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The Gothenburg project

Invariance and constancy:
Logical Foundations for Interaction

PI: D. Westerståhl

The initial question :

What is a logical constant?
Why do we select ∧, ∃, ∀ as logical expressions and build
our logical systems around them?

The good old answer (Tarski’s)

Because they have special semantic properties
Quantifiers get interpreted by operations which are
invariant under permutation.
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The Gothenburg project (cont.)

Widen the horizon:

consider other languages

What’s invariance for modal quantifiers?
What’s the connection with invariance for FO quantifiers?

consider other objects

What are the natural ‘logical’ operations on games?
What’s the connection with linear connectives?

consider alternative approaches to logicality

From consequence relations to logical constants.
Logicality as constancy
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For today

Some sample work:
invariance for modal and dynamic logic

generalizes previous work on FO languages
through a general perspective
on invariance and logical systems

J. van Benthem & D. Bonnay, Modal Logic and Invariance, JANCL, 2008.
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Languages and similarity relations

L a logic, S a ‘similarity relation’ for L
(equivalence relation on the class of L-structures)

1 L’s expressive power is bound by S,

IfM S M′ thenM≡L M′

=⇒ Isomorphisms, Potential isomorphisms for FOL
=⇒ Bisimulations for Modal Logic

2 In these limits, L is as expressive as possible:

IfM≡L M′ thenM S M′

L is the strongest ‘finitary’ logic such that (1) holds.
=⇒ Lindström Theorem
=⇒ van Benthem characterization Theorem

3 S-invariance as L’s logicality criterion.

S-closed classes interpret logical operations.

=⇒ FO quantifiers and invariance under isomorphisms
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A case in point

L = FOL, S = Isop (short for ‘being potentially isomorphic’)

Definition

f is a partial isomorphism between A and B
just in case f is an isomorphism btw substructures of A and B.

Definition

A potential isomorphism I between A and B
is a nonempty set of partial isomorphisms s.t.
for every f ∈ I and a ∈ A (resp. b ∈ B),
there is g ∈ I with f ⊆ g and a ∈ dom(g) (resp. b ∈ rng(g)).

Classical example: 〈Q,≤〉 and 〈R,≤〉
not isomorphic but potentially isomorphic.
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A case in point (cont.)

L = FOL, S = Isop

An obvious but elusive parallel:
L = atoms, booleans + ∃
S = partial isomorphisms + picking one more

L = ML, S = BiS (short for ‘being bisimilar’)

Same thing:
L = atoms, booleans + 3

S = world matching + moving along R
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Atom preservation

〈M,P,a〉 S 〈M ′,P ′,a′〉

a ∈ P iff a′ ∈ P ′

Definition
A similarity relation S preserves atoms iff
for all S-similar structures, distinguished relations
behave similarly on distinguished objects.
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Commutation with object expansions

M,a S M′,a′

M

OO

S M′

OO

Definition
A similarity relation S commutes with object expansions iff
ifM S M′,
then for all a ∈ |M|, there is an a′ ∈ |M′| s.t. M,a S M′,a′.
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Ordering on similarity relations

Definition
S ≤ S′ iff S′ ⊆ S.

Ex : Universal relation ≤ Isop ≤ Iso.
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Characterization of Isop

Fact
Isop is the smallest similarity relation S such that

S preserves atoms
S commutes with objects expansions.
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Back to the logic

How does this connect with properties of first-order languages ?

Atoms preservation says that similar structures are elementary
equivalent on atomic sentences and boolean compounds
thereof.

What does commutation says ?

It says that existential quantification is in the language.



The Gothenburg project Invariance for FO operations Higher up and back Dynamic Logic Conclusion

Back to the logic

How does this connect with properties of first-order languages ?

Atoms preservation says that similar structures are elementary
equivalent on atomic sentences and boolean compounds
thereof.

What does commutation says ?

It says that existential quantification is in the language.



The Gothenburg project Invariance for FO operations Higher up and back Dynamic Logic Conclusion

Back to the logic

How does this connect with properties of first-order languages ?

Atoms preservation says that similar structures are elementary
equivalent on atomic sentences and boolean compounds
thereof.

What does commutation says ?

It says that existential quantification is in the language.



The Gothenburg project Invariance for FO operations Higher up and back Dynamic Logic Conclusion

Back to the logic

How does this connect with properties of first-order languages ?

Atoms preservation says that similar structures are elementary
equivalent on atomic sentences and boolean compounds
thereof.

What does commutation says ?

It says that existential quantification is in the language.



The Gothenburg project Invariance for FO operations Higher up and back Dynamic Logic Conclusion

Object projection

Definition
Let Q be a class of structures of the formM,a.
The object projection of Q, ∃(Q), is defined byM∈ ∃(Q) iff
there is a b ∈ |M| such thatM,b ∈ Q.

This is what you can do with ∃.

∃ is logical means ∃ does not break invariance:

Definition
Object projection preserves S-invariance iff
whenever Q is S-invariant, so is ∃(Q).
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Equivalence result

Theorem
S commutes with object expansions

iff
object projection preserves S-invariance.

Corollary
Isop is the smallest similarity relation S such that

S preserves atoms
object projection preserves S-invariance.

=⇒ Isop is the good match for a language based on ∃ .
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A general setting

A a class of objects
E a relation on A
S an equivalence relation on A
E−1 : ℘(A)→ ℘(A) an inverse for E
defined for X ⊆ A by E−1 = {a ∈ A / ∃b ∈ X with aEb}

Definition
A subclass X is S-invariant iff
if a ∈ X and aSb then b ∈ X .
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Commutation

Definition
S commutes with E iff,
for all a, a′, b ∈ A, if aSb and aEa′,
then there is a b′ such that a′Sb′ and bEb′.

a′
S

b′

a

E

OO

S
b

E

OO
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Preservation of Invariance

Definition

E−1 preserves S-invariance iff for any subclass X of A, if X is
S-invariant, then E−1(X ) is S-invariant.

X

��

S-invariant

��
E−1(X ) S-invariant
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Commutation lemma

Lemma

S commutes with E iff E−1 preserves S-invariance.

⇒

a ∈ E−1(X )
S b

∈ E−1(X )
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Commutation lemma

Proof

S commutes with E, ? E−1 preserves S-invariance ?

⇒

a ∈ E−1(X )
S b

∈ E−1(X )
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Commutation lemma

Proof

? S commutes with E ?, E−1 preserves S-invariance

⇐

a′ ∈ [a′]S

a

ZZ

E
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S b

∈ E−1([a′]S)
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Using the lemma

Take

A the class of FO structures
E expanding with one object
⇒ E−1 is object projection.

As an instance of the commutation lemma, we get:

Theorem
S commutes with object expansions

iff
object projection preserves S-invariance.



The Gothenburg project Invariance for FO operations Higher up and back Dynamic Logic Conclusion

The modal case

M, v S M′, v ′

M,w

R

OO

S M′,w ′
R

OO

Definition
A similarity relation S
commutes with guarded object expansion iff,
ifM,w S M′,w ′, then for all v ∈ |M| with wRv ,
there is a v ′ ∈ |M′| such thatM, v S M′, v ′ and w ′R′v ′.
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Characterization of bisimulations

BiS short for ‘being bisimilar’

Fact
BiS is the smallest similarity relation S such that

S preserves atoms
S commutes with guarded object expansion.
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Guarded object projection

Definition
Let Q be a class of pointed Kripke structures.
The guarded object projection of Q, 3(Q), is defined by
M,w ∈ ∃(Q) iff
there is a v ∈ |M| such thatM, v ∈ Q and wRv .

This is what you can do with 3.

3 is logical means 3 does not break invariance:

Definition
Guarded object projection preserves S-invariance iff
whenever Q is S-invariant, so is 3(Q).
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Equivalence result

A the class of pointed Kripke structures
E moving to an accessible world
⇒ E−1 is guarded object projection.

As an instance of the commutation lemma, we get:

Theorem
S commutes with guarded object expansion

iff
guarded object projection preserves S-invariance.

Corollary
Bis is the smallest similarity relation S such that

S preserves atoms
guarded object projection preserves S-invariance.

=⇒ Bis is the good match for a language based on ∃ .



The Gothenburg project Invariance for FO operations Higher up and back Dynamic Logic Conclusion

Equivalence result

A the class of pointed Kripke structures
E moving to an accessible world
⇒ E−1 is guarded object projection.

As an instance of the commutation lemma, we get:

Theorem
S commutes with guarded object expansion

iff
guarded object projection preserves S-invariance.

Corollary
Bis is the smallest similarity relation S such that

S preserves atoms
guarded object projection preserves S-invariance.

=⇒ Bis is the good match for a language based on ∃ .



The Gothenburg project Invariance for FO operations Higher up and back Dynamic Logic Conclusion

Equivalence result

A the class of pointed Kripke structures
E moving to an accessible world
⇒ E−1 is guarded object projection.

As an instance of the commutation lemma, we get:

Theorem
S commutes with guarded object expansion

iff
guarded object projection preserves S-invariance.

Corollary
Bis is the smallest similarity relation S such that

S preserves atoms
guarded object projection preserves S-invariance.

=⇒ Bis is the good match for a language based on ∃ .



The Gothenburg project Invariance for FO operations Higher up and back Dynamic Logic Conclusion

Dynamic logic

The language of Propositional Dynamic Logic (PDL)

Programs
π := R | π;π | π ∪ π | π∗ | ?φ

Formulas
φ := p | ¬φ | φ ∧ φ | 〈π〉φ

ML formulas can only define set of worlds
PDL programs can also define relations
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What is a PDL operation?

Look at what ∪ does on a fixed set of worlds W :
|| ∪ ||W : ℘(W 2)× ℘(W 2)→ ℘(W 2)

R × R′ 7→ R
⋃

R

In general: a dynamic operator O is interpreted by a function O
from Kripke models to relations over these models.

So let −→χ be a sequence of programs and formulas matching
the syntactic type of O,

The semantic clause for O is given by:

||O−→χ ||M = O(|M|, ||−→χ ||M)
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Safety

For any bisimulation Z :

M, v Z M′, v ′

M,w

O(M)

OO

Z M′,w ′
O(M′)

OO

Definition
A dynamic operation O is safe for bisimulation iff
whenever Z is a bisimulation betweenM,w andM′,w ′,
and wO(M)v for some v ∈ |M|,
then there is a v ′ ∈ |M′| such that vZv ′ and w ′O(M′)v ′.



The Gothenburg project Invariance for FO operations Higher up and back Dynamic Logic Conclusion

Safety and PDL

Safety is the key element in the proof that PDL formulas
are invariant under bisimulation.

Enriching PDL programs with new safe operations yields
extensions which are still invariant under bisimulation.

PDL without Kleene star is the safe fragment of FOL.

However, safety is not our standard commutation property.
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Commutation with Bis

M, v BiS M′, v ′

M,w

O(||−→χ ||M)

OO

BiS M′,w ′
O(||−→χ ||M′ )

OO

Definition
A dynamic operation O commutes with BiS iff
wheneverM+ ||−→χ ||M,w andM′ + ||−→χ ||M′ ,w ′, and
wO(||−→χ ||M)v for some v ∈ |M|,
then there is a v ′ ∈ |M′| such that vZv ′ and w ′O(||−→χ ||M′)v ′.
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The lemma again

As before, we can get:

Theorem
BiS commutes with O iff O preserves invariance under BiS.

Preserving invariance under BiS is precisely what we need if
we want to stay within the realm of modal logic.
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Safety and commutation

How does this relate to safety?

Theorem

BiS commutes with O iff O is safe for bisimulation.

Safety is indeed the natural constraint on dynamic operations
qua modal.
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Safety and commutation

How does this relate to safety?

Theorem

BiS commutes with O iff O is safe for bisimulation.

Safety is indeed the natural constraint on dynamic operations
qua modal.
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Conclusion

a general perspective on invariance,
‘commutation lemma’
easy but nice result for Isop and BiS
nice and not so easy result for safety

stemming from some sort or ‘reverse’ meta-logic,
Duality btw syntax and semantics
Take S as a parameter

to be developed...
Apply to other logical systems
Generalize to games via game logic
Connect to ‘intrinsic’ regularities
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