Definability in Dependence Logic

Juha Kontinen

5.12.2008

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Dependence Logic

The syntax of Dependence Logic (D) extends the syntax of FO by new atomic (dependence) formulas of the form

$$=(t_1,\ldots,t_n),$$

with the meaning that the values of the terms t_1, \ldots, t_{n-1} determine the value of t_n .

The semantics of formulas of dependence logic is defined in terms of *teams* which are set of assignments:

Definition

Let A be a set and $\{x_1, \ldots, x_k\}$ set of variables. A *team* X of A with domain $\{x_1, \ldots, x_k\}$ is a set of assignments s from $\{x_1, \ldots, x_k\}$ into A.

Semantics of ${\mathcal D}$

We restrict attention to formulas in negation normal form. The following two operations on teams will be needed:

Definition

Suppose A is a set, X is a team of A, and $F: X \rightarrow A$.

- ► Then $X(F/x_n)$ denotes the *supplement* team $\{s(F(s)/x_n) : s \in X\}.$
- ▶ The *duplicate* team $X(A/x_n)$ is defined as $X(A/x_n) = \{s(a/x_n) : s \in X \text{ and } a \in A\}.$

Definition

Let \mathfrak{A} be a model and X a team of A. The satisfaction relation $\mathfrak{A} \models_X \varphi$ is defined as follows:

•
$$\mathfrak{A} \models_X t_1 = t_2$$
 iff for all $s \in X$ we have $t_1^{\mathfrak{A}} \langle s \rangle = t_2^{\mathfrak{A}} \langle s \rangle$.

•
$$\mathfrak{A} \models_X \neg t_1 = t_2$$
 iff for all $s \in X$ we have $t_1^{\mathfrak{A}}\langle s \rangle \neq t_2^{\mathfrak{A}}\langle s \rangle$.

Semantics continued

•
$$\mathfrak{A} \models_X = (t_1, ..., t_n)$$
 iff for all $s, s' \in X$ such that $t_1^{\mathfrak{A}}\langle s \rangle = t_1^{\mathfrak{A}}\langle s' \rangle, ..., t_{n-1}^{\mathfrak{A}}\langle s \rangle = t_{n-1}^{\mathfrak{A}}\langle s' \rangle$, we have $t_n^{\mathfrak{A}}\langle s \rangle = t_n^{\mathfrak{A}}\langle s' \rangle$.

• $\mathfrak{A} \models_X \neg = (t_1, ..., t_n)$ iff $X = \emptyset$.

•
$$\mathfrak{A} \models_X R(t_1, \ldots, t_n)$$
 iff for all $s \in X$ we have $(t_1^{\mathfrak{A}}\langle s \rangle, \ldots, t_n^{\mathfrak{A}}\langle s \rangle) \in R^{\mathfrak{A}}.$

▶ $\mathfrak{A} \models_X \neg R(t_1, \ldots, t_n)$ iff for all $s \in X$ we have $(t_1^{\mathfrak{A}} \langle s \rangle, \ldots, t_n^{\mathfrak{A}} \langle s \rangle) \notin R^{\mathfrak{A}}$.

•
$$\mathfrak{A} \models_X \psi \land \phi$$
 iff $\mathfrak{A} \models_X \psi$ and $\mathfrak{A} \models_X \phi$.

- ▶ $\mathfrak{A} \models_X \psi \lor \phi$ iff $X = Y \cup Z$ such that $\mathfrak{A} \models_Y \psi$ and $\mathfrak{A} \models_Z \phi$.
- ▶ $\mathfrak{A} \models_X \exists x_n \psi$ iff $\mathfrak{A} \models_{X(F/x_n)} \models \psi$ for some $F: X \to A$.

•
$$\mathfrak{A} \models_X \forall x_n \psi$$
 iff $\mathfrak{A} \models_{X(A/x_n)} \psi$

Finally, a sentence φ is true in a model \mathfrak{A} if $\mathfrak{A} \models_{\{\emptyset\}} \varphi$.

Goal of the talk

Theorem

For every sentence ϕ of \mathcal{D} there is a sentence ψ of Σ_1^1 s.t.

For all
$$\mathfrak{A}: \mathfrak{A} \models_{\{\emptyset\}} \phi \iff \mathfrak{A} \models \psi.$$
 (1)

Conversely, for every sentence ψ of Σ_1^1 there is ϕ of \mathcal{D} s.t. (1) holds.

Our goal is to characterize *definable sets of teams*, i.e., sets of the form

$$\{X:\mathfrak{A}\models_X\phi\}.$$

We know that such sets are always closed downwards:

Theorem (Downward closure)

Suppose $\varphi \in \mathcal{D}$ and $Y \subseteq X$. Then $\mathfrak{A} \models_X \varphi$ implies $\mathfrak{A} \models_Y \varphi$.

Examples of definable properties of teams

Definition

Let A be a set and X a team with domain $\{x_1, \ldots, x_k\}$. Denote by rel(X) the k-ary relation of A corresponding to X

$$\mathsf{rel}(X) = \{(s(x_1), \ldots, s(x_k)) : s \in X\}.$$

Example

Let A be a set and F a family of sets of n-tuples of A which is closed under subsets. Suppose that there is a n + 1-ary relation R on A s.t. for every $T \subseteq A^n$,

 $T \in F \Leftrightarrow$ there is $b \in A$ s.t. $R(\overline{a}b)$ for all $\overline{a} \in T$.

Then it holds that

$$(A, R) \models_X \exists y (=(y) \land R(\overline{x}, y)) \Leftrightarrow \operatorname{rel}(X) \in F.$$

Example

Let $k \in \mathbb{N}$ and let P(x) be a polynomial with positive integer coefficients. Then there is $\varphi(\overline{x}) \in \mathcal{D}$ s.t. for all finite sets A and teams X over $\{x_1, \ldots, x_k\}$

$$A \models_X \varphi \Leftrightarrow |X| \le P(|A|).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Towards the characterization

We restrict attention first to the special case where $L = \emptyset$, i.e., we look at collections $\{X : A \models_X \phi\}$ where our model is just a pure set.

Definition

Let $\varphi(y_1, \ldots, y_k) \in \mathcal{D}[\emptyset]$ and R a k-ary predicate. Denote by Q_{φ} the following class of $\{R\}$ -structures

$$Q_{\varphi} = \{ (A, \operatorname{rel}(X)) \mid A \models_X \varphi \}.$$

Lemma

For every $\varphi(y_1, \ldots, y_k) \in \mathcal{D}[\emptyset]$, the class Q_{φ} is closed under isomorphisms.

Proposition

For every $\varphi(y_1, \ldots, y_k) \in \mathcal{D}[\emptyset]$ the class Q_{φ} is the class of models of some sentence in $\Sigma_1^1[\{R\}]$.

Corollary

Let $k \in \mathbb{N}$. There is no formula $\varphi(x_1, \ldots, x_k) \in \mathcal{D}[\emptyset]$ such that for all A and teams X with domain $\{x_1, \ldots, x_k\}$:

$$A \models_X \varphi \Leftrightarrow |X|$$
 is finite.

On downwards monotonicity

Definition

Let *R* be *k*-ary and $\varphi \in \Sigma_1^1[\{R\}]$ a sentence. We say that φ is *downwards monotone with respect to R* if for all *A* and $B' \subseteq B \subseteq A^n$

$$(A,B)\models\varphi\Rightarrow(A,B')\models\varphi.$$

Proposition

A sentence $\varphi \in \Sigma_1^1[\{R\}]$ is downwards monotone with respect to R iff there is $\psi \in \Sigma_1^1[\{R\}]$ such that

$$\models \varphi \leftrightarrow \psi,$$

and R appears only negatively in ψ .

Suppose $\varphi \in \Sigma_1^1[\{R\}]$ is downwards monotone with respect to R. Let φ^* be acquired by replacing all the occurrences of R in φ by a new predicate R'. By the downwards monotonicity of φ

$$\models \varphi \leftrightarrow \exists R'(\varphi^* \land \forall \overline{x}(R(\overline{x}) \to R'(\overline{x}))).$$

For the other direction, we use induction on the construction of φ .

The characterization

Lemma (Skolem normal-form)

Every Σ_1^1 formula is equivalent to a formula of the form

 $\exists f_1 \ldots \exists f_n \forall x_1 \ldots \forall x_m \psi,$

where ψ is a quantifier-free formula.

Theorem

Let $k \geq 1$ and R a k-ary predicate. Suppose that Q is a downwards monotone class of $\{R\}$ structures. Then there is a formula $\varphi(y_1, \ldots, y_k) \in \mathcal{D}[\emptyset]$ such that $Q = Q_{\varphi}$ if and only if Q is $\Sigma_1^1[\{R\}]$ -definable.

(日) (同) (三) (三) (三) (○) (○)

A sketch of the proof

Assume that Q is downwards monotone and $\Sigma_1^1[\{R\}]$ -definable. We will construct a formula $\chi(y_1, \ldots, y_k) \in \mathcal{D}[\emptyset]$ such that $Q = Q_{\chi}$. We may assume that there is $\lambda \in \Sigma_1^1[\{R\}]$

$$\lambda = \exists f_1 \dots \exists f_n \forall x_1 \dots \forall x_m \psi$$

defining Q where:

- ψ is in conjunctive normal form,
- For each f_i (1 ≤ i ≤ n) there are unique pairwise distinct variables zⁱ₁,..., zⁱ_s, such that all occurrences of f_i in ψ are of the form f_i(zⁱ₁,..., zⁱ_s),
- ► R has in total only one occurrence (say ¬R(x₁,...,x_k)) in ψ and it is negative.

Proof continued

We are now ready to define χ now as

$$\forall x_1 \cdots \forall x_m \exists y_1 \cdots \exists y_n (=(\overline{z}_i, y_1) \land \cdots \land =(\overline{z}_n, y_n) \land \psi^+),$$

where ψ^+ is acquired from ψ by:

- ▶ replacing all occurrences of $f_i(\overline{z}_i)$ by the variable y_i ,
- $\neg R(x_1, \ldots, x_k)$ is replaced by the formula

$$\bigvee_{1\leq i\leq k} y_i\neq x_i.$$

The case $L \neq \emptyset$

Theorem

Let L be a vocabulary, \mathfrak{A} a L-model and F a family of sets of k-tuples of A which is closed under subsets. Then the following are equivalent:

1.
$$F = {\operatorname{rel}(X) : \mathfrak{A} \models_X \psi(y_1, \dots, y_k)}$$
 for some $\psi(y_1, \dots, y_k) \in \mathcal{D}[L].$

2. $F = \{Y : (\mathfrak{A}, Y) \models \phi(R)\}$ for some sentence $\phi \in \Sigma_1^1[L \cup \{R\}]$, in which R occurs only negatively.

Transferring the results to IF-logic

Definition

Let $\varphi(y_1, \ldots, y_k) \in \operatorname{IF}[\emptyset]$ and R a k-ary predicate. Denote by Q_{φ} the class of $\{R\}$ -structures $(A, \operatorname{rel}(X))$ such that X is a *trump* with domain $\{y_1, \ldots, y_k\}$ for $\varphi(y_1, \ldots, y_k)$ in A.

Theorem

Let Q be a downwards monotone class of $\{R\}$ -models. Then there is a formula $\varphi(y_1, \ldots, y_k) \in \operatorname{IF}[\emptyset]$ such that $Q = Q_{\varphi}$ iff Q is $\Sigma_1^1[\{R\}]$ -definable.

The case $L \neq \emptyset$

Theorem

Let L be a vocabulary, \mathfrak{A} a L-model and F a family of sets of k-tuples of A which is closed under subsets. Then the following are equivalent:

1. $F = \{ \operatorname{rel}(X) : X \text{ is a trump for } \psi(y_1, \ldots, y_k) \text{ in } \mathfrak{A} \}$ for some formula $\psi(y_1, \ldots, y_k) \in \operatorname{IF}[L].$

2. $F = \{Y : (\mathfrak{A}, Y) \models \phi(R)\}$ for some sentence $\phi \in \Sigma_1^1[L \cup \{R\}]$, in which R occurs only negatively.

Application

Consider the following versions \exists^1 and \forall^1 of the quantifiers of dependence logic: \exists^1 is defined by the clause

$$\mathfrak{A}\models_X \exists^1 x_n \psi \text{ iff there is } a \in A \text{ s.t. } \mathfrak{A}\models_{X(a/x_n)}\models \psi,$$

and \forall^1 by

 $\mathfrak{A}\models_X \forall^1 x_n \psi \text{ iff for all } a \in A \text{ it holds that } \mathfrak{A}\models_{X(a/x_n)}\models \psi.$

Note that $\exists^1 x \psi$ can be expressed uniformly as $\exists x (=(x) \land \psi)$.

What about \forall^1 ?

Denote by $(\mathcal{D} + \forall^1)$ the extension of \mathcal{D} by \forall^1 . It is easy to see that (with respect to sentences)

$$(\mathcal{D}\!+\!orall^1)\equiv\Sigma^1_1\equiv\mathcal{D}$$
 .

Since $\left(\mathcal{D} + \forall^1\right)$ remains downwards monotone, our result implies that

$$(\mathcal{D} + \forall^1) \equiv \mathcal{D},$$

with respect to open formulas also.

Question Is \forall^1 "uniformly" definable in \mathcal{D} ?

Team Logic

Recall that *Team logic* (TL) is acquired by closing \mathcal{D} under classical negation (\sim). Note that with \sim , e.g., classical disjunction and the following form of universal quantification: "for all $F: X \to A$ " can be expressed.

```
Theorem (Ville Nurmi (2008)) TL \equiv SO.
```

Definability in Team Logic

Note that with formulas downward monotonicity does not hold anymore. In fact we can show the following:

Theorem

Let Q be a class of $\{R\}$ -structures. Then there is a formula $\varphi(y_1, \ldots, y_k) \in \mathrm{TL}[\emptyset]$ such that $Q = Q_{\varphi}$ if and only if Q is SO-definable.

Theorem

Let L be a vocabulary, \mathfrak{A} a L-model and F a family of sets of k-tuples of A which is closed under subsets. Then the following are equivalent:

- 1. $F = \{ \operatorname{rel}(X) : \mathfrak{A} \models_X \psi(y_1, \dots, y_k) \}$ for some formula $\psi(y_1, \dots, y_k) \in \operatorname{TL}[L].$
- 2. $F = \{Y : (\mathfrak{A}, Y) \models \phi(R)\}$ for some sentence $\phi \in \mathrm{SO}[L \cup \{R\}].$

References

- Juha Kontinen and Jouko Väänänen: On Definability in Dependence Logic. To appear in JoLLI.
- Juha Kontinen and Ville Nurmi: Team Logic and Second Order Logic. In preparation.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <