Logic Constants Invariance for Modal and Dynamic Logic

Denis Bonnay U. Paris X - Nanterre

> LINT Workshop Amsterdam December 2008

> > ◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The Gothenburg project

Invariance and constancy: Logical Foundations for Interaction

PI: D. Westerståhl

The Gothenburg project

Invariance and constancy: Logical Foundations for Interaction

PI: D. Westerståhl

The initial question :

 What is a logical constant? Why do we select ∧, ∃, ∀ as logical expressions and build our logical systems around them?

The good old answer (Tarski's)

• Because they have special semantic properties Quantifiers get interpreted by operations which are invariant under permutation.

Conclusion

The Gothenburg project (cont.)

Widen the horizon:

consider other languages

consider other objects

consider alternative approaches to logicality

The Gothenburg project (cont.)

Widen the horizon:

- consider other languages
 What's invariance for modal quantifiers?
 What's the connection with invariance for FO quantifiers?
- consider other objects

consider alternative approaches to logicality

The Gothenburg project (cont.)

Widen the horizon:

- consider other languages
 What's invariance for modal quantifiers?
 What's the connection with invariance for FO quantifiers?
- consider other objects
 What are the natural 'logical' operations on games?
 What's the connection with linear connectives?
- consider alternative approaches to logicality

The Gothenburg project (cont.)

Widen the horizon:

- consider other languages
 What's invariance for modal quantifiers?
 What's the connection with invariance for FO quantifiers?
- consider other objects
 What are the natural 'logical' operations on games?
 What's the connection with linear connectives?
- consider alternative approaches to logicality
 From consequence relations to logical constants.
 Logicality as constancy

For today

Some sample work: invariance for modal and dynamic logic

- generalizes previous work on FO languages
- through a general perspective on invariance and logical systems

For today

Some sample work: invariance for modal and dynamic logic

- generalizes previous work on FO languages
- through a general perspective on invariance and logical systems

For today

Some sample work: invariance for modal and dynamic logic

- generalizes previous work on FO languages
- through a general perspective on invariance and logical systems

For today

Some sample work: invariance for modal and dynamic logic

- generalizes previous work on FO languages
- through a general perspective on invariance and logical systems

ic Conclusion

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Languages and similarity relations

L a logic, *S* a 'similarity relation' for *L* (equivalence relation on the class of *L*-structures)

L's expressive power is bound by *S*,

In these limits, L is as expressive as possible:

S-invariance as L's logicality criterion.

Languages and similarity relations

L a logic, S a 'similarity relation' for L (equivalence relation on the class of *L*-structures)

- L's expressive power is bound by S.
 - If $\mathcal{M} S \mathcal{M}'$ then $\mathcal{M} \equiv_{I} \mathcal{M}'$
 - ⇒ Isomorphisms, Potential isomorphisms for FOL
 - ⇒ Bisimulations for Modal Logic
- In these limits, L is as expressive as possible:

S-invariance as L's logicality criterion.

Dynamic Logic

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusion

Languages and similarity relations

L a logic, S a 'similarity relation' for L (equivalence relation on the class of *L*-structures)

- L's expressive power is bound by S,
 - If $\mathcal{M} S \mathcal{M}'$ then $\mathcal{M} \equiv_{I} \mathcal{M}'$
 - ⇒ Isomorphisms, Potential isomorphisms for FOL
 - ⇒ Bisimulations for Modal Logic
- In these limits, L is as expressive as possible:
 - If $\mathcal{M} \equiv_{l} \mathcal{M}'$ then $\mathcal{M} S \mathcal{M}'$
 - L is the strongest 'finitary' logic such that (1) holds.

⇒ Lindström Theorem

- ⇒ van Benthem characterization Theorem
- S-invariance as L's logicality criterion.

Languages and similarity relations

L a logic, S a 'similarity relation' for L (equivalence relation on the class of *L*-structures)

- L's expressive power is bound by S,
 - If $\mathcal{M} S \mathcal{M}'$ then $\mathcal{M} \equiv_{I} \mathcal{M}'$
 - ⇒ Isomorphisms, Potential isomorphisms for FOL
 - ⇒ Bisimulations for Modal Logic
- In these limits, L is as expressive as possible:
 - If $\mathcal{M} \equiv_{l} \mathcal{M}'$ then $\mathcal{M} S \mathcal{M}'$
 - L is the strongest 'finitary' logic such that (1) holds.

⇒ Lindström Theorem

- \implies van Benthem characterization Theorem
- S-invariance as L's logicality criterion.
 - S-closed classes interpret logical operations.
 - \implies FO quantifiers and invariance under isomorphisms ・ロト (四) (三) (三) (三) (三) (三) (三)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A case in point

 $L = FOL, S = Iso_p$ (short for 'being potentially isomorphic')

Definition

f is a **partial isomorphism** between A and B just in case *f* is an isomorphism btw substructures of A and B.

A case in point

 $L = FOL, S = Iso_{p}$ (short for 'being potentially isomorphic')

Definition

f is a **partial isomorphism** between A and B just in case *f* is an isomorphism btw substructures of A and B.

Definition

A **potential isomorphism** *I* between A and B is a nonempty set of partial isomorphisms s.t. for every $f \in I$ and $a \in A$ (resp. $b \in B$), there is $g \in I$ with $f \subseteq g$ and $a \in dom(g)$ (resp. $b \in rng(g)$).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A case in point

 $L = FOL, S = Iso_{p}$ (short for 'being potentially isomorphic')

Definition

f is a **partial isomorphism** between A and B just in case *f* is an isomorphism btw substructures of A and B.

Definition

A **potential isomorphism** *I* between A and B is a nonempty set of partial isomorphisms s.t. for every $f \in I$ and $a \in A$ (resp. $b \in B$), there is $g \in I$ with $f \subseteq g$ and $a \in dom(g)$ (resp. $b \in rng(g)$).

Classical example: $\langle \mathbb{Q}, \leq \rangle$ and $\langle \mathbb{R}, \leq \rangle$ not isomorphic but potentially isomorphic.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A case in point (cont.)

• $L = FOL, S = Iso_p$

An obvious but elusive parallel:

- *L* = atoms, booleans +
- S = partial isomorphisms

∃ picking one more

+

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A case in point (cont.)

• $L = FOL, S = Iso_p$

An obvious but elusive parallel:

- L = atoms, booleans +
- S = partial isomorphisms +

• L = ML, S = BiS (short for 'being bisimilar')

Same thing:

L = atoms, booleans + \diamond

S = world matching + moving along R

Atom preservation

$$\langle M, P, a \rangle \stackrel{S}{=\!=\!\!=} \langle M', P', a'
angle$$
 $a \in P \text{ iff } a' \in P'$

・ロト・日本・日本・日本・日本・日本

Atom preservation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition

A similarity relation *S* **preserves atoms** iff for all *S*-similar structures, distinguished relations behave similarly on distinguished objects.

Higher up and back

Dynamic Logic

Conclusion

Commutation with object expansions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Commutation with object expansions

$$\mathcal{M}, \mathbf{a} \stackrel{S}{\longrightarrow} \mathcal{M}', \mathbf{a}'$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\mathcal{M} \stackrel{S}{\longrightarrow} \mathcal{M}'$$

Definition

A similarity relation *S* commutes with object expansions iff if $\mathcal{M} \ S \ \mathcal{M}'$, then for all $a \in |\mathcal{M}|$, there is an $a' \in |\mathcal{M}'|$ s.t. $\mathcal{M}, a \ S \ \mathcal{M}', a'$.

Higher up and back

Dynamic Log

Conclusion

Ordering on similarity relations

Definition

 $S \leq S'$ iff $S' \subseteq S$.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Higher up and back

Dynamic Logic

▲□▶▲□▶▲□▶▲□▶ □ のQで

Conclusion

Ordering on similarity relations

Definition

 $S \leq S'$ iff $S' \subseteq S$.

Ex : Universal relation \leq *Iso*_p \leq *Iso*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Characterization of Isop

Fact

Isop is the smallest similarity relation S such that

- S preserves atoms
- S commutes with objects expansions.

Back to the logic

How does this connect with properties of first-order languages ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Back to the logic

How does this connect with properties of first-order languages ?

Atoms preservation says that similar structures are elementary equivalent on atomic sentences and boolean compounds thereof.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Back to the logic

How does this connect with properties of first-order languages ?

Atoms preservation says that similar structures are elementary equivalent on atomic sentences and boolean compounds thereof.

What does commutation says ?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Back to the logic

How does this connect with properties of first-order languages ?

Atoms preservation says that similar structures are elementary equivalent on atomic sentences and boolean compounds thereof.

What does commutation says ?

It says that existential quantification is in the language.

Object projection

Definition

Let *Q* be a class of structures of the form \mathcal{M} , *a*. The **object projection** of *Q*, \exists (*Q*), is defined by $\mathcal{M} \in \exists$ (*Q*) iff there is a *b* \in $|\mathcal{M}|$ such that \mathcal{M} , *b* \in *Q*.

This is what you can do with \exists .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Object projection

Definition

Let *Q* be a class of structures of the form \mathcal{M} , *a*. The **object projection** of *Q*, \exists (*Q*), is defined by $\mathcal{M} \in \exists$ (*Q*) iff there is a *b* \in $|\mathcal{M}|$ such that \mathcal{M} , *b* \in *Q*.

This is what you can do with \exists .

 \exists is logical *means* \exists does not break invariance:

Definition

Object projection **preserves** *S*-invariance iff whenever *Q* is *S*-invariant, so is $\exists (Q)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Equivalence result

Theorem

S commutes with object expansions iff object projection preserves S-invariance.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Equivalence result

Theorem *S com*

S commutes with object expansions iff object projection preserves S-invariance.

Corollary

Isop is the smallest similarity relation S such that

- S preserves atoms
- object projection preserves S-invariance.

Equivalence result

Theorem

S commutes with object expansions iff object projection preserves S-invariance.

Corollary

Isop is the smallest similarity relation S such that

- S preserves atoms
- object projection preserves S-invariance.

 \implies *Iso*_p is the good match for a language based on \exists .
◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A general setting

- A a class of objects
- E a relation on A
- S an equivalence relation on A
- *E*⁻¹ : ℘(*A*) → ℘(*A*) an inverse for *E* defined for *X* ⊆ *A* by *E*⁻¹ = {*a* ∈ *A* / ∃*b* ∈ *X* with *aEb*}

Definition

A subclass X is **S-invariant** iff if $a \in X$ and aSb then $b \in X$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Commutation

Definition

S commutes with *E* iff, for all *a*, *a'*, *b* \in *A*, if *aSb* and *aEa'*, then there is a *b'* such that *a'Sb'* and *bEb'*.

Dynamic Logic

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusion

Preservation of Invariance

Definition

 E^{-1} preserves S-invariance iff for any subclass X of A, if X is S-invariant, then $E^{-1}(X)$ is S-invariant.

ynamic Logic

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusion

Commutation lemma

Lemma

S commutes with E iff E^{-1} preserves S-invariance.

Dynamic Logic

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Conclusion

Commutation lemma

Proof

 \Rightarrow

S commutes with E, ? E^{-1} preserves S-invariance ?

$$a \in E^{-1}(X) \stackrel{S}{===} b$$

Dynamic Logic

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Conclusion

Commutation lemma

Proof

S commutes with E, ? E^{-1} preserves S-invariance ?

 \Rightarrow

$$a' \in X$$

 $E \land a \in E^{-1}(X) \xrightarrow{S} b$

Dynamic Logic

Conclusion

Commutation lemma

Proof

S commutes with E, $? E^{-1}$ preserves S-invariance ?

 \Rightarrow

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Dynamic Logic

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Conclusion

Commutation lemma

Proof

S commutes with E, ? E^{-1} preserves S-invariance ?

 \Rightarrow

Dynamic Logic

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Conclusion

Commutation lemma

Proof

S commutes with E, ? E^{-1} preserves S-invariance ?

 \Rightarrow

Dynamic Logic

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Conclusion

Commutation lemma

Proof

? S commutes with E ?, E^{-1} preserves S-invariance

 \Leftarrow

Dynamic Logic

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusion

Commutation lemma

Proof

? S commutes with E ?, E^{-1} preserves S-invariance

 \Leftarrow

$$a' \in [a']_S$$

 $\downarrow a = s b$

Dynamic Logic

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Conclusion

Commutation lemma

Proof

? S commutes with E ?, E^{-1} preserves S-invariance

 \Leftarrow

$$a' \in [a']_S$$

 E^{\uparrow}
 $a \in E^{-1}([a']_S) \xrightarrow{S} b$

Dynamic Logic

Conclusion

Commutation lemma

Proof

? S commutes with E ?, E^{-1} preserves S-invariance

 \Leftarrow

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Dynamic Logic

Conclusion

Commutation lemma

Proof

? S commutes with E ?, E^{-1} preserves S-invariance

 \Leftarrow

$$a' \in [a']_S$$
 $b' \in [a']_S$
 $E \uparrow$ $E \uparrow$
 $a \in E^{-1}([a']_S) \xrightarrow{S} b \in E^{-1}([a']_S)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Dynamic Logic

Conclusion

Commutation lemma

Proof

? S commutes with E ?, E^{-1} preserves S-invariance

 \Leftarrow

$$a' \in [a']_S$$
 $b' \in [a']_S$
 $E \land E^{\land}$
 $a \in E^{-1}([a']_S) \xrightarrow{S} b \in E^{-1}([a']_S)$

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ● ●

Using the lemma

Take

- A the class of FO structures
- *E* expanding with one object $\rightarrow E^{-1}$ is object projection
 - $\Rightarrow E^{-1}$ is object projection.

As an instance of the commutation lemma, we get:

Theorem S commutes with object expansions iff object projection preserves S-invariance.

The modal case

Definition

A similarity relation *S* **commutes with guarded object expansion** iff, if \mathcal{M} , $w \in \mathcal{M}'$, w', then for all $v \in |\mathcal{M}|$ with wRv, there is a $v' \in |\mathcal{M}'|$ such that \mathcal{M} , $v \in \mathcal{M}'$, v' and w'R'v'.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Characterization of bisimulations

BiS short for 'being bisimilar'

Fact

BiS is the smallest similarity relation S such that

- S preserves atoms
- S commutes with guarded object expansion.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Guarded object projection

Definition

Let *Q* be a class of pointed Kripke structures. The **guarded object projection** of *Q*, $\diamond(Q)$, is defined by $\mathcal{M}, w \in \exists(Q)$ iff there is a $v \in |\mathcal{M}|$ such that $\mathcal{M}, v \in Q$ and wRv.

This is what you can do with \diamond .

Guarded object projection

Definition

Let *Q* be a class of pointed Kripke structures. The **guarded object projection** of *Q*, $\diamond(Q)$, is defined by $\mathcal{M}, w \in \exists(Q)$ iff there is a $v \in |\mathcal{M}|$ such that $\mathcal{M}, v \in Q$ and wRv.

This is what you can do with \diamond .

 \diamond is logical *means* \diamond does not break invariance:

DefinitionGuarded object projection preserves S-invariance iff
whenever Q is S-invariant, so is $\Diamond(Q)$.

- A the class of pointed Kripke structures
- *E* moving to an accessible world
 - $\Rightarrow E^{-1}$ is guarded object projection.

As an instance of the commutation lemma, we get:

Theorem S commutes with guarded object expansion iff guarded object projection preserves S-invariance.

Equivalence result

- A the class of pointed Kripke structures
- *E* moving to an accessible world
 - $\Rightarrow E^{-1}$ is guarded object projection.

As an instance of the commutation lemma, we get:

Theorem S commutes with guarded object expansion iff guarded object projection preserves S-invariance.

Corollary

Bis is the smallest similarity relation S such that

- S preserves atoms
- guarded object projection preserves S-invariance.

Equivalence result

- A the class of pointed Kripke structures
- *E* moving to an accessible world
 - $\Rightarrow E^{-1}$ is guarded object projection.

As an instance of the commutation lemma, we get:

Theorem S commutes with guarded object expansion iff guarded object projection preserves S-invariance.

Corollary

Bis is the smallest similarity relation S such that

- S preserves atoms
- guarded object projection preserves S-invariance.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Dynamic logic

The language of Propositional Dynamic Logic (PDL)

Programs $\pi := R \mid \pi; \pi \mid \pi \cup \pi \mid \pi^* \mid ?\phi$ Formulas $\phi := p \mid \neg \phi \mid \phi \land \phi \mid \langle \pi \rangle \phi$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Dynamic logic

The language of Propositional Dynamic Logic (PDL)

Programs $\pi := R \mid \pi; \pi \mid \pi \cup \pi \mid \pi^* \mid ?\phi$ Formulas $\phi := p \mid \neg \phi \mid \phi \land \phi \mid \langle \pi \rangle \phi$

- ML formulas can only define set of worlds
- PDL programs can also define relations

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

What is a PDL operation?

Look at what \cup does on a fixed set of worlds W:

$$\begin{array}{ll} || \cup ||_{W} & : & \wp(W^2) \times \wp(W^2) \to \wp(W^2) \\ & & R \times R' \mapsto R \bigcup R \end{array}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

What is a PDL operation?

Look at what \cup does on a fixed set of worlds W:

$$\|\cup\|_{W}$$
 : $\wp(W^2) \times \wp(W^2) \to \wp(W^2)$
 $R \times R' \mapsto R \bigcup R$

In general: a dynamic operator \overline{O} is interpreted by a function O from Kripke models to relations over these models.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

What is a PDL operation?

Look at what \cup does on a fixed set of worlds W:

$$\|\cup\|_{W}$$
 : $\wp(W^2) \times \wp(W^2) \to \wp(W^2)$
 $R \times R' \mapsto R \bigcup R$

In general: a dynamic operator \overline{O} is interpreted by a function O from Kripke models to relations over these models.

So let $\vec{\chi}$ be a sequence of programs and formulas matching the syntactic type of \overline{O} ,

The semantic clause for \overline{O} is given by:

$$||\overline{O}\overrightarrow{\chi}||_{\mathcal{M}} = O(|\mathcal{M}|, ||\overrightarrow{\chi}||_{\mathcal{M}})$$

Safety

For any bisimulation Z:

$$\begin{array}{c|c}
\mathcal{M}, \mathbf{v} & \stackrel{Z}{\longrightarrow} & \mathcal{M}', \mathbf{v}' \\
\mathcal{O}(\mathcal{M}) & & & & \\
\mathcal{M}, \mathbf{w} & \stackrel{Z}{\longrightarrow} & \mathcal{M}', \mathbf{w}'
\end{array}$$

Definition

A dynamic operation *O* is **safe for bisimulation** iff whenever *Z* is a bisimulation between \mathcal{M} , *w* and \mathcal{M}' , *w'*, and $wO(\mathcal{M})v$ for some $v \in |\mathcal{M}|$, then there is a $v' \in |\mathcal{M}'|$ such that vZv' and $w'O(\mathcal{M}')v'$.

Safety and PDL

- Safety is the key element in the proof that PDL formulas are invariant under bisimulation.
- Enriching PDL programs with new safe operations yields extensions which are still invariant under bisimulation.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• PDL without Kleene star is the safe fragment of FOL.

(日) (日) (日) (日) (日) (日) (日)

Safety and PDL

- Safety is the key element in the proof that PDL formulas are invariant under bisimulation.
- Enriching PDL programs with new safe operations yields extensions which are still invariant under bisimulation.
- PDL without Kleene star is the safe fragment of FOL.

However, safety is not our standard commutation property.

Commutation with Bis

$$\mathcal{M}, \mathbf{v} \stackrel{BiS}{\longrightarrow} \mathcal{M}', \mathbf{v}'$$

$$O(||\vec{\chi}||_{\mathcal{M}}) \uparrow \qquad \qquad \land O(||\vec{\chi}||_{\mathcal{M}'})$$

$$\mathcal{M}, \mathbf{w} \stackrel{BiS}{\longrightarrow} \mathcal{M}', \mathbf{w}'$$

Definition

A dynamic operation *O* commutes with BiS iff whenever $\mathcal{M} + ||\vec{\chi}||_{\mathcal{M}}$, *w* and $\mathcal{M}' + ||\vec{\chi}||_{\mathcal{M}'}$, *w'*, and $wO(||\vec{\chi}||_{\mathcal{M}})v$ for some $v \in |\mathcal{M}|$, then there is a $v' \in |\mathcal{M}'|$ such that vZv' and $w'O(||\vec{\chi}||_{\mathcal{M}'})v'$. The lemma again

As before, we can get:

Theorem

BiS commutes with O iff O preserves invariance under BiS.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

The lemma again

As before, we can get:

Theorem

BiS commutes with O iff O preserves invariance under BiS.

Preserving invariance under *BiS* is precisely what we need if we want to stay within the realm of modal logic.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Safety and commutation

How does this relate to safety?

Dynamic Logic

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Safety and commutation

How does this relate to safety?

Theorem

BiS commutes with O iff O is safe for bisimulation.

Safety is indeed the natural constraint on dynamic operations *qua* modal.
◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion

- a general perspective on invariance, 'commutation lemma' easy but nice result for Iso_p and BiS nice and not so easy result for safety
- stemming from some sort or 'reverse' meta-logic, Duality btw syntax and semantics Take S as a parameter
- to be developed...

Apply to other logical systems Generalize to games via game logic Connect to 'intrinsic' regularities