Imperfect-Information Games in Computing

Dietmar Berwanger

RWTH Aachen 🕨 LSV, CNRS & ENS Cachan, Paris

1st LINT Workshop, Amsterdam 2008

DIETMAR BERWANGER (LSV, PARIS)

Normal vs extensive form

▶ Normal-form game for *n* players:

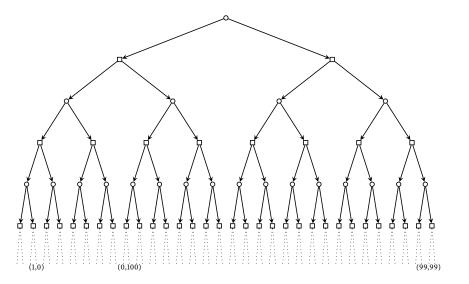
$$\Gamma = \left((S^i)_{i < n}, (u^i)_{i < n} \right)$$

Each player picks a strategy $s^i \in S^i$:

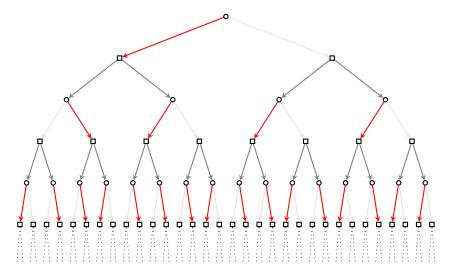
outcome
$$s = (s^0, s^1, \dots, s^{n-1})$$
 \blacktriangleright payoff $u^i(s)$.

• Extensive form: **structure** in strategies.

Perfect information: transition structure



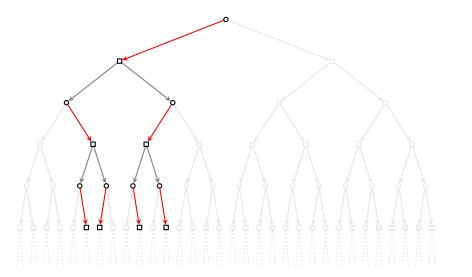
Strategy with perfect information



DIETMAR BERWANGER (LSV, PARIS)

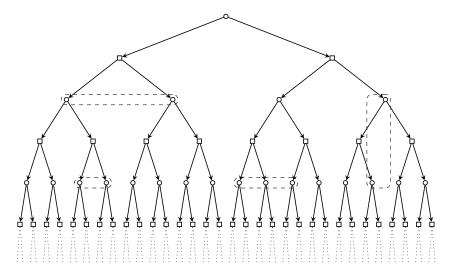
IMPERFECT INFORMATION

Pruning

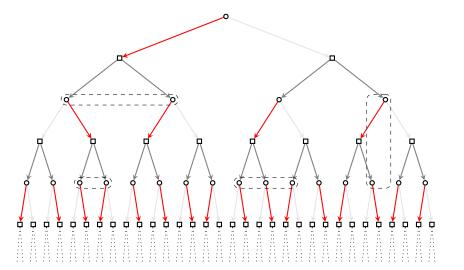


DIETMAR BERWANGER (LSV, PARIS)

Imperfect information: + information structure



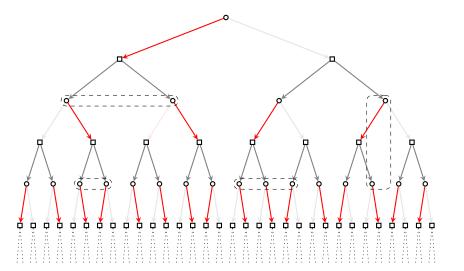
Strategy with imperfect information



DIETMAR BERWANGER (LSV, PARIS)

IMPERFECT INFORMATION

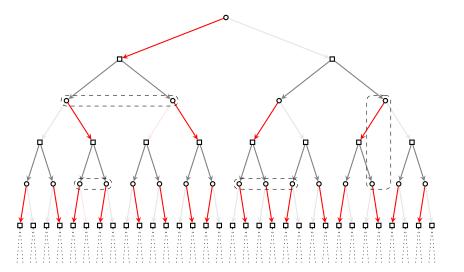
Strategy with imperfect information **•**



DIETMAR BERWANGER (LSV, PARIS)

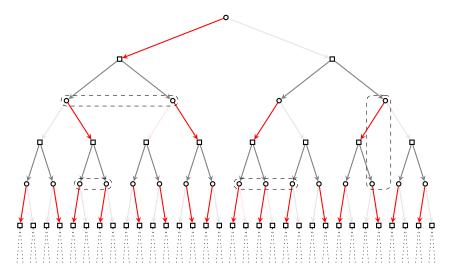
IMPERFECT INFORMATION

Strategy with imperfect information ►►



DIETMAR BERWANGER (LSV, PARIS)

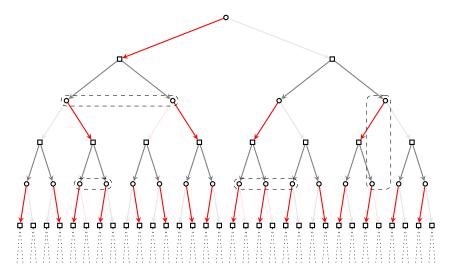
Imperfect-information strategy **>>>**



DIETMAR BERWANGER (LSV, PARIS)

IMPERFECT INFORMATION

Strategy with imperfect information **>>>**



DIETMAR BERWANGER (LSV, PARIS)

IMPERFECT INFORMATION

Characterisation

Imperfect information:

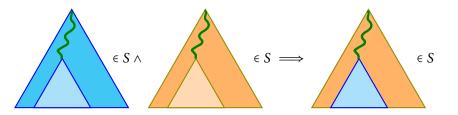
strategy: $(information set) \mapsto action$

Perfect information:

all information sets are singletons

Another characterisation

The perfect-information property of a strategy set:



Imperfect information is about available sets of strategies

Games in Computation

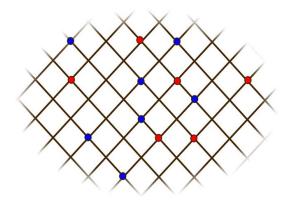
Wishlist:

- model plays of infinite duration
- capture uncertainty about
 - order of moves
 - initial state
 - implementation details
 - + compositionalilty and tractable complexity

Why and how

- Automata theory
 - nondeterminism
 - synchronisation/homing sequences
- Controller synthesis
 - Plant, supervisor, observable/controllable event
 - Safety conditions
- Distributed computation
 - private/public variables, alternation, scheduling
 - Acceptance: reachability conditions

Verification: reactive dynamics



System: actions \uparrow , \downarrow • • • • • Environment: observations •, •, •

DIETMAR BERWANGER (LSV, PARIS)

IMPERFECT INFORMATION

Winning conditions

- Reachability: observe a good event
- Safety: never observe a bad one
- Büchi: something good over and over again
- ▶ Parity: observation priorities least one seen infinitely often is even
 - nested Reachability & Safety
- ω -regular: finite-state monitor is satisfied

Transform a reactive model into a game.

Parity games with imperfect information

Parity games are **generic** for ω -regular specifications.

```
Strategy: (Observations)<sup>*</sup> \rightarrow Actions.
```

Questions:

- **decide** whether the system can ensure a win
- **construct** a winning strategy

Assumptions here:

• strictly turn based • observable winning condition • sur win

Classical solution [Reif84]

Powerset construction:

- keeps track of what the system can distinguish from memory
- yields game with perfect information (over the powerset)

Winning positions and strategy can be transferred back and forth.

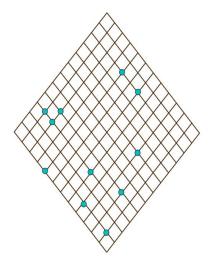
Corollary: Memoryless determinacy / perfect-information

Finite-memory determinacy / imperfect information

Complexity

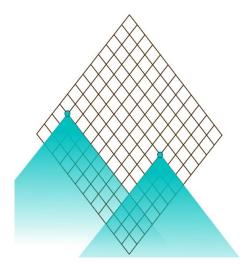
- Problem is **EXPTIME**-hard
- Exponential **memory** might be needed.
- However, the information-set construction
 - uses exponential space
 - has no on-the-fly solution
 - is independent of **objective**

Can we do better?



• Interesting sets

have a particular structure



- Interesting sets have a particular structure
 - downwards-closed

- Interesting sets have a particular structure
 - downwards-closed
- Interesting operations

preserve it:

• CPre, \cup , \cap , iteration

CPre(X) = {*Y* : System can force the play into *X*}.

- Interesting sets have a particular structure
 - downwards-closed
- Interesting operations

preserve it:

• CPre, \cup , \cap , iteration

CPre(X) = {*Y* : System can force the play into *X*}.

Algorithm with antichains / imperfect information

[CDHR07]

Evaluates characterisation of winning positions

as a μ -calculus formula

over the lattice of antichains

• Strategy **construction** more tricky, but works.

Three players = Trouble

Two players, with common winning condition $W \subseteq V^*$ (all finite!) the third one is indifferent.

Q: Are there strategies (s^1, s^2) such, that for all s^3 , the outcome is in *W*.

Folk argument. This problem is undecidable.

Reduction from Halting Problem

Imperfect information + the third player can enforce coordination on

the *n*-th configuration of a Turing Machine $M = (Q, \Sigma, q_0, \delta)$

in round *n*.

Ingredients:

- Actions: $\Sigma \cup Q \cup \{\triangleright,\blacksquare\}^2$,
- Observations: {►, ■}
- Mask: Player *i* sees \blacksquare iff in component *i*; otherwise \triangleright ;

Idea

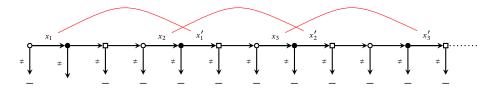
The actions of the two protagonists can produce descriptions (x, x') of machine configurations.

The transition structure can enforce that either

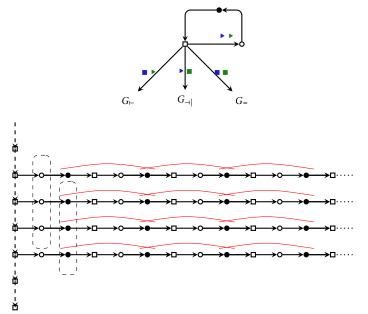
$$(G_{\vdash}) \quad x \vdash x',$$

$$(G_{\dashv}) \quad x \dashv x', \text{ or }$$

$$(G_{\dashv}) \quad x = x'$$



Construction



Undecidability

▶ any distributed winning strategy (s^1, s^2) must produce the *n*-th configuration of *M* after observing ▶^{*n*}■

- defined only, if machine never halts.

Conclusion The distributed control problem is in general undecidable.

Outlook

- Interactive vs Distributed
 - player aggregation
 - inductive solution concepts
- Specific kinds of imperfect information
 - uncertainty about initial state
 - concurrency
- Abstracion, interface theories