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Independence Logic

Independence Atoms (Grädel, Väänänen)

M |=X =~t2 ⊥~t1
~t3 if and only if, for all s, s′ ∈ X such that

~t1〈s〉 =~t1〈s′〉 there exists a s′′ ∈ X such that

~t1〈s′′〉~t2〈s′′〉 =~t1〈s〉~t2〈s〉, ~t1〈s′′〉~t3〈s′′〉 =~t1〈s′〉~t3〈s′〉.

Independence Logic I
I = First Order Logic + Independence Atoms
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Properties of Independence Logic (Grädel, Väänänen)

Contains Dependence Logic;
As expressive as Dependence Logic over sentences;
More expressive on open formulas (no downwards
closure).

Open Problem
What classes of teams are definable by open formulas in
Independence Logic I?

This talk will answer this.
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Inclusion Dependencies

Definition

R relation, ~x , ~y tuples of attributes, |~x | = |~y |.
Then R |= ~x ⊆ ~y if and only if for all r ∈ R there exists an r ′ ∈ R
such that

r(~x) = r ′(~y).

Fairly well studied;
Sound and complete axiomatization.

Pietro Galliani Inclusion and exclusion atoms in team semantics



Non-Functional Dependencies
Semantics

Expressivity
Definability in I/E Logic

Independence Atoms
Inclusion and Exclusion Atoms

Example of Inclusion Dependency

Professor University
Hilbert Königsberg
Hilbert Göttingen
Gauss Göttingen

Person Date of Birth
Hilbert 23/01/1862
Gauss 30/04/1777

Torvalds 28/12/1969

R |= Professor ⊆ Person;
R 6|= Person ⊆ Professor.
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Exclusion Dependencies

Definition

R relation, ~x , ~y tuples of attributes, |~x | = |~y |.
Then R |= ~x | ~y if and only if, for all r , r ′ ∈ R,

r(~x) 6= r ′(~y).

Often, not used explicity;
Very commonly used implicitly, for typing of attributes;
Sound and complete axiomatization together with inclusion
dependencies.
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Example of Exclusion Dependency

Professor University
Hilbert Königsberg
Hilbert Göttingen
Gauss Göttingen

Person Date of Birth
Hilbert 23/01/1862
Gauss 30/04/1777

Torvalds 28/12/1969

R |= University | Date of Birth;
R 6|= Professor | Person.
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Inclusion and Exclusion Logic

Inclusion Atoms

M |=X ~t1 ⊆~t2 if and only if {(~t1〈s〉,~t2〈s〉) : s ∈ X} |=~t1 ⊆~t2;

Exclusion Atoms

M |=X ¬(~t1 |~t2) if and only if {(~t1〈s〉,~t2〈s〉) : s ∈ X} |=~t1 |~t2.

Inclusion/Exclusion Logic

I/E Logic = FOTeam(⊆, | ).
Inclusion Logic = only inclusion atoms,
Exclusion Logic = only exclusion atoms.
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Direct Definitions for Tuple Existence Literals
Semantics

Inclusion Atoms

M |=X ~t1 ⊆~t2 if and only if for all s ∈ X there exists a s′ ∈ X
such that

~t1〈s〉 =~t2〈s′〉;

Exclusion Atoms

M |=X ~t1 |~t2 if and only if, for all s, s′ ∈ X ,

~t1〈s〉 6=~t2〈s′〉.
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Two Semantics for Disjuction

A lax semantics

M |=X ψ1∨Lψ2 ⇔ ∃Y ,Z s.t. X = Y ∪Z ,M |=Y ψ1 and M |=Z ψ2;

A strict semantics

M |=X ψ1 ∨S ψ2 ⇔∃Y ,Z s.t. X = Y ∪ Z ,X ∩ Y = ∅,
M |=Y ψ1 and M |=Z ψ2;

D is usually given with ∨L (or even: X⊆Y ∪ Z !).
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In Dependence Logic, Lax = Strict

No difference for D (or for T −)

If ψ1, ψ2 ∈ D, M |=X ψ1 ∨S ψ2 iff M |=X ψ1 ∨L ψ2.

Proof.

If M |=X ψ1 ∨S ψ2, M |=X ψ1 ∨L ψ2;
If M |=X ψ1 ∨L ψ2 then X = X1 ∪ X2, M |=X1 ψ1, M |=X2 ψ2.
Take Y = X2\X1: by downwards closure, M |=Y ψ2,
X1 ∪ Y = X , so M |=X ψ1 ∨S ψ2.

Pietro Galliani Inclusion and exclusion atoms in team semantics
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In Inclusion Logic, Lax 6= Strict

Different for Inclusion Logic!

There exist M, X and ψ1, ψ2 ∈ FO(⊆) such that

M |=X ψ1 ∨L ψ2 but M 6|=X ψ1 ∨S ψ2.

Proof.

Let X =

x y z
s0 0 1 2
s1 1 0 3
s2 4 3 0

and Dom(M) = {0 . . . 4}. Then

M |=X (x ⊆ y) ∨L (y ⊆ z), M 6|=X (x ⊆ y) ∨S (y ⊆ z).

Pietro Galliani Inclusion and exclusion atoms in team semantics
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In Inclusion Logic, Lax 6= Strict

Proof (continued).

X =

x y z
s0 0 1 2
s1 1 0 3
s2 4 3 0

M |=X (x ⊆ y) ∨L (y ⊆ z):
Let Y = {s0, s1},Z = {s1, s2}.
M |=Y x ⊆ y , M |=Z y ⊆ z.
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In Inclusion Logic, Lax 6= Strict

Proof (finished).

X =

x y z
s0 0 1 2
s1 1 0 3
s2 4 3 0

M 6|=X (x ⊆ y) ∨L (y ⊆ z):
Let X = Y ∪ Z , M |=Y x ⊆ y , M |=Z y ⊆ z.
s2 6∈ Y , so s2 ∈ Z , so s1 ∈ Z ;
s0 6∈ Z , so s0 ∈ Y , so s1 ∈ Y .

So Y ∩ Z 6= ∅.
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From Strict to Lax Disjunction

From strict to lax
If z not in ψ1, ψ2,

M |=X ψ1 ∨L ψ2 ⇔ M |=X ∀z(ψ1 ∨S ψ2).

Proof.
Let 0 ∈ Dom(M), assume |Dom(M)| ≥ 2.

Suppose X = Y ∪ Z , M |=Y ψ1, M |=Z ψ2, and let W = Y ∩ Z .
Now define

Y ′ = (Y\W )[M/z] ∪ (W [0/z]),Z ′ = Z [M/z]\Y ′.

Then Y ′ ∩ Z ′ = ∅, Y ′ ∪ Z ′ = X [M/z], M |=Y ′ ψ1, M |=Z ′ ψ2.

Pietro Galliani Inclusion and exclusion atoms in team semantics
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Trivial Quantification and ∨S

Corollary: ∨S is not invariant under trivial quantifications!

There exist formulas ψ1 and ψ2 ∈ FO(⊆), such that z does not
occur in ψ1, ψ2 but

ψ1 ∨S ψ2 6≡ ∀z(ψ1 ∨S ψ2).

Pietro Galliani Inclusion and exclusion atoms in team semantics
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Trivial Quantification and ∨L

∨L invariant under trivial quantification

For all ψ1 and ψ2 in FO(⊆, | ) and all z 6∈ ψ1, ψ2,

ψ1 ∨S ψ2 6≡ ∀z(ψ1 ∨S ψ2).

Proof.
Obvious from definition: if X = Y ∪ Z , M |=Y ψ1, M |=Y ψ2, then
X [M/z] = Y [M/z] ∪ Z [M/z], M |=Y [M/z] ψ1, M |=Z [M/z] ψ2.

This strongly suggests that we want ∨L in our semantics.
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Two Semantics for Existentials

A strict semantics

M |=X ∃Sxψ ⇔ ∃F : X → M s.t. M |=X [F/x ] ψ,

for X [F/x ] = {s[F (s)/x ] : s ∈ X};

A lax semantics

M |=X ∃Lxψ ⇔ ∃F : H → P(M)\{∅} s.t. M |=X [F/x ] ψ,

for X [H/x ] = {s[m/x ] : s ∈ X ,m ∈ H(s)}.

D is usually given with ∃S.
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In Dependence Logic, Strict = Lax

No difference for D
If ψ ∈ D, M |=X ∃Sxψ iff M |=X ∃Lxψ (using AC).

Proof.

If M |=X ∃Sxψ, M |=X ∃Lxψ;
If M |=X ∃Lxψ, M |=X [H/x ] ψ for some H : X → P(M)\{∅}.
Let F : X → M be such that F (s) ∈ H(s) for all s ∈ X : then
X [F/x ] ⊆ X [H/x ], so by downward closure M |=X [F/x ] ψ.
Then M |=X ∃Sxψ, as required.

Pietro Galliani Inclusion and exclusion atoms in team semantics
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In Inclusion Logic, Strict 6= Lax

Different for Inclusion Logic!

There exist M, X and ψ ∈ FO(⊆) such that

M |=X ∃Lxψ but M 6|=X ∃Sψ.

Proof.

Let Dom(M) = {0,1,2}, PM = {(0,2), (1,0), (1,1)}, and
X = {s0, s1} for s0 = (y : 0), s1 = (y : 1).
Then
M |=X ∃Lx(y ⊆ x ∧ Pyx) but M 6|=X ∃Sx(y ⊆ x ∧ Pyx).

Pietro Galliani Inclusion and exclusion atoms in team semantics
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In Inclusion Logic, Strict 6= Lax

Proof (continued).

Dom(M) = {0,1,2}, PM = {(0,2), (1,0), (1,1)}, and
X = {s0, s1} for s0 = (y : 0), s1 = (y : 1).

M |=X ∃Lx(y ⊆ x ∧ Pyx): let H : X → P(M) be such that
H(s0) = {2}, H(s1) = {0,1}. Then

X [H/x ] =

y x
s′0 0 2
s′1 1 0
s′2 1 1.

and this team satisfies y ⊆ x and Pyx .

Pietro Galliani Inclusion and exclusion atoms in team semantics
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In Inclusion Logic, Strict 6= Lax

Proof (finished).

Dom(M) = {0,1,2}, PM = {(0,2), (1,0), (1,1)}, and
X = {s0, s1} for s0 = (y : 0), s1 = (y : 1).

M 6|=X ∃Sx(y ⊆ x ∧ Pyx): take any F : X → M, and
consider X [F/x ].
If F (s0) 6= 2, M 6|=X [F/x ] Pyx ; so F (s0) = 2.
But then

X [F/x ] =

y x
s′0 0 2
s′1 1 F (s1)

and M 6|=X [F/x ] y ⊆ x , since F (s1) 6= 0 or F (s1) 6= 1.

Pietro Galliani Inclusion and exclusion atoms in team semantics
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From Strict to Lax Existentials

From strict to lax semantics
If z not in ψ and z 6= x ,

M |=X ∃Lxψ ⇔ M |=X ∀z∃Lxψ.
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From Strict to Lax Existentials

Proof.
Suppose that for H : X → P(X )\{∅}, M |=X [H/x ] ψ.
For every s ∈ X , let ms ∈ H(s); then define F : X [M/z]→ M as

F (s[m/z]) =

{
m if m ∈ H(s);
ms otherwise.

Forgetting the variable z, X [M/z][F/x ] is precisely X [H/z];
hence,
M |=X [M/z][F/x ] ψ, as required (other direction is trivial).

Pietro Galliani Inclusion and exclusion atoms in team semantics
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Trivial Quantification and ∃S

Corollary: ∃S is not invariant under trivial quantifications!

There exists a ψ ∈ FO(⊆), such that z does not occur in it but

∃Sxψ 6≡ ∀z∃Sxψ.
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Trivial Quantification and ∃L

∃L invariant under trivial quantification

For all ψ in FO(⊆, | ) and all z 6∈ ψ,

∃Lxψ ≡ ∀z∃Lsψ.

Proof.
If for H : X [M/z]→ P(M) it holds that M |=X [M/z][H/x ] ψ, define
H ′ : X → P(M) as

H ′(s) = {m ∈ M : ∃m′ ∈ M s.t. m ∈ H(s[m′/z])}.

Then M |=X [H′/z] ψ, as required.

This strongly suggests that we want ∃L in our semantics.
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GTS for Dependence Logic

GTS (Väänänen 07)
For every model M, team X and formula φ with free variables in
Dom(X ) one can define an imperfect information, zero-sum
two-player game GM

X (φ).

Theorem (Väänänen 07)

M |=X φ⇔ PlayerII has a uniform winning strategy in GM
X (φ).

Can we find a similar game for Inclusion/Exclusion Logic?
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The games GM
X (φ)

The game GM
X (φ) for I/E Logic

Let M, X φ as before (φ ∈I/E). Define GM
X (φ) as follows:

Initial positions = {(φ, s) : s ∈ X};
Given a position p, its successor set Succ(p) is

1 {(θ1, s), (θ2, s)} if p = (θ1 ∨ θ2, s) or (θ1 ∧ θ2, s);
2 {(θ, s[m/x ]) : m ∈ Dom(M)} if p = (∃xθ, s) or (∀xθ, s);

Given a position p, the active player T (p) is
1 I if p is (θ1 ∧ θ2, s) or (∀xθ, s);
2 II if p is (θ1 ∨ θ2, s) or (∃xθ, s).

If p = (~t1 ⊆~t2, s) or (~t1 |~t2, s) then p winning for II;
If p = (α, s), α FO literal, p winning for II iff M |=s α.
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Plays

Plays

A play of GM
X (φ) is a sequence of positions p1 . . . pn s.t.

p1 is initial;
pi+1 ∈ Succ(pi) (i = 1 . . . n − 1).

Complete Plays
A play p1 . . . pn is complete iff pn is terminal.

Winning Plays

A play p1 . . . pn is winning (for II) iff pn is winning (for II).

Pietro Galliani Inclusion and exclusion atoms in team semantics
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Strategies

A strategy τ (for II) for GM
X (φ) is a function from positions p with

T (p) = II to P(Succ(p))\∅.

Deterministic Strategies

A strategy τ is deterministic if τ(p) is always a singleton.

Play following a strategy

A play p1 . . . pn follows τ if

T (pi) = II ⇒ pi+1 ∈ τ(pi).
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Winning Strategies

P(GM
X (φ), τ)

P(GM
X (φ), τ) = {~p : ~p play of GM

X (φ),Player II follows τ in ~p}.

Winning Strategy

A strategy τ is winning iff

~p complete, ~p ∈ P(GM
X (φ), τ)⇒ ~p winning.
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Uniformity

Uniform Strategy

A strategy τ is uniform iff, for all p1 . . . pn = ~p ∈ P(GM
X (φ), τ),

If pn is (~t1 ⊆~t2, s) then ∃q1 . . . qn′ = ~q ∈ P(GM
X (φ), τ) s.t.

1 qn = (~t1 ⊆~t2, s′) for the same instance of the atom;
2 t1〈s〉 = t2〈s′〉;

If pn is (~t1 |~t2, s) then ¬∃q1 . . . qn′ = ~q ∈ P(GM
X (φ), τ) s.t.

1 qn = (~t1 |~t2, s′) for the same instance of the atom;
2 t1〈s〉 = t2〈s′〉;
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Equivalence

Lax Semantics and GTS
For all suitable M, X , φ,

M |=X φ (Lax) ⇔ ∃ u.w.s. for II in GM
X (φ);

Strict Semantics and GTS
For all suitable M, X , φ,

M |=X φ (Strict) ⇔ ∃ deterministic u.w.s. for II in GM
X (φ);
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From Exclusion to Dependence

Dependence atoms in Exclusion Logic

The dependence atom =(t1 . . . tn) is equivalent to the
expression

∀z(z = tn ∨ t1 . . . tn−1z | t1 . . . tn−1tn).
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From Exclusion to Dependence

Dependence atoms in Exclusion Logic (simple case)

The dependence atom =(x , y) is equivalent to the expression

∀z(z = y ∨ xz | xy).

Proof (Left to Right).

Suppose M |=X =(x , y), let Y = {s[m/z] : s ∈ X ,m 6= s(y)}.
If M |=Y xz | xy , done.
So take h,h′ ∈ Y , h(x) = h′(x), h′(y) = h(z) 6= h(y).
Contradiction.
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From Exclusion to Dependence

Dependence atoms in Exclusion Logic (simple case)

The dependence atom =(x , y) is equivalent to the expression

∀z(z = y ∨ xz | xy).

Proof (Right to Left).

Suppose M 6|=X =(x , y). Then exist s, s′ ∈ X s.t. s(x) = s′(x),
s(y) 6= s′(y).
Consider h = s[s′(y)/z], h′ = s′[s(y)/z].
h(y) 6= h(z), h′(y) 6= h′(z).
But h(x) = s(x) = s′(x) = h′(x) and h(z) = s′(y) = h′(y).
So M 6|=X ∀z(z = y ∨ xz | xy).
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From Dependence to Exclusion

Exclusion atoms in D
There exists a formula φ in Dependence Logic such that

M |=X φ if and only if M |=X ~t1 |~t2

Proof.
~t1 |~t2 holds of the empty team, and M |=X ~t1 |~t2 iff

M,Rel(X ) |= ∀~s1~s2(R~s1 ∧ R~s2 →~t1〈~s1〉 6=~t2〈~s2〉).

By KV 2009, this is expressible in Dependence Logic.
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Exclusion Logic and Dependence Logic

Corollary
Exclusion Logic and Dependence Logic are equivalent.

Even wrt open formulas!
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I/E Logic and Independence Logic

Independence atoms in I/E Logic
~t2 ⊥~t1

~t3 is equivalent to

∀~p1~p2~p3((~p1~p2 |~t1~t2) ∨~p1~p2~p3
(~p1~p3 |~t1~t3)∨~p1~p2~p3

∨~p1~p2~p3
~p1~p2~p3 ⊆ ~t1~t2~t3).

Inclusion Atoms in I
~t1 ⊆ ~t2 is equivalent to

∀u1u2~z((~z 6=~t1 ∧ ~z 6=~t2) ∨ (u1 6= u2 ∧ ~z 6=~t2)∨
∨ ((u1 = u2 ∨ ~z =~t2) ∧ ~z ⊥∅ u1u2)).
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Tuple Existence Logic and Independence Logic

Independence Logic is I/E Logic

For every formula φ ∈ I there exists a ψ of I/E Logic s.t.

M |=X φ⇔ M |=X ψ;

For every formula ψ of I/E Logic there exists a φ ∈ I s.t.

M |=X ψ ⇔ M |=X φ.
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Backslashed disjunction

Backslashed disjunction
V finite set of variables, φ ∨V ψ equivalent to

∃z1z2(=(V , z2)∧ =(V , z2) ∧ ((z1 = z2 ∧ φ) ∨ (z1 6= z2 ∧ ψ)))

Expressible in I/E Logic (dep atom expressible).
M |=X φ ∨V ψ ⇔ ∃YZ s.t.

1 X = Y ∪ Z ;
2 M |=Y φ, M |=Z ψ;
3 For all s, s′ ∈ X s.t. s ≡V s′,

s ∈ Y ⇔ s′ ∈ Y ,
s ∈ Z ⇔ s′ ∈ Z .
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Independence Atoms in I/E Logic

Independence atoms in I/E (simple case)
y ⊥x z is equivalent to the expression

∀p1p2p3((p1p2 | xy) ∨~p (p1p3 | xz) ∨~p p1p2p3 ⊆ xyz).

Proof (Left to Right).

Suppose M |=X y ⊥x z, let h ∈ X [M/p1p2p3].
If ∀s ∈ X , s(xy) 6= h(p1p2), h ∈ Y1: M |=Y1 (p1p2 | xy);
If ∀s ∈ X , s(xz) 6= h(p1p3), h ∈ Y2: M |=Y2 (p1p3 | xz).
Otherwise, h ∈ Y3: M |=Y3 (p1p2p3 ⊆ xyz).

Pietro Galliani Inclusion and exclusion atoms in team semantics



Non-Functional Dependencies
Semantics

Expressivity
Definability in I/E Logic

Exclusion Logic
Inclusion/Exclusion Logic

Independence Atoms in I/E Logic

Independence atoms in I/E (simple case)
y ⊥x z is equivalent to the expression

∀p1p2p3((p1p2 | xy) ∨~p (p1p3 | xz) ∨~p p1p2p3 ⊆ xyz).

Proof (Left to Right).

Suppose M |=X y ⊥x z, let h ∈ X [M/p1p2p3].
If ∀s ∈ X , s(xy) 6= h(p1p2), h ∈ Y1: M |=Y1 (p1p2 | xy);
If ∀s ∈ X , s(xz) 6= h(p1p3), h ∈ Y2: M |=Y2 (p1p3 | xz).
Otherwise, h ∈ Y3: M |=Y3 (p1p2p3 ⊆ xyz).

Pietro Galliani Inclusion and exclusion atoms in team semantics



Non-Functional Dependencies
Semantics

Expressivity
Definability in I/E Logic

Exclusion Logic
Inclusion/Exclusion Logic

Independence Atoms in I/E Logic

Independence atoms in I/E (simple case)
y ⊥x z is equivalent to the expression

∀p1p2p3((p1p2 | xy) ∨~p (p1p3 | xz) ∨~p p1p2p3 ⊆ xyz).

Proof (Left to Right).

Suppose M |=X y ⊥x z, let h ∈ X [M/p1p2p3].
If ∀s ∈ X , s(xy) 6= h(p1p2), h ∈ Y1: M |=Y1 (p1p2 | xy);
If ∀s ∈ X , s(xz) 6= h(p1p3), h ∈ Y2: M |=Y2 (p1p3 | xz).
Otherwise, h ∈ Y3: M |=Y3 (p1p2p3 ⊆ xyz).

Pietro Galliani Inclusion and exclusion atoms in team semantics



Non-Functional Dependencies
Semantics

Expressivity
Definability in I/E Logic

Exclusion Logic
Inclusion/Exclusion Logic

Independence Atoms in I/E Logic

Independence atoms in I/E (simple case)
y ⊥x z is equivalent to the expression

∀p1p2p3((p1p2 | xy) ∨~p (p1p3 | xz) ∨~p p1p2p3 ⊆ xyz).

Proof (Left to Right).

Suppose M |=X y ⊥x z, let h ∈ X [M/p1p2p3].
If ∀s ∈ X , s(xy) 6= h(p1p2), h ∈ Y1: M |=Y1 (p1p2 | xy);
If ∀s ∈ X , s(xz) 6= h(p1p3), h ∈ Y2: M |=Y2 (p1p3 | xz).
Otherwise, h ∈ Y3: M |=Y3 (p1p2p3 ⊆ xyz).

Pietro Galliani Inclusion and exclusion atoms in team semantics



Non-Functional Dependencies
Semantics

Expressivity
Definability in I/E Logic

Exclusion Logic
Inclusion/Exclusion Logic

Independence Atoms in I/E Logic

Proof (Right to Left).

Suppose M 6|=X y ⊥x z: ∃s, s′ ∈ X s.t s(x) = s′(x), but
s′′ ∈ X ⇒ s′′(xy) 6= s(xy) or s′′(xz) 6= s′(xz).

m1 = s(x) = s′(x), m2 = s(y), m3 = s′(z).

h = s[m1/p1][m2/p2][m3/p3], h = s[m1/p1][m2/p2][m3/p3].

1 h,h′ ∈ Y1, M |=Y1 p1p2 | xy : NO, h(xy) = h(p1p2);
2 h,h′ ∈ Y2, M |=Y2 p1p3 | xz: NO, h′(xz) = h′(p1p3);
3 h,h′ ∈ Y3, M |=Y3 p1p2p3 ⊆ xyz: NO, contradiction.
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Inclusion atoms in I
~t1 ⊆~t2 is equivalent to

∀u1u2~z((~z 6=~t1 ∧ ~z 6=~t2) ∨ (u1 6= u2 ∧ ~z 6=~t2)∨
∨ ((u1 = u2 ∨ ~z =~t2) ∧ ~z ⊥∅ u1u2)).
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Inclusion atoms in I (simple case)

x ⊆ y ≡ ∀u1u2z((z 6= x ∧ z 6= y) ∨ (u1 6= u2 ∧ z 6= y)∨
∨ ((u1 = u2 ∨ z = y) ∧ z ⊥∅ u1u2)).

Proof (Left to Right).

Y = {s[m1/u1][m2/u2][m3/z] : s ∈ X ,m1 = m2 and
and m3 ∈ {s(x), s(y)}, or m1 6= m2 and m3 = s(y)}.

If I show that Y |= z ⊥∅ u1u2, done. Take s, s′ ∈ Y .
If s(z) = s(y), s[s′(u1)/u1][s′(u2)/u2] ∈ Y ;
If s(z) = s(x), ∃s′′ ∈ X , s′′(y) = s(x);

Then s′′[s′(u1)/u1][s′(u2)/u2] ∈ Y , done.
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Inclusion Atoms in I

Inclusion atoms in I (simple case)

x ⊆ y ≡ ∀u1u2z((z 6= x ∧ z 6= y) ∨ (u1 6= u2 ∧ z 6= y)∨
∨ ((u1 = u2 ∨ z = y) ∧ z ⊥∅ u1u2)).

Proof (Right to Left).

s ∈ X , h = s[0/u1][0/u2][s(x)/z], h′ = s[0/u1][1/u2][s(y)/z].
h,h′ ∈ Y , Y |= z ⊥∅ u1u2?
Then ∃h′′, h′′(u1) = 0, h′′(u2) = 1, h′′(z) = h(z) = s(x).
But then h′′(y) = h′′(z) = s(x).
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Definability in I/E Logic

From I/E Logic to Σ1
1

For every formula φ ∈ I/E there exists a sentence φ′ ∈ Σ1
1 such

that M |=X φ if and only if M,Rel(X ) |= φ′ for all suitable M and
all nonempty X .

From Σ1
1 to I/E Logic

For every sentence φ′(R) ∈ Σ1
1 there exists a formula φ ∈ I/E

such that M |=X φ if and only if M,Rel(X ) |= φ′ for all suitable M
and all nonempty X .

Thanks to Juha Kontinen for pointing out this requirement!
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Corollary: Definability on Independence Logic

From Independence Logic to Σ1
1

For every formula φ ∈ I there exists a sentence φ′ ∈ Σ1
1 such

that M |=X φ if and only if M,Rel(X ) |= φ′ for all suitable M and
all nonempty X .

From Σ1
1 to Independence Logic

For every sentence φ′(R) ∈ Σ1
1 there exists a formula φ ∈ I

such that M |=X φ if and only if M,Rel(X ) |= φ′ for all suitable M
and all nonempty X .
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Left to Right

From I/E Logic to Σ1
1

For every formula φ ∈ I/E there exists a sentence φ′ ∈ Σ1
1 such

that M |=X φ if and only if M,Rel(X ) |= φ′ for all suitable M and
all nonempty X .

Proof.
By structural induction over φ (easy).
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From I/E Logic to Σ1
1

For every formula φ ∈ I/E there exists a sentence φ′ ∈ Σ1
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Right to Left

From Σ1
1 to I/E Logic

For every sentence φ′(R) ∈ Σ1
1 there exists a formula φ ∈ I/E

such that M |=X φ if and only if M,Rel(X ) |= φ′ for all suitable M
and all nonempty X .

Proof.
Similar to the ones in KV 2009 and KN 2009.
Write φ′(R) as ∃R′∃~f ∀~z((R′~x ↔ R~x) ∧ ψ(R′, ~z)) where ~x
subsequence of ~z,
ψ quantifier free, R not in ψ, each fi only as fi(~wi) for some fixed
~wi ⊆ ~z, R′ only as R′~x .
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Right to Left

Proof (continued).

Write φ′(R) as ∃R′∃~f ∀~z((R′~x ↔ R~x) ∧ ψ(R′, ~z)) where ~x
subsequence of ~z,
ψ quantifier free, R not in ψ, each fi only as fi(~wi) for some fixed
~wi ⊆ ~z, R′ only as R′~x .
Then M,Rel(X ) |= φ′ if and only if

M,Rel(X ) |= ∃g1g2∃~f ∀~z((f1(~x) = f2(~x)↔ R~x) ∧ ψ′(~z))

where ψ′ = ψ[f1~x = f2~x/R~x ].
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Right to Left

Proof (continued).

φ′ ≡ ∃g1g2∃~f ∀~z((g1(~x) = g2(~x)↔ R~x) ∧ ψ′(~z))

where ψ′ = ψ[g1~x = g2~x/R~x ].
Then, if X nonempty, Dom(X ) = ~y , M,Rel(X ) |= φ′ iff

M |=X∀~z∃u1u2~v(

 2∧
i=1

=(~x ,ui) ∧
∧

j

=(~wj , vj)

∧
∧ ((~x ⊆ ~y ∧ u1 = u2) ∨ (~x | ~y ∧ u1 6= u2)) ∧ θ)

where θ is ψ′[u1/g1~x ][u2/g2~x ][~w/~f ~w ].
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Right to Left

Proof (continued).

Suppose that, for all s with domain ~z,

M,Rel(X ),g1,g2,~f |= (g1(~x) = g2(~x)↔ R~x) ∧ ψ′(~z).

Extend X to Y choosing the u1, u2, ~v according to g1, g2, ~f .
M |=Y

∧2
i=1 =(~x ,ui) ∧

∧
j =(~wj , vj): obvious;

M |=Y θ: by construction;
M |=Y (~x ⊆ ~y ∧ u1 = u2) ∨ (~x | ~y ∧ u1 6= u2):
If u1 = u2, ~x ∈ Rel(X ), so ~x ⊆ ~y ;
If u1 6= u2, ~x 6∈ Rel(X ), so ~x | ~y .
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Proof (continued).

Conv., suppose X nonempty, Y = X [M/~z][G1/u1][G2/u2][~F/~v ],

M |=Y

2∧
i=1

=(~x ,ui) ∧
∧

j

=(~wj , vj),

M |=Y (~x ⊆ ~y ∧ u1 = u2) ∨ (~x | ~y ∧ u1 6= u2),

M |=Y θ.

Choose g1(~x),g2(~x),~f (~w) according to G1,G2, ~F .
Let s be any assignment, domain = ~z.
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Proof (continued).

Choose g1(~x),g2(~x),~f (~w) according to G1,G2, ~F .
Let s be any assignment, domain = ~z.

M,Rel(R),g1,g2,~f |=s ψ
′: Take h ∈ X . Then

h[s/~z][g1/u1][g2/u2][~f/~v ] ∈ Y , M |=Y θ.

M,Rel(R),g1,g2,~f |=s g1(~x) = g2(~x)↔ R~x :
Suppose g1(~x) = g2(~x), let h ∈ X .
Consider o = h[s/~z][g1/u1][g2/u2][~f/~v ]:
o ∈ Y1,M |=Y1

~x ⊆ ~y . So ∃o′ ∈ Y1, o′(~y) = o(~x), so
s(~x) = o(~x) ∈ Rel(X ).
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Proof (finished).

Choose g1(~x),g2(~x),~f (~w) according to G1,G2, ~F .
Let s be any assignment, domain = ~z.

M,Rel(R),g1,g2,~f |=s g1(~x) = g2(~x)↔ R~x :
Suppose g1(~x) 6= g2(~x), let h ∈ X .
Consider o = h[s/~z][g1/u1][g2/u2][~f/~v ]:
o ∈ Y2,M |=Y2

~x | ~y . So ∀o′ ∈ Y2, o′(~y) 6= o(~x).
But for all h′ ∈ X , o′ = h′[s/~z][g1/u1][g2/u2][~f/~v ] ∈ Y2;

then, for all such h′,
s(~x) = o(~x) 6= o′(~y) = h′(~y).

Therefore, s(~x) 6∈ Rel(X ).
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