Logic

The syntax of Dependence Logic (D) extends the syntax of FO by
new atomic (dependence) formulas of the form

=(t1,...,tn),

with the meaning that the values of the terms t1,...,t,_1
determine the value of t,.

The semantics of formulas of dependence logic is defined in terms
of teams which are set of assignments:

Definition
Let A be a set and {xi,...,xx} set of variables. A team X of A
with domain {xi,...,xx} is a set of assignments s from

{x1,...,xc} into A.



Semantics of D

We restrict attention to formulas in negation normal form. The
following two operations on teams will be needed:

Definition
Suppose A is a set, X is a team of A, and F: X — A.
» Then X(F/xp) denotes the supplement team
{s(F(s)/xn) :s € X}.
» The duplicate team X(A/x,) is defined as
X(A/xn) = {s(a/xn) :s€ X and a € A}.

Definition
Let 2 be a model and X a team of A. The satisfaction relation
A E=x p is defined as follows:

> A [=x t1 = to iff for all s € X we have t](s) = t3'(s).

> A [=x 1ty = to iff for all s € X we have t(s) # t3'(s).



Semantics continued

» A Ex=(t1, ..., ty) iff for all s, s’ € X such that
t2s) = tf{s"),..., t> ;(s) = t& ,(s'), we have
ta(s) = ta(s').

> A=x - =(t1, ..., t) Iff X = 0.

» A E=x R(t1,...,t,) iff for all s € X we have
(t2(s), ..., t}s)) € R™.

» A =x —R(t1,..., ty) iff for all s € X we have
(t2s), ..., t2s)) ¢ R*.

> U =x A ¢ iff Al=x o and A f=x o,

> AEx Y Vo iff X =Y UZsuchthat A=y ¢ and A =7 ¢ .

> A =x Ixp) iff A =x(F/x,) FE ¢ for some F: X — A.

> 2 x Vxath IFF A Exays) ¥

Finally, a sentence ¢ is true in a model 2 if A =gy .



Goal of the talk

Theorem
For every sentence ¢ of D there is a sentence 1) of L1 s.t.

For all A: A ):{@} o <— AU ): (B (1)

Conversely, for every sentence 1) of X1 there is ¢ of D s.t. (1)
holds.

Our goal is to characterize definable sets of teams, i.e., sets of the
form

{X: 2% x 6).
We know that such sets are always closed downwards:

Theorem (Downward closure)
Suppose ¢ € D and Y C X. Then A =x ¢ implies A =y .



Examples of definable properties of teams
Definition
Let A be a set and X a team with domain {xi,...,xx}. Denote by
rel(X) the k-ary relation of A corresponding to X

rel(X) = {(s(x1),...,s(xk)) : s € X}.

Example

Let A be a set and F a family of sets of n-tuples of A which is
closed under subsets. Suppose that there is a n+ 1-ary relation R
on As.t. forevery T C A7,

T € F< thereis be As.t. R(ab) forallae T.
Then it holds that

(A R) Ex Iy (=(y) AR(X,y)) < rel(X) € F.



Example
Let k € N and let P(x) be a polynomial with positive integer
coefficients. Then there is p(X) € D s.t. for all finite sets A and

teams X over {x1,...,Xk}

AEx ¢ < [X| < P(IA]).



Towards the characterization

We restrict attention first to the special case where L = (), i.e., we
look at collections {X : A |=x ¢} where our model is just a pure
set.

Definition

Let ©(y1,...,yx) € D[0] and R a k-ary predicate. Denote by Q,
the following class of {R}-structures

Qp = {(A, rel(X)) [A F=x ¢}



Lemma
For every p(y1,...,yk) € D[0], the class Q, is closed under
isomorphisms.

Proposition
For every ¢(y1,...,yk) € D[0] the class Q, is the class of models
of some sentence in Yi[{R}].

Corollary
Let k € N. There is no formula o(x1,...,xx) € D[0] such that for
all A and teams X with domain {xy,...,xx}:

AEx ¢ < |X| is finite.



On downwards monotonicity

Definition
Let R be k-ary and ¢ € T1[{R}] a sentence. We say that ¢ is
downwards monotone with respect to R if for all A and
B'C BCA"
(AB) == (AB) .

Proposition
A sentence ¢ € Y1[{R}] is downwards monotone with respect to R
iff there is 1) € L[{R}] such that

E @ 9,

and R appears only negatively in 1.



Proof of Proposition

Suppose ¢ € L1[{R}] is downwards monotone with respect to R.
Let ©* be acquired by replacing all the occurrences of R in ¢ by a
new predicate R’. By the downwards monotonicity of ¢

E o < IR (" AVX(R(X) — R'(X))).

For the other direction, we use induction on the construction of ¢.



The characterization

Lemma (Skolem normal-form)
Every ¥} formula is equivalent to a formula of the form

.36 X,

where i is a quantifier-free formula.

Theorem

Let k > 1 and R a k-ary predicate. Suppose that Q is a
downwards monotone class of {R} structures. Then there is a
formula ¢(y1, ..., yk) € D[0] such that Q@ = Q, if and only if Q is
Y 1[{R}]-definable.



A sketch of the proof

Assume that Q is downwards monotone and L1[{R}]-definable.
We will construct a formula x(y1, ..., yx) € D[0)] such that
Q = Q. We may assume that there is A € Z1[{R}]

A=3f ... 30X . X

defining @ where:
» 1 is in conjunctive normal form,

» for each f; (1 < i < n) there are unique pairwise distinct

variables zi ..., z[, such that all occurrences of f; in ¢ are of
the form fi(z, ..., z.),
» R has in total only one occurrence (say = R(x1,...,xk)) in ¢

and it is negative.



Proof continued

We are now ready to define y now as
Vxq - VXmIyr - El)/n(:(?h)/l) ARRRRA :(?na)/n) A ¢+),

where 9™ is acquired from ) by:
» replacing all occurrences of fj(Z;) by the variable y;,

» —R(x1,...,xk) is replaced by the formula

\/ Yi 7£ Xj.

1<i<k



The case L # ()

Theorem

Let L be a vocabulary, 2l a L-model and F a family of sets of
k-tuples of A which is closed under subsets. Then the following are
equivalent:

1. F={rel(X): A =x ¢¥(y1,...,yx)} for some
1/}(y1,...,yk) GD[L]

2. F={Y (A, Y) E ¢(R)} for some sentence
¢ € LHLU{R}], in which R occurs only negatively.



Transferring the results to IF-logic

Definition
Let ¢(y1,...,yx) € IF[0] and R a k-ary predicate. Denote by Q,
the class of {R}-structures (A, rel(X)) such that X is a trump with

domain {y1,...,yk} for p(y1,...,yk) in A.

Theorem

Let Q be a downwards monotone class of { R}-models. Then there
is a formula ¢(y1, ..., yk) € IF[0] such that Q = Q, iff Q is

Y 1[{R}]-definable.



The case L # ()

Theorem
Let L be a vocabulary, 24 a L-model and F a family of sets of

k-tuples of A which is closed under subsets. Then the following are
equivalent:

1. F={rel(X): X is a trump for ¢(y1,...,yk) in A} for some
formula (y1,...,yk) € IF[L].

2. F={Y (A, Y) E ¢(R)} for some sentence
¢ € LHLU{R}], in which R occurs only negatively.



Application

Consider the following versions 3* and V* of the quantifiers of
dependence logic: 3! is defined by the clause

A f=x I xqt) iff there is a € A s.t. A FEx(a/x) = s
and V! by
A f=x Vixpt) iff for all a € A it holds that A Ex(a/x,) = ¥

Note that 3'x1) can be expressed uniformly as 3x(=(x) A ).



What about V!?

Denote by (D +V!) the extension of D by V1. It is easy to see that
(with respect to sentences)

(D+V) =2l =D.

Since (D +V?!) remains downwards monotone, our result implies
that
(D+Y') =D,

with respect to open formulas also.

Question
IsY* “uniformly” definable in D?



Team Logic

Recall that Team logic (TL) is acquired by closing D under
classical negation (~). Note that with ~, e.g., classical disjunction
and the following form of universal quantification: "for all

F: X — A" can be expressed.

Theorem (Ville Nurmi (2008))
TL = SO.



Definability in Team Logic

Note that with formulas downward monotonicity does not hold
anymore. In fact we can show the following:

Theorem

Let Q be a class of {R}-structures. Then there is a formula
©(¥1,- .-, yk) € TL[0] such that Q = Q, if and only if Q is
SO-definable.

Theorem

Let L be a vocabulary, 2 a L-model and F a family of sets of
k-tuples of A which is closed under subsets. Then the following are
equivalent:

1. F={rel(X): A =x ¥(y1,...,yx)} for some formula
¥(y1,...,yk) € TL[L].

2. F={Y (A, Y) E ¢(R)} for some sentence
¢ € SO[LU{R}].
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