Inclusion and exclusion atoms in team semantics

Pietro Galliani

Institute for Logic, Language and Computation Universiteit van Amsterdam

Finite Model Theory Seminar

イロト イポト イヨト イヨト

Outline

Independence Atoms Inclusion and Exclusion Atoms

Outline

Non-Functional Dependencies Independence Atoms Inclusion and Exclusion Atoms Strict and Lax Operators Exclusion Logic Inclusion/Exclusion Logic

▲ □ ▶ ▲ 三 ▶

Independence Atoms Inclusion and Exclusion Atoms

Independence Logic

Independence Atoms (Grädel, Väänänen)

 $M \models_X = \vec{t}_2 \perp_{\vec{t}_1} \vec{t}_3$ if and only if, for all $s, s' \in X$ such that $\vec{t}_1 \langle s \rangle = \vec{t}_1 \langle s' \rangle$ there exists a $s'' \in X$ such that

$$ec{t}_1 \langle m{s}''
angle ec{t}_2 \langle m{s}''
angle = ec{t}_1 \langle m{s}
angle ec{t}_2 \langle m{s}
angle, \ ec{t}_1 \langle m{s}''
angle ec{t}_3 \langle m{s}''
angle = ec{t}_1 \langle m{s}'
angle ec{t}_3 \langle m{s}'
angle.$$

Independence Logic \mathcal{I}

 \mathcal{I} = First Order Logic + Independence Atoms

イロト 不得 とくほと くほとう

Independence Atoms Inclusion and Exclusion Atoms

Properties of Independence Logic

Properties of Independence Logic (Grädel, Väänänen)

- Contains Dependence Logic;
- As expressive as Dependence Logic over sentences;
- More expressive on open formulas (no downwards closure).

Open Problem

What classes of teams are definable by open formulas in Independence Logic \mathcal{I} ?

This talk will answer this.

ヘロア 人間 アメヨア 人口 ア

Independence Atoms Inclusion and Exclusion Atoms

Properties of Independence Logic

Properties of Independence Logic (Grädel, Väänänen)

- Contains Dependence Logic;
- As expressive as Dependence Logic over sentences;
- More expressive on open formulas (no downwards closure).

Open Problem

What classes of teams are definable by open formulas in Independence Logic \mathcal{I} ?

This talk will answer this.

くロト (過) (目) (日)

Independence Atoms Inclusion and Exclusion Atoms

Outline

Non-Functional Dependencies Independence Atoms Inclusion and Exclusion Atoms Strict and Lax Operators Exclusion Logic

→ E > < E</p>

< 🗇 🕨

Independence Atoms Inclusion and Exclusion Atoms

Inclusion Dependencies

Definition

R relation, \vec{x}, \vec{y} tuples of attributes, $|\vec{x}| = |\vec{y}|$. Then $R \models \vec{x} \subseteq \vec{y}$ if and only if for all $r \in R$ there exists an $r' \in R$ such that

$$r(\vec{x})=r'(\vec{y}).$$

- Fairly well studied;
- Sound and complete axiomatization.

イロト イポト イヨト イヨト

Independence Atoms Inclusion and Exclusion Atoms

Example of Inclusion Dependency

Professor	University	Per	rson	Date of Birth
Hilbert	Königsberg	Hill	bert	23/01/1862
Hilbert	Göttingen	Ga	luss	30/04/1777
Gauss	Göttingen	Torv	/alds	28/12/1969

- $R \models$ Professor \subseteq Person;
- $R \not\models$ Person \subseteq Professor.

ヘロト 人間 ト ヘヨト ヘヨト

э

Independence Atoms Inclusion and Exclusion Atoms

Example of Inclusion Dependency

Professor	University	Person	Date of Birth
Hilbert	Königsberg	Hilbert	23/01/1862
Hilbert	Göttingen	Gauss	30/04/1777
Gauss	Göttingen	Torvalds	28/12/1969

- $R \models$ Professor \subseteq Person;
- $R \not\models$ Person \subseteq Professor.

くロト (過) (目) (日)

Independence Atoms Inclusion and Exclusion Atoms

Exclusion Dependencies

Definition

R relation, \vec{x}, \vec{y} tuples of attributes, $|\vec{x}| = |\vec{y}|$. Then $R \models \vec{x} \mid \vec{y}$ if and only if, for all $r, r' \in R$,

 $r(\vec{x}) \neq r'(\vec{y}).$

- Often, not used explicity;
- Very commonly used implicitly, for typing of attributes;
- Sound and complete axiomatization together with inclusion dependencies.

くロト (過) (目) (日)

Independence Atoms Inclusion and Exclusion Atoms

Example of Exclusion Dependency

Professor	University	Person	Date of Birth
Hilbert	Königsberg	Hilbert	23/01/1862
Hilbert	Göttingen	Gauss	30/04/1777
Gauss	Göttingen	Torvalds	28/12/1969

- $R \models$ University | Date of Birth;
- $R \not\models$ Professor | Person.

ヘロト 人間 ト ヘヨト ヘヨト

Independence Atoms Inclusion and Exclusion Atoms

Example of Exclusion Dependency

Professor	University	Person	Date of Birth
Hilbert	Königsberg	Hilbert	23/01/1862
Hilbert	Göttingen	Gauss	30/04/1777
Gauss	Göttingen	Torvalds	28/12/1969

- $R \models$ University | Date of Birth;
- $R \not\models$ Professor | Person.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Independence Atoms Inclusion and Exclusion Atoms

Inclusion and Exclusion Logic

Inclusion Atoms

 $M \models_X \vec{t}_1 \subseteq \vec{t}_2$ if and only if $\{(\vec{t}_1 \langle s \rangle, \vec{t}_2 \langle s \rangle) : s \in X\} \models \vec{t}_1 \subseteq \vec{t}_2;$

Exclusion Atoms

 $\textit{\textit{M}} \models_{\textit{X}} \neg (\vec{t}_1 \mid \vec{t}_2) \text{ if and only if } \{ (\vec{t}_1 \langle \textit{s} \rangle, \vec{t}_2 \langle \textit{s} \rangle) : \textit{s} \in \textit{X} \} \models \vec{t}_1 \mid \vec{t}_2.$

Inclusion/Exclusion Logic

 $I/E \text{ Logic} = FO_{Team}(\subseteq, |).$ Inclusion Logic = only inclusion atoms, Exclusion Logic = only exclusion atoms.

くロト (過) (目) (日)

Independence Atoms Inclusion and Exclusion Atoms

Direct Definitions for Tuple Existence Literals Semantics

Inclusion Atoms

 $M \models_X \vec{t}_1 \subseteq \vec{t}_2$ if and only if for all $s \in X$ there exists a $s' \in X$ such that

$$\vec{t}_1 \langle \boldsymbol{s} \rangle = \vec{t}_2 \langle \boldsymbol{s}' \rangle;$$

Exclusion Atoms

 $M \models_X \vec{t}_1 \mid \vec{t}_2$ if and only if, for all $s, s' \in X$,

$$\vec{t}_1 \langle \boldsymbol{s} \rangle \neq \vec{t}_2 \langle \boldsymbol{s}' \rangle.$$

ヘロト 人間 ト ヘヨト ヘヨト

Strict and Lax Operators Game Theoretic Semantics

Outline

< 🗇 🕨

- < ∃ >

Strict and Lax Operators Game Theoretic Semantics

Two Semantics for Disjuction

A lax semantics

$$M \models_X \psi_1 \vee^L \psi_2 \Leftrightarrow \exists Y, Z \text{ s.t. } X = Y \cup Z, M \models_Y \psi_1 \text{ and } M \models_Z \psi_2;$$

A strict semantics

$$M \models_X \psi_1 \lor^S \psi_2 \Leftrightarrow \exists Y, Z \text{ s.t. } X = Y \cup Z, X \cap Y = \emptyset,$$
$$M \models_Y \psi_1 \text{ and } M \models_Z \psi_2;$$

 \mathcal{D} is usually given with \vee^{L} (or even: $X \subseteq Y \cup Z!$).

イロト イポト イヨト イヨト

Strict and Lax Operators Game Theoretic Semantics

Two Semantics for Disjuction

A lax semantics

$$M \models_X \psi_1 \vee^L \psi_2 \Leftrightarrow \exists Y, Z \text{ s.t. } X = Y \cup Z, M \models_Y \psi_1 \text{ and } M \models_Z \psi_2;$$

A strict semantics

$$M \models_X \psi_1 \lor^S \psi_2 \Leftrightarrow \exists Y, Z \text{ s.t. } X = Y \cup Z, X \cap Y = \emptyset,$$
$$M \models_Y \psi_1 \text{ and } M \models_Z \psi_2;$$

 \mathcal{D} is usually given with \vee^{L} (or even: $X \subseteq Y \cup Z!$).

イロト イポト イヨト イヨト

Strict and Lax Operators Game Theoretic Semantics

In Dependence Logic, Lax = Strict

No difference for \mathcal{D} (or for \mathcal{T}^-)

If $\psi_1, \psi_2 \in \mathcal{D}$, $M \models_X \psi_1 \vee^S \psi_2$ iff $M \models_X \psi_1 \vee^L \psi_2$.

Proof.

• If
$$M \models_X \psi_1 \vee^S \psi_2$$
, $M \models_X \psi_1 \vee^L \psi_2$;

• If $M \models_X \psi_1 \vee^L \psi_2$ then $X = X_1 \cup X_2$, $M \models_{X_1} \psi_1$, $M \models_{X_2} \psi_2$. Take $Y = X_2 \setminus X_1$: by downwards closure, $M \models_Y \psi_2$, $X_1 \cup Y = X$, so $M \models_X \psi_1 \vee^S \psi_2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Strict and Lax Operators Game Theoretic Semantics

In Inclusion Logic, Lax \neq Strict

Different for Inclusion Logic!

There exist *M*, *X* and $\psi_1, \psi_2 \in FO(\subseteq)$ such that

$$M \models_X \psi_1 \vee^L \psi_2$$
 but $M \not\models_X \psi_1 \vee^S \psi_2$.

Proof.

Let
$$X = \frac{\begin{vmatrix} x & y & z \\ \hline s_0 & 0 & 1 & 2 \\ \hline s_1 & 1 & 0 & 3 \\ \hline s_2 & 4 & 3 & 0 \end{vmatrix}$$
 and Dom(M) = {0...4}. Then

$$M \models_X (x \subseteq y) \lor^L (y \subseteq z), M \not\models_X (x \subseteq y) \lor^S (y \subseteq z).$$

Strict and Lax Operators Game Theoretic Semantics

In Inclusion Logic, Lax \neq Strict

Proof (continued).

$$X = \begin{array}{c|cccc} & x & y & z \\ \hline s_0 & 0 & 1 & 2 \\ s_1 & 1 & 0 & 3 \\ s_2 & 4 & 3 & 0 \end{array}$$

•
$$M \models_X (x \subseteq y) \lor^L (y \subseteq z)$$
:
Let $Y = \{s_0, s_1\}, Z = \{s_1, s_2\}$.
 $M \models_Y x \subseteq y, M \models_Z y \subseteq Z$.

イロト イポト イヨト イヨト

Strict and Lax Operators Game Theoretic Semantics

In Inclusion Logic, Lax \neq Strict

Proof (continued).

$$X = \frac{\begin{vmatrix} x & y & z \\ s_0 & 0 & 1 & 2 \\ s_1 & 1 & 0 & 3 \\ s_2 & 4 & 3 & 0 \end{vmatrix}$$

•
$$M \models_X (x \subseteq y) \lor^L (y \subseteq z)$$
:
Let $Y = \{s_0, s_1\}, Z = \{s_1, s_2\}$.
 $M \models_Y x \subseteq y, M \models_Z y \subseteq Z$.

イロト イポト イヨト イヨト

Strict and Lax Operators Game Theoretic Semantics

In Inclusion Logic, Lax \neq Strict

Proof (continued).

$$X = \frac{\begin{vmatrix} x & y & z \\ s_0 & 0 & 1 & 2 \\ s_1 & 1 & 0 & 3 \\ s_2 & 4 & 3 & 0 \end{vmatrix}$$

•
$$M \models_X (x \subseteq y) \lor^L (y \subseteq z)$$
:
Let $Y = \{s_0, s_1\}, Z = \{s_1, s_2\}$.
 $M \models_Y x \subseteq y, M \models_Z y \subseteq z$.

ヘロト ヘワト ヘビト ヘビト

Strict and Lax Operators Game Theoretic Semantics

In Inclusion Logic, Lax \neq Strict

Proof (finished).

$$X = \frac{\begin{vmatrix} x & y & z \end{vmatrix}}{\begin{vmatrix} s_0 & 0 & 1 & 2 \\ s_1 & 1 & 0 & 3 \\ s_2 & 4 & 3 & 0 \end{vmatrix}}$$

•
$$M \not\models_X (x \subseteq y) \lor^L (y \subseteq z)$$
:
Let $X = Y \cup Z$, $M \models_Y x \subseteq y$, $M \models_Z y \subseteq z$.
 $s_2 \notin Y$, so $s_2 \in Z$, so $s_1 \in Z$;
 $s_0 \notin Z$, so $s_0 \in Y$, so $s_1 \in Y$.
So $Y \cap Z \neq \emptyset$.

Strict and Lax Operators Game Theoretic Semantics

In Inclusion Logic, Lax \neq Strict

Proof (finished).

$$X = \frac{\begin{vmatrix} x & y & z \end{vmatrix}}{\begin{vmatrix} s_0 & 0 & 1 & 2 \\ s_1 & 1 & 0 & 3 \\ s_2 & 4 & 3 & 0 \end{vmatrix}}$$

•
$$M \not\models_X (x \subseteq y) \lor^L (y \subseteq z)$$
:
Let $X = Y \cup Z$, $M \models_Y x \subseteq y$, $M \models_Z y \subseteq z$.
 $s_2 \notin Y$, so $s_2 \in Z$, so $s_1 \in Z$;
 $s_0 \notin Z$, so $s_0 \in Y$, so $s_1 \in Y$.
So $Y \cap Z \neq \emptyset$.

Strict and Lax Operators Game Theoretic Semantics

In Inclusion Logic, Lax \neq Strict

Proof (finished).

$$X = \frac{\begin{vmatrix} x & y & z \\ s_0 & 0 & 1 & 2 \\ s_1 & 1 & 0 & 3 \\ s_2 & 4 & 3 & 0 \end{vmatrix}$$

•
$$M \not\models_X (x \subseteq y) \lor^L (y \subseteq z)$$
:
Let $X = Y \cup Z$, $M \models_Y x \subseteq y$, $M \models_Z y \subseteq z$.
 $s_2 \notin Y$, so $s_2 \in Z$, so $s_1 \in Z$;
 $s_0 \notin Z$, so $s_0 \in Y$, so $s_1 \in Y$.
So $Y \cap Z \neq \emptyset$.

Strict and Lax Operators Game Theoretic Semantics

In Inclusion Logic, Lax \neq Strict

Proof (finished).

$$X = \frac{\begin{vmatrix} x & y & z \\ \hline s_0 & 0 & 1 & 2 \\ \hline s_1 & 1 & 0 & 3 \\ \hline s_2 & 4 & 3 & 0 \end{vmatrix}$$

•
$$M \not\models_X (x \subseteq y) \lor^L (y \subseteq z)$$
:
Let $X = Y \cup Z$, $M \models_Y x \subseteq y$, $M \models_Z y \subseteq z$.
 $s_2 \notin Y$, so $s_2 \in Z$, so $s_1 \in Z$;
 $s_0 \notin Z$, so $s_0 \in Y$, so $s_1 \in Y$.
So $Y \cap Z \neq \emptyset$.

Strict and Lax Operators Game Theoretic Semantics

In Inclusion Logic, Lax \neq Strict

Proof (finished).

$$X = \frac{\begin{vmatrix} x & y & z \\ s_0 & 0 & 1 & 2 \\ s_1 & 1 & 0 & 3 \\ s_2 & 4 & 3 & 0 \end{vmatrix}$$

•
$$M \not\models_X (x \subseteq y) \lor^L (y \subseteq z)$$
:
Let $X = Y \cup Z$, $M \models_Y x \subseteq y$, $M \models_Z y \subseteq z$.
 $s_2 \notin Y$, so $s_2 \in Z$, so $s_1 \in Z$;
 $s_0 \notin Z$, so $s_0 \in Y$, so $s_1 \in Y$.
So $Y \cap Z \neq \emptyset$.

Strict and Lax Operators Game Theoretic Semantics

From Strict to Lax Disjunction

From strict to lax

If z not in ψ_1, ψ_2 ,

$$\boldsymbol{M} \models_{\boldsymbol{X}} \psi_1 \vee^{\boldsymbol{L}} \psi_2 \Leftrightarrow \boldsymbol{M} \models_{\boldsymbol{X}} \forall \boldsymbol{z}(\psi_1 \vee^{\boldsymbol{S}} \psi_2).$$

Proof.

Let $0 \in \text{Dom}(M)$, assume $|\text{Dom}(M)| \ge 2$. Suppose $X = Y \cup Z$, $M \models_Y \psi_1$, $M \models_Z \psi_2$, and let $W = Y \cap Z$. Now define

$$Y' = (Y \setminus W)[M/z] \cup (W[0/z]), Z' = Z[M/z] \setminus Y'.$$

Then $Y' \cap Z' = \emptyset$, $Y' \cup Z' = X[M/z]$, $M \models_{Y'} \psi_1$, $M \models_{Z'} \psi_2$.

ヘロト 人間 とく ヨ とく ヨン

Strict and Lax Operators Game Theoretic Semantics

Trivial Quantification and \vee^{S}

Corollary: \vee^{S} is not invariant under trivial quantifications!

There exist formulas ψ_1 and $\psi_2 \in FO(\subseteq)$, such that *z* does not occur in ψ_1 , ψ_2 but

$$\psi_1 \vee^{S} \psi_2 \not\equiv \forall z(\psi_1 \vee^{S} \psi_2).$$

ヘロン 人間 とくほ とくほ とう

Strict and Lax Operators Game Theoretic Semantics

Trivial Quantification and \vee^L

\vee^{L} invariant under trivial quantification

For all ψ_1 and ψ_2 in $FO(\subseteq, |)$ and all $z \notin \psi_1, \psi_2$,

$$\psi_1 \vee^S \psi_2 \not\equiv \forall z (\psi_1 \vee^S \psi_2).$$

Proof.

Obvious from definition: if $X = Y \cup Z$, $M \models_Y \psi_1$, $M \models_Y \psi_2$, then $X[M/z] = Y[M/z] \cup Z[M/z]$, $M \models_{Y[M/z]} \psi_1$, $M \models_{Z[M/z]} \psi_2$.

This strongly suggests that we want \vee^L in our semantics.

・ロト ・ 理 ト ・ ヨ ト ・

Strict and Lax Operators Game Theoretic Semantics

Trivial Quantification and \vee^L

\vee^{L} invariant under trivial quantification

For all ψ_1 and ψ_2 in $FO(\subseteq, |)$ and all $z \notin \psi_1, \psi_2$,

$$\psi_1 \vee^{\mathcal{S}} \psi_2 \not\equiv \forall z (\psi_1 \vee^{\mathcal{S}} \psi_2).$$

Proof.

Obvious from definition: if $X = Y \cup Z$, $M \models_Y \psi_1$, $M \models_Y \psi_2$, then $X[M/z] = Y[M/z] \cup Z[M/z]$, $M \models_{Y[M/z]} \psi_1$, $M \models_{Z[M/z]} \psi_2$. \Box

This strongly suggests that we want \vee^{L} in our semantics.

Strict and Lax Operators Game Theoretic Semantics

Two Semantics for Existentials

A strict semantics

$$M \models_X \exists^S x \psi \Leftrightarrow \exists F : X \to M \text{ s.t. } M \models_{X[F/x]} \psi,$$

for $X[F/x] = \{s[F(s)/x] : s \in X\};$

A lax semantics

 $M \models_X \exists^L x \psi \Leftrightarrow \exists F : H \to \mathcal{P}(M) \setminus \{\emptyset\} \text{ s.t. } M \models_{X[F/x]} \psi,$ for $X[H/x] = \{s[m/x] : s \in X, m \in H(s)\}.$

 \mathcal{D} is usually given with \exists^{S} .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Strict and Lax Operators Game Theoretic Semantics

Two Semantics for Existentials

A strict semantics

$$M \models_X \exists^S x \psi \Leftrightarrow \exists F : X \to M \text{ s.t. } M \models_{X[F/x]} \psi,$$

for $X[F/x] = \{s[F(s)/x] : s \in X\};$

A lax semantics

$$M \models_X \exists^L x \psi \Leftrightarrow \exists F : H \to \mathcal{P}(M) \setminus \{\emptyset\} \text{ s.t. } M \models_{X[F/x]} \psi,$$

for $X[H/x] = \{s[m/x] : s \in X, m \in H(s)\}.$

 \mathcal{D} is usually given with \exists^{S} .

・ロト ・ 理 ト ・ ヨ ト ・

Strict and Lax Operators Game Theoretic Semantics

In Dependence Logic, Strict = Lax

No difference for $\ensuremath{\mathcal{D}}$

If $\psi \in \mathcal{D}$, $M \models_X \exists^S x \psi$ iff $M \models_X \exists^L x \psi$ (using AC).

Proof.

• If
$$M \models_X \exists^S x \psi$$
, $M \models_X \exists^L x \psi$;

• If $M \models_X \exists^L x \psi$, $M \models_{X[H/x]} \psi$ for some $H : X \to \mathcal{P}(M) \setminus \{\emptyset\}$. Let $F : X \to M$ be such that $F(s) \in H(s)$ for all $s \in X$: then $X[F/x] \subseteq X[H/x]$, so by downward closure $M \models_{X[F/x]} \psi$. Then $M \models_X \exists^S x \psi$, as required.

イロト 不得 とくほ とくほとう

1

Strict and Lax Operators Game Theoretic Semantics

In Inclusion Logic, Strict \neq Lax

Different for Inclusion Logic!

There exist *M*, *X* and $\psi \in FO(\subseteq)$ such that

$$M \models_X \exists^L x \psi$$
 but $M \not\models_X \exists^S \psi$.

Proof.

Let Dom(
$$M$$
) = {0, 1, 2}, P^M = {(0, 2), (1, 0), (1, 1)}, and
 $X = \{s_0, s_1\}$ for $s_0 = (y : 0), s_1 = (y : 1)$.
Then
 $M \models_X \exists^L x (y \subseteq x \land Pyx)$ but $M \not\models_X \exists^S x (y \subseteq x \land Pyx)$.

イロト イポト イヨト イヨト
Strict and Lax Operators Game Theoretic Semantics

In Inclusion Logic, Strict \neq Lax

Proof (continued).

Dom
$$(M) = \{0, 1, 2\}, P^M = \{(0, 2), (1, 0), (1, 1)\}, \text{ and } X = \{s_0, s_1\} \text{ for } s_0 = (y : 0), s_1 = (y : 1).$$

• $M \models_X \exists^L x (y \subseteq x \land Pyx)$: let $H : X \to \mathcal{P}(M)$ be such that $H(s_0) = \{2\}, H(s_1) = \{0, 1\}$. Then

$$X[H/x] = \frac{\begin{vmatrix} y & x \\ s'_0 & 0 & 2 \\ s'_1 & 1 & 0 \\ s'_2 & 1 & 1. \end{vmatrix}$$

and this team satisfies $y \subseteq x$ and Pyx.

・ 「「「」 ト ・ ニ ト ・ ニ ト

Strict and Lax Operators Game Theoretic Semantics

In Inclusion Logic, Strict \neq Lax

Proof (finished).

Dom
$$(M) = \{0, 1, 2\}, P^M = \{(0, 2), (1, 0), (1, 1)\}, \text{ and } X = \{s_0, s_1\} \text{ for } s_0 = (y : 0), s_1 = (y : 1).$$

• $M \not\models_X \exists^S x (y \subseteq x \land Pyx)$: take any $F : X \to M$, and consider X[F/x].

If $F(s_0) \neq 2$, $M \not\models_{X[F/x]} Pyx$; so $F(s_0) = 2$. But then

$$X[F/x] = \frac{\begin{vmatrix} y & x \\ s'_0 & 0 & 2 \\ s'_1 & 1 & F(s_1) \end{vmatrix}$$

and $M \not\models_{X[F/x]} y \subseteq x$, since $F(s_1) \neq 0$ or $F(s_1) \neq 1$.

Strict and Lax Operators Game Theoretic Semantics

From Strict to Lax Existentials

From strict to lax semantics

If *z* not in ψ and $z \neq x$,

$$M \models_X \exists^L x \psi \Leftrightarrow M \models_X \forall z \exists^L x \psi.$$

イロト イポト イヨト イヨト

ъ

Strict and Lax Operators Game Theoretic Semantics

From Strict to Lax Existentials

Proof.

Suppose that for $H : X \to \mathcal{P}(X) \setminus \{\emptyset\}$, $M \models_{X[H/X]} \psi$. For every $s \in X$, let $m_s \in H(s)$; then define $F : X[M/z] \to M$ as

$$F(s[m/z]) = \left\{ egin{array}{cc} m & ext{if} & m \in H(s); \ m_s & ext{otherwise}. \end{array}
ight.$$

Forgetting the variable z, X[M/z][F/x] is precisely X[H/z]; hence,

 $M \models_{X[M/z][F/x]} \psi$, as required (other direction is trivial).

イロト イポト イヨト イヨト

1

Strict and Lax Operators Game Theoretic Semantics

Trivial Quantification and \exists^{S}

Corollary: \exists^{S} is not invariant under trivial quantifications!

There exists a $\psi \in FO(\subseteq)$, such that *z* does not occur in it but

$$\exists^{S} x \psi \not\equiv \forall z \exists^{S} x \psi.$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Strict and Lax Operators Game Theoretic Semantics

Trivial Quantification and \exists^L

 \exists^{L} invariant under trivial quantification

For all ψ in $FO(\subseteq, |)$ and all $z \notin \psi$,

 $\exists^{L} \boldsymbol{x} \psi \equiv \forall \boldsymbol{z} \exists^{L} \boldsymbol{s} \psi.$

Proof.

If for $H : X[M/z] \to \mathcal{P}(M)$ it holds that $M \models_{X[M/z][H/x]} \psi$, define $H' : X \to \mathcal{P}(M)$ as

 $H'(s) = \{m \in M : \exists m' \in M \text{ s.t. } m \in H(s[m'/z])\}.$

Then $M \models_{X[H'/z]} \psi$, as required.

This strongly suggests that we want \exists^L in our semantics.

Strict and Lax Operators Game Theoretic Semantics

Trivial Quantification and \exists^L

 \exists^{L} invariant under trivial quantification

For all ψ in $FO(\subseteq, |)$ and all $z \notin \psi$,

 $\exists^{L} \mathbf{x} \psi \equiv \forall \mathbf{z} \exists^{L} \mathbf{s} \psi.$

Proof.

If for $H : X[M/z] \to \mathcal{P}(M)$ it holds that $M \models_{X[M/z][H/x]} \psi$, define $H' : X \to \mathcal{P}(M)$ as

 $H'(s) = \{m \in M : \exists m' \in M \text{ s.t. } m \in H(s[m'/z])\}.$

Then $M \models_{X[H'/z]} \psi$, as required.

This strongly suggests that we want \exists^{L} in our semantics.

Strict and Lax Operators Game Theoretic Semantics

Outline

3

- < ≣ → <

< 🗇 🕨

Strict and Lax Operators Game Theoretic Semantics

GTS for Dependence Logic

GTS (Väänänen 07)

For every model *M*, team *X* and formula ϕ with free variables in Dom(*X*) one can define an imperfect information, zero-sum two-player game $G_X^M(\phi)$.

Theorem (Väänänen 07)

 $M \models_X \phi \Leftrightarrow \mathsf{Player} II$ has a uniform winning strategy in $G_X^M(\phi)$.

Can we find a similar game for Inclusion/Exclusion Logic?

ヘロト 人間 ト ヘヨト ヘヨト

Strict and Lax Operators Game Theoretic Semantics

GTS for Dependence Logic

GTS (Väänänen 07)

For every model *M*, team *X* and formula ϕ with free variables in Dom(*X*) one can define an imperfect information, zero-sum two-player game $G_X^M(\phi)$.

Theorem (Väänänen 07)

 $M \models_X \phi \Leftrightarrow \mathsf{Player} II$ has a uniform winning strategy in $G_X^M(\phi)$.

Can we find a similar game for Inclusion/Exclusion Logic?

ヘロト 人間 ト ヘヨト ヘヨト

Strict and Lax Operators Game Theoretic Semantics

The games $G_X^M(\phi)$

The game $G_X^M(\phi)$ for I/E Logic

Let *M*, *X* ϕ as before ($\phi \in I/E$). Define $G_X^M(\phi)$ as follows:

- Initial positions = { $(\phi, s) : s \in X$ };
- Given a position *p*, its successor set Succ(*p*) is
 - $(\theta_1, s), (\theta_2, s) \} \text{ if } p = (\theta_1 \lor \theta_2, s) \text{ or } (\theta_1 \land \theta_2, s);$
 - 2 { $(\theta, s[m/x]) : m \in \text{Dom}(M)$ } if $p = (\exists x \theta, s)$ or $(\forall x \theta, s)$;
- Given a position *p*, the active player *T*(*p*) is
 - *I* if *p* is $(\theta_1 \land \theta_2, s)$ or $(\forall x \theta, s)$;
 - 2 *II* if *p* is $(\theta_1 \vee \theta_2, s)$ or $(\exists x \theta, s)$.
- If $p = (\vec{t}_1 \subseteq \vec{t}_2, s)$ or $(\vec{t}_1 \mid \vec{t}_2, s)$ then *p* winning for *II*;
- If $p = (\alpha, s)$, α FO literal, p winning for *II* iff $M \models_s \alpha$.

ヘロト ヘアト ヘビト ヘビト

Strict and Lax Operators Game Theoretic Semantics

Plays

Plays

A play of $G_X^M(\phi)$ is a sequence of positions $p_1 \dots p_n$ s.t.

• p₁ is initial;

▶
$$p_{i+1} \in \text{Succ}(p_i)$$
 $(i = 1 ... n - 1).$

Complete Plays

A play $p_1 \dots p_n$ is *complete* iff p_n is terminal.

Winning Plays

A play $p_1 \dots p_n$ is winning (for II) iff p_n is winning (for II).

ヘロン ヘアン ヘビン ヘビン

э

Strict and Lax Operators Game Theoretic Semantics

Strategies

Strategies

A strategy τ (for II) for $G_X^M(\phi)$ is a function from positions p with T(p) = II to $\mathcal{P}(\operatorname{Succ}(p)) \setminus \emptyset$.

Deterministic Strategies

A strategy τ is *deterministic* if $\tau(p)$ is always a singleton.

Play following a strategy

A play $p_1 \dots p_n$ follows τ if

$$T(p_i) = II \Rightarrow p_{i+1} \in \tau(p_i).$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Strict and Lax Operators Game Theoretic Semantics

Winning Strategies

$$P(G_X^M(\phi), \tau)$$
$$P(G_X^M(\phi), \tau) = \{ \vec{p} : \vec{p} \text{ play of } G_X^M(\phi), \text{Player } II \text{ follows } \tau \text{ in } \vec{p} \}.$$

Winning Strategy

A strategy τ is winning iff

 \vec{p} complete, $\vec{p} \in P(G_X^M(\phi), \tau) \Rightarrow \vec{p}$ winning.

イロト 不得 とくほと くほとう

ъ

Strict and Lax Operators Game Theoretic Semantics

Uniformity

Uniform Strategy

A strategy τ is uniform iff, for all $p_1 \dots p_n = \vec{p} \in P(G_X^M(\phi), \tau)$,

- If p_n is $(\vec{t}_1 \subseteq \vec{t}_2, s)$ then $\exists q_1 \dots q_{n'} = \vec{q} \in P(G_X^M(\phi), \tau)$ s.t. • $q_n = (\vec{t}_1 \subseteq \vec{t}_2, s')$ for the same instance of the atom; • $t_1 \langle s \rangle = t_2 \langle s' \rangle$;
- If *p_n* is (*t*₁ | *t*₂, *s*) then ¬∃*q*₁...*q_{n'}* = *q* ∈ *P*(*G_X^M(φ*), τ) s.t.
 q_n = (*t*₁ | *t*₂, *s'*) for the same instance of the atom;
 *t*₁⟨*s*⟩ = *t*₂⟨*s'*⟩;

ヘロン 人間 とくほ とくほ とう

-

Strict and Lax Operators Game Theoretic Semantics

Equivalence

Lax Semantics and GTS

For all suitable M, X, ϕ ,

$$M \models_X \phi$$
 (Lax) $\Leftrightarrow \exists$ u.w.s. for *II* in $G_X^M(\phi)$;

Strict Semantics and GTS

For all suitable M, X, ϕ ,

 $M \models_X \phi$ (Strict) $\Leftrightarrow \exists$ deterministic u.w.s. for *II* in $G_X^M(\phi)$;

イロン イボン イヨン イヨン

æ

Exclusion Logic Inclusion/Exclusion Logic

Outline

▲ (部) ▶ (▲ 三) ▶

э

Exclusion Logic Inclusion/Exclusion Logic

From Exclusion to Dependence

Dependence atoms in Exclusion Logic

The dependence atom $=(t_1 \dots t_n)$ is equivalent to the expression

$$\forall z(z = t_n \vee t_1 \dots t_{n-1}z \mid t_1 \dots t_{n-1}t_n).$$

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Exclusion Logic Inclusion/Exclusion Logic

From Exclusion to Dependence

Dependence atoms in Exclusion Logic (simple case)

The dependence atom =(x, y) is equivalent to the expression

 $\forall z(z=y \lor xz \mid xy).$

Proof (Left to Right).

Suppose $M \models_X = (x, y)$, let $Y = \{s[m/z] : s \in X, m \neq s(y)\}$. If $M \models_Y xz \mid xy$, done. So take $h, h' \in Y$, $h(x) = h'(x), h'(y) = h(z) \neq h(y)$. Contradiction.

イロト イポト イヨト イヨト

1

Exclusion Logic Inclusion/Exclusion Logic

From Exclusion to Dependence

Dependence atoms in Exclusion Logic (simple case)

The dependence atom =(x, y) is equivalent to the expression

 $\forall z(z = y \lor xz \mid xy).$

Proof (Right to Left).

Suppose
$$M \not\models_X = (x, y)$$
. Then exist $s, s' \in X$ s.t. $s(x) = s'(x)$,
 $s(y) \neq s'(y)$.
Consider $h = s[s'(y)/z]$, $h' = s'[s(y)/z]$.
 $h(y) \neq h(z)$, $h'(y) \neq h'(z)$.
But $h(x) = s(x) = s'(x) = h'(x)$ and $h(z) = s'(y) = h'(y)$.
So $M \not\models_X \forall z(z = y \lor xz \mid xy)$.

ヘロト ヘアト ヘビト ヘビト

ъ

Exclusion Logic Inclusion/Exclusion Logic

From Dependence to Exclusion

Exclusion atoms in $\ensuremath{\mathcal{D}}$

There exists a formula ϕ in Dependence Logic such that

$$M \models_X \phi$$
 if and only if $M \models_X \vec{t}_1 \mid \vec{t}_2$

Proof.

 $\vec{t}_1 \mid \vec{t}_2$ holds of the empty team, and $M \models_X \vec{t}_1 \mid \vec{t}_2$ iff

$$M, \operatorname{Rel}(X) \models \forall \vec{s}_1 \vec{s}_2 (R \vec{s}_1 \land R \vec{s}_2 \rightarrow \vec{t}_1 \langle \vec{s}_1 \rangle \neq \vec{t}_2 \langle \vec{s}_2 \rangle).$$

By KV 2009, this is expressible in Dependence Logic.

Exclusion Logic Inclusion/Exclusion Logic

Exclusion Logic and Dependence Logic

Corollary

Exclusion Logic and Dependence Logic are equivalent.

Even wrt open formulas!

Exclusion Logic Inclusion/Exclusion Logic

Outline

▲ □ ▶ ▲ 三 ▶

э

Exclusion Logic Inclusion/Exclusion Logic

I/E Logic and Independence Logic

Independence atoms in I/E Logic

 $ec{t}_2\perp_{ec{t}_1}ec{t}_3$ is equivalent to

$$\begin{array}{l} \forall \vec{p}_{1} \vec{p}_{2} \vec{p}_{3} ((\vec{p}_{1} \vec{p}_{2} \mid \vec{t}_{1} \vec{t}_{2}) \lor_{\vec{p}_{1} \vec{p}_{2} \vec{p}_{3}} (\vec{p}_{1} \vec{p}_{3} \mid \vec{t}_{1} \vec{t}_{3}) \lor_{\vec{p}_{1} \vec{p}_{2} \vec{p}_{3}} \\ \lor_{\vec{p}_{1} \vec{p}_{2} \vec{p}_{3}} \vec{p}_{1} \vec{p}_{2} \vec{p}_{3} \subseteq \vec{t}_{1} \vec{t}_{2} \vec{t}_{3}). \end{array}$$

Inclusion Atoms in $\ensuremath{\mathcal{I}}$

 $\vec{t}_1 \subseteq \vec{t}_2$ is equivalent to

$$\forall u_1 u_2 \vec{z} ((\vec{z} \neq \vec{t}_1 \land \vec{z} \neq \vec{t}_2) \lor (u_1 \neq u_2 \land \vec{z} \neq \vec{t}_2) \lor \\ \lor ((u_1 = u_2 \lor \vec{z} = \vec{t}_2) \land \vec{z} \perp_{\emptyset} u_1 u_2)).$$

・ロン ・雪 と ・ ヨ と

ъ

Exclusion Logic Inclusion/Exclusion Logic

Tuple Existence Logic and Independence Logic

Independence Logic is I/E Logic

• For every formula $\phi \in \mathcal{I}$ there exists a ψ of I/E Logic s.t.

$$\boldsymbol{M}\models_{\boldsymbol{X}}\phi\Leftrightarrow\boldsymbol{M}\models_{\boldsymbol{X}}\psi;$$

• For every formula ψ of I/E Logic there exists a $\phi \in \mathcal{I}$ s.t.

$$\boldsymbol{M} \models_{\boldsymbol{X}} \psi \Leftrightarrow \boldsymbol{M} \models_{\boldsymbol{X}} \phi.$$

ヘロト 人間 ト ヘヨト ヘヨト

Exclusion Logic Inclusion/Exclusion Logic

Backslashed disjunction

Backslashed disjunction

V finite set of variables, $\phi \lor_V \psi$ equivalent to

 $\exists z_1 z_2 (= (V, z_2) \land = (V, z_2) \land ((z_1 = z_2 \land \phi) \lor (z_1 \neq z_2 \land \psi)))$

• Expressible in I/E Logic (dep atom expressible).

•
$$M \models_X \phi \lor_V \psi \Leftrightarrow \exists YZ \text{ s.t.}$$

• $X \models_Y \cup Z;$
2 $M \models_Y \phi, M \models_Z \psi;$
3 For all $s, s' \in X \text{ s.t. } s \equiv_V s',$
• $s \in Y \Leftrightarrow s' \in Y,$
• $s \in Z \Leftrightarrow s' \in Z.$

くロト (過) (目) (日)

э

Exclusion Logic Inclusion/Exclusion Logic

Independence Atoms in I/E Logic

Independence atoms in I/E

 $ec{t}_2 \perp_{ec{t}_1} ec{t}_3$ is equivalent to

$$\forall \vec{p}_1 \vec{p}_2 \vec{p}_3 ((\vec{p}_1 \vec{p}_2 \mid \vec{t}_1 \vec{t}_2) \vee_{\vec{p}_1 \vec{p}_2 \vec{p}_3} (\vec{p}_1 \vec{p}_3 \mid \vec{t}_1 \vec{t}_3) \vee_{\vec{p}_1 \vec{p}_2 \vec{p}_3} \\ \vee_{\vec{p}_1 \vec{p}_2 \vec{p}_3} \vec{p}_1 \vec{p}_2 \vec{p}_3 \subseteq \vec{t}_1 \vec{t}_2 \vec{t}_3).$$

ヘロン ヘアン ヘビン ヘビン

ъ

Exclusion Logic Inclusion/Exclusion Logic

Independence Atoms in I/E Logic

Independence atoms in I/E (simple case)

 $y \perp_x z$ is equivalent to the expression

 $\forall p_1p_2p_3((p_1p_2 \mid xy) \lor_{\vec{p}} (p_1p_3 \mid xz) \lor_{\vec{p}} p_1p_2p_3 \subseteq xyz).$

Proof (Left to Right).

Suppose $M \models_X y \perp_x z$, let $h \in X[M/p_1p_2p_3]$.

If ∀s ∈ X, s(xy) ≠ h(p₁p₂), h ∈ Y₁: M ⊨_{Y₁} (p₁p₂ | xy);
If ∀s ∈ X, s(xz) ≠ h(p₁p₃), h ∈ Y₂: M ⊨_{Y₂} (p₁p₃ | xz).

• Otherwise, $h \in Y_3$: $M \models_{Y_3} (p_1p_2p_3 \subseteq xyz)$.

Exclusion Logic Inclusion/Exclusion Logic

Independence Atoms in I/E Logic

Independence atoms in I/E (simple case)

 $y \perp_x z$ is equivalent to the expression

 $\forall p_1p_2p_3((p_1p_2 \mid xy) \lor_{\vec{p}} (p_1p_3 \mid xz) \lor_{\vec{p}} p_1p_2p_3 \subseteq xyz).$

Proof (Left to Right).

Suppose $M \models_X y \perp_x z$, let $h \in X[M/p_1p_2p_3]$.

• If $\forall s \in X$, $s(xy) \neq h(p_1p_2)$, $h \in Y_1$: $M \models_{Y_1} (p_1p_2 \mid xy)$;

- If $\forall s \in X$, $s(xz) \neq h(p_1p_3)$, $h \in Y_2$: $M \models_{Y_2} (p_1p_3 \mid xz)$.
- Otherwise, $h \in Y_3$: $M \models_{Y_3} (p_1 p_2 p_3 \subseteq xyz)$.

Exclusion Logic Inclusion/Exclusion Logic

Independence Atoms in I/E Logic

Independence atoms in I/E (simple case)

 $y \perp_x z$ is equivalent to the expression

 $\forall p_1p_2p_3((p_1p_2 \mid xy) \lor_{\vec{p}} (p_1p_3 \mid xz) \lor_{\vec{p}} p_1p_2p_3 \subseteq xyz).$

Proof (Left to Right).

Suppose $M \models_X y \perp_x z$, let $h \in X[M/p_1p_2p_3]$.

- If $\forall s \in X$, $s(xy) \neq h(p_1p_2)$, $h \in Y_1$: $M \models_{Y_1} (p_1p_2 \mid xy)$;
- If $\forall s \in X$, $s(xz) \neq h(p_1p_3)$, $h \in Y_2$: $M \models_{Y_2} (p_1p_3 \mid xz)$.

• Otherwise, $h \in Y_3$: $M \models_{Y_3} (p_1 p_2 p_3 \subseteq xyz)$.

くロト (過) (目) (日)

æ

Exclusion Logic Inclusion/Exclusion Logic

Independence Atoms in I/E Logic

Independence atoms in I/E (simple case)

 $y \perp_x z$ is equivalent to the expression

 $\forall p_1p_2p_3((p_1p_2 \mid xy) \lor_{\vec{p}} (p_1p_3 \mid xz) \lor_{\vec{p}} p_1p_2p_3 \subseteq xyz).$

Proof (Left to Right).

Suppose $M \models_X y \perp_x z$, let $h \in X[M/p_1p_2p_3]$.

- If $\forall s \in X$, $s(xy) \neq h(p_1p_2)$, $h \in Y_1$: $M \models_{Y_1} (p_1p_2 \mid xy)$;
- If $\forall s \in X$, $s(xz) \neq h(p_1p_3)$, $h \in Y_2$: $M \models_{Y_2} (p_1p_3 \mid xz)$.
- Otherwise, $h \in Y_3$: $M \models_{Y_3} (p_1 p_2 p_3 \subseteq xyz)$.

Exclusion Logic Inclusion/Exclusion Logic

Independence Atoms in I/E Logic

Proof (Right to Left).

Suppose $M \not\models_X y \perp_x z$: $\exists s, s' \in X$ s.t s(x) = s'(x), but $s'' \in X \Rightarrow s''(xy) \neq s(xy)$ or $s''(xz) \neq s'(xz)$.

$$m_1 = s(x) = s'(x), m_2 = s(y), m_3 = s'(z).$$

 $h = s[m_1/p_1][m_2/p_2][m_3/p_3], h = s[m_1/p_1][m_2/p_2][m_3/p_3].$

h, *h*' ∈ *Y*₁, *M* |= _{*Y*₁} *p*₁*p*₂ | *xy*: NO, *h*(*xy*) = *h*(*p*₁*p*₂);
 h, *h*' ∈ *Y*₂, *M* |= _{*Y*₂} *p*₁*p*₃ | *xz*: NO, *h*'(*xz*) = *h*'(*p*₁*p*₃);
 h, *h*' ∈ *Y*₃, *M* |= _{*Y*₃} *p*₁*p*₂*p*₃ ⊆ *xyz*: NO, contradiction.

Exclusion Logic Inclusion/Exclusion Logic

Independence Atoms in I/E Logic

Proof (Right to Left).

Suppose $M \not\models_X y \perp_x z$: $\exists s, s' \in X$ s.t s(x) = s'(x), but $s'' \in X \Rightarrow s''(xy) \neq s(xy)$ or $s''(xz) \neq s'(xz)$.

$$m_1 = s(x) = s'(x), m_2 = s(y), m_3 = s'(z).$$

 $h = s[m_1/p_1][m_2/p_2][m_3/p_3], h = s[m_1/p_1][m_2/p_2][m_3/p_3].$

h, *h*' ∈ *Y*₁, *M* |= _{*Y*₁} *p*₁*p*₂ | *xy*: NO, *h*(*xy*) = *h*(*p*₁*p*₂);
 h, *h*' ∈ *Y*₂, *M* |= _{*Y*₂} *p*₁*p*₃ | *xz*: NO, *h*'(*xz*) = *h*'(*p*₁*p*₃);
 h, *h*' ∈ *Y*₃, *M* |= _{*Y*₂} *p*₁*p*₂*p*₃ ⊆ *xyz*: NO, contradiction.

Non-Functional Dependencies Semantics Expressivity

Exclusion Logic Inclusion/Exclusion Logic

Inclusion Atoms in ${\cal I}$

Inclusion atoms in $\ensuremath{\mathcal{I}}$

 $\vec{t}_1 \subseteq \vec{t}_2$ is equivalent to

$$\forall u_1 u_2 \vec{z} ((\vec{z} \neq \vec{t}_1 \land \vec{z} \neq \vec{t}_2) \lor (u_1 \neq u_2 \land \vec{z} \neq \vec{t}_2) \lor$$

 $\lor ((u_1 = u_2 \lor \vec{z} = \vec{t}_2) \land \vec{z} \perp_{\emptyset} u_1 u_2)).$

Pietro Galliani Inclusion and exclusion atoms in team semantics

ヘロト ヘワト ヘビト ヘビト

ъ

Exclusion Logic Inclusion/Exclusion Logic

Inclusion Atoms in \mathcal{I}

Inclusion atoms in \mathcal{I} (simple case)

$$\begin{aligned} x &\subseteq y \equiv \forall u_1 u_2 z ((z \neq x \land z \neq y) \lor (u_1 \neq u_2 \land z \neq y) \lor \\ &\lor ((u_1 = u_2 \lor z = y) \land z \perp_{\emptyset} u_1 u_2)). \end{aligned}$$

Proof (Left to Right).

$$\begin{split} Y &= \{s[m_1/u_1][m_2/u_2][m_3/z] : s \in X, m_1 = m_2 \text{ and } \\ &\text{and } m_3 \in \{s(x), s(y)\}, \text{ or } m_1 \neq m_2 \text{ and } m_3 = s(y)\}. \end{split}$$

If I show that $Y \models z \perp_{\emptyset} u_1 u_2$, done. Take $s, s' \in Y$.
If $s(z) = s(y), s[s'(u_1)/u_1][s'(u_2)/u_2] \in Y;$
If $s(z) = s(x), \exists s'' \in X, s''(y) = s(x);$
Then $s''[s'(u_1)/u_1][s'(u_2)/u_2] \in Y$, done.

Exclusion Logic Inclusion/Exclusion Logic

Inclusion Atoms in \mathcal{I}

Inclusion atoms in \mathcal{I} (simple case)

$$\begin{aligned} x &\subseteq y \equiv \forall u_1 u_2 z ((z \neq x \land z \neq y) \lor (u_1 \neq u_2 \land z \neq y) \lor \\ &\lor ((u_1 = u_2 \lor z = y) \land z \perp_{\emptyset} u_1 u_2)). \end{aligned}$$

Proof (Right to Left).

 $s \in X, h = s[0/u_1][0/u_2][s(x)/z], h' = s[0/u_1][1/u_2][s(y)/z].$ $h, h' \in Y, Y \models z \perp_{\emptyset} u_1 u_2?$ Then $\exists h'', h''(u_1) = 0, h''(u_2) = 1, h''(z) = h(z) = s(x).$ But then h''(y) = h''(z) = s(x).

ヘロン 人間 とくほ とくほ とう

1
Definability in I/E Logic

From I/E Logic to Σ_1^1

For every formula $\phi \in I/E$ there exists a sentence $\phi' \in \Sigma_1^1$ such that $M \models_X \phi$ if and only if M, $\operatorname{Rel}(X) \models \phi'$ for all suitable M and all **nonempty** X.

From Σ_1^1 to I/E Logic

For every sentence $\phi'(R) \in \Sigma_1^1$ there exists a formula $\phi \in I/E$ such that $M \models_X \phi$ if and only if M, $\operatorname{Rel}(X) \models \phi'$ for all suitable M and all **nonempty** X.

Thanks to Juha Kontinen for pointing out this requirement!

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Definability in I/E Logic

From I/E Logic to Σ_1^1

For every formula $\phi \in I/E$ there exists a sentence $\phi' \in \Sigma_1^1$ such that $M \models_X \phi$ if and only if M, $\operatorname{Rel}(X) \models \phi'$ for all suitable M and all **nonempty** X.

From Σ_1^1 to I/E Logic

For every sentence $\phi'(R) \in \Sigma_1^1$ there exists a formula $\phi \in I/E$ such that $M \models_X \phi$ if and only if M, $\operatorname{Rel}(X) \models \phi'$ for all suitable M and all **nonempty** X.

Thanks to Juha Kontinen for pointing out this requirement!

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Corollary: Definability on Independence Logic

From Independence Logic to Σ_1^1

For every formula $\phi \in \mathcal{I}$ there exists a sentence $\phi' \in \Sigma_1^1$ such that $M \models_X \phi$ if and only if M, $\operatorname{Rel}(X) \models \phi'$ for all suitable M and all **nonempty** X.

From Σ_1^1 to Independence Logic

For every sentence $\phi'(R) \in \Sigma_1^1$ there exists a formula $\phi \in \mathcal{I}$ such that $M \models_X \phi$ if and only if M, $\operatorname{Rel}(X) \models \phi'$ for all suitable M and all **nonempty** X.

ヘロト ヘ戸ト ヘヨト ヘヨト

Left to Right

From I/E Logic to Σ_1^1

For every formula $\phi \in I/E$ there exists a sentence $\phi' \in \Sigma_1^1$ such that $M \models_X \phi$ if and only if M, $\operatorname{Rel}(X) \models \phi'$ for all suitable M and all **nonempty** X.

Proof.

By structural induction over ϕ (easy).

くロト (過) (目) (日)

Left to Right

From I/E Logic to Σ_1^1

For every formula $\phi \in I/E$ there exists a sentence $\phi' \in \Sigma_1^1$ such that $M \models_X \phi$ if and only if M, $\operatorname{Rel}(X) \models \phi'$ for all suitable M and all **nonempty** X.

Proof.

By structural induction over ϕ (easy).

Pietro Galliani Inclusion and exclusion atoms in team semantics

くロト (過) (目) (日)

Right to Left

From Σ_1^1 to I/E Logic

For every sentence $\phi'(R) \in \Sigma_1^1$ there exists a formula $\phi \in I/E$ such that $M \models_X \phi$ if and only if M, $\operatorname{Rel}(X) \models \phi'$ for all suitable M and all **nonempty** X.

Proof.

Similar to the ones in KV 2009 and KN 2009. Write $\phi'(R)$ as $\exists R' \exists \vec{f} \forall \vec{z}((R'\vec{x} \leftrightarrow R\vec{x}) \land \psi(R', \vec{z}))$ where \vec{x} subsequence of \vec{z} , ψ quantifier free, R not in ψ , each f_i only as $f_i(\vec{w}_i)$ for some fixed $\vec{w}_i \subseteq \vec{z}, R'$ only as $R'\vec{x}$.

Right to Left

Proof (continued).

Write $\phi'(R)$ as $\exists R' \exists \vec{f} \forall \vec{z}((R'\vec{x} \leftrightarrow R\vec{x}) \land \psi(R', \vec{z}))$ where \vec{x} subsequence of \vec{z} , ψ quantifier free, R not in ψ , each f_i only as $f_i(\vec{w}_i)$ for some fixed $\vec{w}_i \subseteq \vec{z}$, R' only as $R'\vec{x}$. Then M, Rel $(X) \models \phi'$ if and only if

$$M, \mathsf{Rel}(X) \models \exists g_1 g_2 \exists \vec{f} \; \forall \vec{z} ((f_1(\vec{x}) = f_2(\vec{x}) \leftrightarrow R\vec{x}) \land \psi'(\vec{z}))$$

where $\psi' = \psi[f_1 \vec{x} = f_2 \vec{x} / R \vec{x}]$.

ヘロト ヘアト ヘビト ヘビト

1

Right to Left

Proof (continued).

$$\phi' \equiv \exists g_1 g_2 \exists \vec{f} \; \forall \vec{z} ((g_1(\vec{x}) = g_2(\vec{x}) \leftrightarrow R\vec{x}) \land \psi'(\vec{z}))$$

where $\psi' = \psi[g_1 \vec{x} = g_2 \vec{x} / R \vec{x}]$. Then, if *X* nonempty, $\text{Dom}(X) = \vec{y}$, *M*, $\text{Rel}(X) \models \phi'$ iff

$$M \models_X \forall \vec{z} \exists u_1 u_2 \vec{v} \left(\left(\bigwedge_{i=1}^2 = (\vec{x}, u_i) \land \bigwedge_j = (\vec{w}_j, v_j) \right) \land \\ \land \left((\vec{x} \subseteq \vec{y} \land u_1 = u_2) \lor (\vec{x} \mid \vec{y} \land u_1 \neq u_2) \right) \land \theta \right)$$

where θ is $\psi'[u_1/g_1\vec{x}][u_2/g_2\vec{x}][\vec{w}/\vec{f}\vec{w}]$.

(* E) * E)

Right to Left

Proof (continued).

Suppose that, for all *s* with domain \vec{z} ,

$$M, \operatorname{Rel}(X), g_1, g_2, \vec{f} \models (g_1(\vec{x}) = g_2(\vec{x}) \leftrightarrow R\vec{x}) \land \psi'(\vec{z}).$$

Extend X to Y choosing the u_1 , u_2 , \vec{v} according to g_1 , g_2 , \vec{f} .

•
$$M \models_Y \bigwedge_{i=1}^2 = (\vec{x}, u_i) \land \bigwedge_j = (\vec{w}_j, v_j)$$
: obvious;

• $M \models_Y \theta$: by construction;

•
$$M \models_Y (\vec{x} \subseteq \vec{y} \land u_1 = u_2) \lor (\vec{x} \mid \vec{y} \land u_1 \neq u_2)$$
:
If $u_1 = u_2, \vec{x} \in \operatorname{Rel}(X)$, so $\vec{x} \subseteq \vec{y}$;
If $u_1 \neq u_2, \vec{x} \notin \operatorname{Rel}(X)$, so $\vec{x} \mid \vec{y}$.

ヘロン 人間 とくほど くほとう

ъ

Right to Left

Proof (continued).

Conv., suppose X nonempty, $Y = X[M/\vec{z}][G_1/u_1][G_2/u_2][\vec{F}/\vec{v}]$,

$$M \models_{\mathbf{Y}} \bigwedge_{i=1}^{2} = (\vec{x}, u_{i}) \land \bigwedge_{j} = (\vec{w}_{j}, v_{j}),$$
$$M \models_{\mathbf{Y}} (\vec{x} \subseteq \vec{y} \land u_{1} = u_{2}) \lor (\vec{x} \mid \vec{y} \land u_{1} \neq u_{2}),$$
$$M \models_{\mathbf{Y}} \theta.$$

Choose $g_1(\vec{x}), g_2(\vec{x}), \vec{f}(\vec{w})$ according to G_1, G_2, \vec{F} . Let *s* be any assignment, domain = \vec{z} .

くロト (過) (目) (日)

Right to Left

Proof (continued).

Choose $g_1(\vec{x}), g_2(\vec{x}), \vec{f}(\vec{w})$ according to G_1, G_2, \vec{F} . Let *s* be any assignment, domain = \vec{z} .

- M, Rel(R), g_1 , g_2 , $\vec{f} \models_s \psi'$: Take $h \in X$. Then $h[s/\vec{z}][g_1/u_1][g_2/u_2][\vec{f}/\vec{v}] \in Y$, $M \models_Y \theta$.
- $M, \operatorname{Rel}(R), g_1, g_2, \vec{f} \models_s g_1(\vec{x}) = g_2(\vec{x}) \leftrightarrow R\vec{x}$: Suppose $g_1(\vec{x}) = g_2(\vec{x})$, let $h \in X$. Consider $o = h[s/\vec{z}][g_1/u_1][g_2/u_2][\vec{f}/\vec{v}]$: $o \in Y_1, M \models_{Y_1} \vec{x} \subseteq \vec{y}$. So $\exists o' \in Y_1, o'(\vec{y}) = o(\vec{x})$, so $s(\vec{x}) = o(\vec{x}) \in \operatorname{Rel}(X)$.

イロト イポト イヨト イヨ

Right to Left

Proof (finished).

Choose $g_1(\vec{x}), g_2(\vec{x}), \vec{f}(\vec{w})$ according to G_1, G_2, \vec{F} . Let *s* be any assignment, domain = \vec{z} .

• M, Rel(R), g_1 , g_2 , $\vec{f} \models_s g_1(\vec{x}) = g_2(\vec{x}) \leftrightarrow R\vec{x}$: Suppose $g_1(\vec{x}) \neq g_2(\vec{x})$, let $h \in X$. Consider $o = h[s/\vec{z}][g_1/u_1][g_2/u_2][\vec{f}/\vec{v}]$: $o \in Y_2$, $M \models_{Y_2} \vec{x} \mid \vec{y}$. So $\forall o' \in Y_2$, $o'(\vec{y}) \neq o(\vec{x})$. But for all $h' \in X$, $o' = h'[s/\vec{z}][g_1/u_1][g_2/u_2][\vec{f}/\vec{v}] \in Y_2$; then, for all such h', $s(\vec{x}) = o(\vec{x}) \neq o'(\vec{y}) = h'(\vec{y})$. Therefore, $s(\vec{x}) \notin \text{Rel}(X)$.