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Independence Logic

Independence Atoms (Grädel, Väänänen)

M |=X =~t2 ⊥~t1
~t3 if and only if, for all s, s′ ∈ X such that

~t1〈s〉 =~t1〈s′〉 there exists a s′′ ∈ X such that

~t1〈s
′′〉~t2〈s

′′〉 =~t1〈s〉~t2〈s〉, ~t1〈s
′′〉~t3〈s

′′〉 =~t1〈s
′〉~t3〈s

′〉.

Independence Logic I

I = First Order Logic + Independence Atoms
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Properties of Independence Logic

Properties of Independence Logic (Grädel, Väänänen)

Contains Dependence Logic;

As expressive as Dependence Logic over sentences;

More expressive on open formulas (no downwards
closure).

Open Problem

What classes of teams are definable by open formulas in
Independence Logic I?

This talk will answer this.
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Tuple Existence Logic

Tuple Existence Atoms (Inclusion Dependencies)

M |=X =~t1 @~t2 if and only if, for all s ∈ X there exists a s′ ∈ X
such that

~t1〈s〉 =~t2〈s
′〉;

Negated Tuple Existence Atoms (Exclusion Dependencies)

M |=X = ¬(~t1 @~t2) if and only if, for all s, s′ ∈ X ,

~t1〈s〉 6=~t2〈s
′〉.
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Tuple Existence Logic

Tuple Existence Logic T

T + = First Order Logic + Inclusion atoms~t1 @~t2;

T − = First Order Logic + Exclusion atoms ¬(~t1 @~t2);

T = First Order Logic + Inclusion and Exclusion atoms.

Pietro Galliani Independence logic and tuple existence atoms, part 2



Summary of Last Week
Definability in Tuple Existence Logic

Strict and Lax Semantics
Inclusion Logic

Exclusion Logic and Dependence Logic

Dependence atoms in T −

The dependence atom =(t1 . . . tn) is equivalent to the
expression

∀z(z = tn ∨ ¬(t1 . . . tn−1z @ t1 . . . tn−1tn)).

Exclusion atoms in D

There exists a formula φ in Dependence Logic such that

M |=X φ if and only if M |=X ¬(~t1 @~t2)
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Exclusion Logic and Dependence Logic

Dependence Logic is Exclusion Logic

For every formula φ ∈ D there exists a ψ ∈ T − such that

M |=X φ⇔ M |=X ψ;

For every formula ψ ∈ T − there exists a φ ∈ D such that

M |=X ψ ⇔ M |=X φ.
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Tuple Existence Logic and Independence Logic

Independence atoms in T

~t2 ⊥~t1
~t3 is equivalent to

∀~p1~p2~p3(¬(~p1~p2 @~t1~t2) ∨~p1~p2~p3
¬(~p1~p3 @~t1~t3)∨~p1~p2~p3

∨~p1~p2~p3
~p1~p2~p3 @~t1~t2~t3).

Tuple Existence Atoms in I

~t1 @~t2 is equivalent to

∀u1u2~z((~z 6=~t1 ∧ ~z 6=~t2) ∨ (u1 6= u2 ∧ ~z 6=~t2)∨

∨ ((u1 = u2 ∨ ~z =~t2) ∧ ~z ⊥∅ u1u2)).
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Independence Logic is Tuple Existence Logic

For every formula φ ∈ I there exists a ψ ∈ T such that

M |=X φ⇔ M |=X ψ;

For every formula ψ ∈ T there exists a φ ∈ I such that

M |=X ψ ⇔ M |=X φ.
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Definability in Tuple Existence Logic

From Tuple Existence Logic to Σ1
1

For every formula φ ∈ T there exists a sentence φ′ ∈ Σ1
1 such

that M |=X φ if and only if M,Rel(X ) |= φ′ for all suitable M and
all nonempty X .

From Σ1
1 to Tuple Existence Logic

For every sentence φ′(R) ∈ Σ1
1 there exists a formula φ ∈ I

such that M |=X φ if and only if M,Rel(X ) |= φ′ for all suitable M
and all nonempty X .

Thanks to Juha Kontinen for pointing out this requirement!
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Corollary: Definability on Independence Logic

From Independence Logic to Σ1
1

For every formula φ ∈ I there exists a sentence φ′ ∈ Σ1
1 such

that M |=X φ if and only if M,Rel(X ) |= φ′ for all suitable M and
all nonempty X .

From Σ1
1 to Independence Logic

For every sentence φ′(R) ∈ Σ1
1 there exists a formula φ ∈ I

such that M |=X φ if and only if M,Rel(X ) |= φ′ for all suitable M
and all nonempty X .
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Left to Right

From Tuple Existence Logic to Σ1
1

For every formula φ ∈ T there exists a sentence φ′ ∈ Σ1
1 such

that M |=X φ if and only if M,Rel(X ) |= φ′ for all suitable M and
all nonempty X .

Proof.
By structural induction over φ.

If φ is a first order literal,

M |=X φ⇔ M,Rel(X ) |= ∀~x(R~x → φ);
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Proof (Continued).

If φ is an inclusion dependency~t1 @~t2, M |=X φ iff

M,Rel(X ) |= ∀~x1(R~x1 → ∃~x2(R~x2 ∧~t1〈~x1〉 =~t2〈~x2〉));

If φ is ψ1 ∨ ψ2, let ψ∗
1(R) and ψ∗

2(R) be the corresponding
Σ1

1 sentences. Then

M |=X φ⇔M,Rel(X ) |= ∃Y∃Z (Y ∪ Z = R ∧ Y ∩ Z = ∅∧

∧ ψ∗
1(Y ) ∧ ψ∗

2(Z )).

Pietro Galliani Independence logic and tuple existence atoms, part 2



Summary of Last Week
Definability in Tuple Existence Logic

Strict and Lax Semantics
Inclusion Logic

Proof (Finished).

If φ is ψ1 ∧ ψ2, let ψ∗
1(R) and ψ∗

2(R) be the corresponding
Σ1

1 sentences. Then

M |=X φ⇔ M,Rel(X ) |= ψ∗
1(R) ∧ ψ∗

2(R)) :

If φ is ∃xn+1ψ, M |=X φ if and only if

M,Rel(X ) |= ∃Z (∀~x(R~x → ∃=1xn+1 Z~xxn+1) ∧ ψ
∗(Z ));

If φ is ∀xn+1ψ, M |=X φ if and only if

M,Rel(X ) |= ∃Z (∀~x(R~x → ∀xn+1 Z~xxn+1) ∧ ψ
∗(Z )).
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Right to Left

From Σ1
1 to Tuple Existence Logic

For every sentence φ′(R) ∈ Σ1
1 there exists a formula φ ∈ I

such that M |=X φ if and only if M,Rel(X ) |= φ′ for all suitable M
and all nonempty X .

Proof.

Similar to the ones in KV 2009 and KN 2009.
Write φ′(R) as ∃R′∃~f ∀~z((R′~x ↔ R~x) ∧ ψ(R′, ~z)) where ~x
subsequence of ~z,
ψ quantifier free, R not in ψ, each fi only as fi(~wi) for some fixed
~wi ⊆ ~z, R′ only as R′~x .
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Right to Left

Proof (continued).

Write φ′(R) as ∃R′∃~f ∀~z((R′~x ↔ R~x) ∧ ψ(R′, ~z)) where ~x
subsequence of ~z,
ψ quantifier free, R not in ψ, each fi only as fi(~wi) for some fixed
~wi ⊆ ~z, R′ only as R′~x .
Then M,Rel(X ) |= φ′ if and only if

M,Rel(X ) |= ∃g1g2∃~f ∀~z((f1(~x) = f2(~x) ↔ R~x) ∧ ψ′(~z))

where ψ′ = ψ[f1~x = f2~x/R~x ].
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Right to Left

Proof (continued).

φ′ ≡ ∃g1g2∃~f ∀~z((g1(~x) = g2(~x) ↔ R~x) ∧ ψ′(~z))

where ψ′ = ψ[g1~x = g2~x/R~x ].
Then, if X nonempty, Dom(X ) = ~y , M,Rel(X ) |= φ′ iff

M |=X∀~z∃u1u2~v(





2
∧

i=1

=(~x , ui) ∧
∧

j

=(~wj , vj)



∧

∧ ((~x @ ~y ∧ u1 = u2) ∨ (¬~x @ ~y ∧ u1 6= u2)) ∧ θ)

where θ is ψ′[u1/g1~x ][u2/g2~x ][~w/~f ~w ].
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Right to Left

Proof (continued).

Suppose that, for all s with domain ~z,

M,Rel(X ), g1, g2,~f |= (g1(~x) = g2(~x) ↔ R~x) ∧ ψ′(~z).

Extend X to Y choosing the u1, u2, ~v according to g1, g2, ~f .

M |=Y
∧2

i=1 =(~x , ui) ∧
∧

j =(~wj , vj): obvious;

M |=Y θ: by construction;

M |=Y (~x @ ~y ∧ u1 = u2) ∨ (¬~x @ ~y ∧ u1 6= u2):
If u1 = u2, ~x ∈ Rel(X ), so ~x @ ~y ;
If u1 6= u2, ~x 6∈ Rel(X ), so ¬~x @ ~y .
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Right to Left

Proof (continued).

Conv., suppose X nonempty, Y = X [M/~z][G1/u1][G2/u2][~F/~v ],

M |=Y

2
∧

i=1

=(~x , ui) ∧
∧

j

=(~wj , vj),

M |=Y (~x @ ~y ∧ u1 = u2) ∨ (¬~x @ ~y ∧ u1 6= u2),

M |=Y θ.

Choose g1(~x), g2(~x),~f (~w) according to G1,G2, ~F .
Let s be any assignment, domain = ~z.
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Right to Left

Proof (continued).

Choose g1(~x), g2(~x),~f (~w) according to G1,G2, ~F .
Let s be any assignment, domain = ~z.

M,Rel(R), g1, g2,~f |=s ψ
′: Take h ∈ X . Then

h[s/~z][g1/u1][g2/u2][~f/~v ] ∈ Y , M |=Y θ.

M,Rel(R), g1, g2,~f |=s g1(~x) = g2(~x) ↔ R~x :
Suppose g1(~x) = g2(~x), let h ∈ X .
Consider o = h[s/~z][g1/u1][g2/u2][~f/~v ]:
o ∈ Y1,M |=Y1

~x @ ~y . So ∃o′ ∈ Y1, o′(~y) = o(~x), so
s(~x) = o(~x) ∈ Rel(X ).
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Right to Left

Proof (finished).

Choose g1(~x), g2(~x),~f (~w) according to G1,G2, ~F .
Let s be any assignment, domain = ~z.

M,Rel(R), g1, g2,~f |=s g1(~x) = g2(~x) ↔ R~x :
Suppose g1(~x) 6= g2(~x), let h ∈ X .
Consider o = h[s/~z][g1/u1][g2/u2][~f/~v ]:
o ∈ Y2,M |=Y2 ¬~x @ ~y . So ∀o′ ∈ Y2, o′(~y) 6= o(~x).
But for all h′ ∈ X , o′ = h′[s/~z][g1/u1][g2/u2][~f/~v ] ∈ Y2;

then, for all such h′,
s(~x) = o(~x) 6= o′(~y) = h′(~y).

Therefore, s(~x) 6∈ Rel(X ).
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Definability in Tuple Existence Logic

Equality Generating Dependencies

∀~x(R~t1 ∧ . . . ∧ R~tn → tn+1 = tn+2)

Tuple Generating Dependencies

∀~x(R~t1 ∧ . . . ∧ R~tn → ∃~yR~t ′)

Corollary

All Tuple Generating and Equality Generating Dependencies
are expressible in Independence Logic (or in T ).
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Two Semantics for Disjuction

A lax semantics

M |=X ψ1∨
Lψ2 ⇔ ∃Y ,Z s.t. X = Y ∪Z ,M |=Y ψ1 and M |=Z ψ2;

A strict semantics

M |=X ψ1 ∨
S ψ2 ⇔∃Y ,Z s.t. X = Y ∪ Z ,X ∩ Y = ∅,

M |=Y ψ1 and M |=Z ψ2;

D is usually given with ∃L (or even: X⊆Y ∪ Z !).
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In Dependence Logic, Lax = Strict

No difference for D (or for T −)

If ψ1, ψ2 ∈ D, M |=X ψ1 ∨
S ψ2 iff M |=X ψ1 ∨

L ψ2.

Proof.

If M |=X ψ1 ∨
S ψ2, M |=X ψ1 ∨

L ψ2;

If M |=X ψ1 ∨
L ψ2 then X = X1 ∪ X2, M |=X1 ψ1, M |=X2 ψ2.

Take Y = X2\X1: by downwards closure, M |=Y ψ2,
X1 ∪ Y = X , so M |=X ψ1 ∨

S ψ2.
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In Inclusion or Independence Logic, Lax 6= Strict

Different for T + (and for T , and for I)!

There exist M, X and ψ1, ψ2 ∈ T + such that

M |=X ψ1 ∨
L ψ2 but M 6|=X ψ1 ∨

S ψ2.

Proof.

Let X =

x y z
s0 0 1 2
s1 1 0 3
s2 4 3 0

and Dom(M) = {0 . . . 4}. Then

M |=X (x @ y) ∨L (y @ z), M 6|=X (x @ y) ∨S (y @ z).
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In Inclusion or Independence Logic, Lax 6= Strict

Proof (continued).

X =

x y z
s0 0 1 2
s1 1 0 3
s2 4 3 0

M |=X (x @ y) ∨L (y @ z):
Let Y = {s0, s1},Z = {s1, s2}.
M |=Y x @ y , M |=Z y @ z.
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In Inclusion or Independence Logic, Lax 6= Strict

Proof (finished).

X =

x y z
s0 0 1 2
s1 1 0 3
s2 4 3 0

M 6|=X (x @ y) ∨L (y @ z):
Let X = Y ∪ Z , M |=Y x @ y , M |=Z y @ z.
s2 6∈ Y , so s2 ∈ Z , so s1 ∈ Z ;
s0 6∈ Z , so s0 ∈ Y , so s1 ∈ Y .

So Y ∩ Z 6= ∅.
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From Strict to Lax Disjunction

From strict to lax

If z not in ψ1, ψ2,

M |=X ψ1 ∨
L ψ2 ⇔ M |=X ∀z(ψ1 ∨

S ψ2).

Proof.

Let 0 ∈ Dom(M), assume |Dom(M)| ≥ 2.
Suppose X = Y ∪ Z , M |=Y ψ1, M |=Z ψ2, and let W = Y ∩ Z .

Now define

Y ′ = (Y\W )[M/z] ∪ (W [0/z]),Z ′ = Z [M/z]\Y ′.

Then Y ′ ∩ Z ′ = ∅, Y ′ ∪ Z ′ = X [M/z], M |=Y ′ ψ1, M |=Z ′ ψ2.
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Trivial Quantification and ∨S

Corollary: ∨S is not invariant under trivial quantifications!

There exist formulas ψ1 and ψ2 ∈ T , such that z does not occur
in ψ1, ψ2 but

ψ1 ∨
S ψ2 6≡ ∀z(ψ1 ∨

S ψ2).
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Trivial Quantification and ∨L

∨L invariant under trivial quantification

For all ψ1 and ψ2 in T and all z 6∈ ψ1, ψ2,

ψ1 ∨
S ψ2 6≡ ∀z(ψ1 ∨

S ψ2).

Proof.

Obvious from definition: if X = Y ∪ Z , M |=Y ψ1, M |=Y ψ2, then
X [M/z] = Y [M/z] ∪ Z [M/z], M |=Y [M/z] ψ1, M |=Z [M/z] ψ2.

This strongly suggests that we want ∨L in our semantics.
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Two Semantics for Existentials

A strict semantics

M |=X ∃Sxψ ⇔ ∃F : X → M s.t. M |=X [F/x ] ψ,

for X [F/x ] = {s[F (s)/x ] : s ∈ X};

A lax semantics

M |=X ∃Lxψ ⇔ ∃F : H → P(M)\{∅} s.t. M |=X [F/x ] ψ,

for X [H/x ] = {s[m/x ] : s ∈ X ,m ∈ H(s)}.

D is usually given with ∃S.

Pietro Galliani Independence logic and tuple existence atoms, part 2



Summary of Last Week
Definability in Tuple Existence Logic

Strict and Lax Semantics
Inclusion Logic

Disjunction
Existential Quantification
Recovering Strict Semantics

Two Semantics for Existentials

A strict semantics

M |=X ∃Sxψ ⇔ ∃F : X → M s.t. M |=X [F/x ] ψ,

for X [F/x ] = {s[F (s)/x ] : s ∈ X};

A lax semantics

M |=X ∃Lxψ ⇔ ∃F : H → P(M)\{∅} s.t. M |=X [F/x ] ψ,

for X [H/x ] = {s[m/x ] : s ∈ X ,m ∈ H(s)}.

D is usually given with ∃S.

Pietro Galliani Independence logic and tuple existence atoms, part 2



Summary of Last Week
Definability in Tuple Existence Logic

Strict and Lax Semantics
Inclusion Logic

Disjunction
Existential Quantification
Recovering Strict Semantics

In Dependence Logic, Strict = Lax

No difference for D (or for T −)

If ψ ∈ D, M |=X ∃Sxψ iff M |=X ∃Lxψ (using AC).

Proof.

If M |=X ∃Sxψ, M |=X ∃Lxψ;

If M |=X ∃Lxψ, M |=X [H/x ] ψ for some H : X → P(M)\{∅}.
Let F : X → M be such that F (s) ∈ H(s) for all s ∈ X : then
X [F/x ] ⊆ X [H/x ], so by downward closure M |=X [F/x ] ψ.
Then M |=X ∃Sxψ, as required.
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In Independence and Inclusion Logic, Strict 6= Lax

Different for T + (and for T , and for I)!

There exist M, X and ψ ∈ T + such that

M |=X ∃Lxψ but M 6|=X ∃Sψ.

Proof.

Let Dom(M) = {0, 1, 2}, PM = {(0, 2), (1, 0), (1, 1)}, and
X = {s0, s1} for s0 = (y : 0), s1 = (y : 1).
Then
M |=X ∃Lx(y @ x ∧ Pyx) but M 6|=X ∃Sx(y @ x ∧ Pyx).

Pietro Galliani Independence logic and tuple existence atoms, part 2



Summary of Last Week
Definability in Tuple Existence Logic

Strict and Lax Semantics
Inclusion Logic

Disjunction
Existential Quantification
Recovering Strict Semantics

In Independence and Inclusion Logic, Strict 6= Lax

Proof (continued).

Dom(M) = {0, 1, 2}, PM = {(0, 2), (1, 0), (1, 1)}, and
X = {s0, s1} for s0 = (y : 0), s1 = (y : 1).

M |=X ∃Lx(y @ x ∧ Pyx): let H : X → P(M) be such that
H(s0) = {2}, H(s1) = {0, 1}. Then

X [H/x ] =

y x
s′

0 0 2
s′

1 1 0
s′

2 1 1.

and this team satisfies y@x and Pyx .
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In Independence and Inclusion Logic, Strict 6= Lax

Proof (finished).

Dom(M) = {0, 1, 2}, PM = {(0, 2), (1, 0), (1, 1)}, and
X = {s0, s1} for s0 = (y : 0), s1 = (y : 1).

M 6|=X ∃Sx(y @ x ∧ Pyx): take any F : X → M, and
consider X [F/x ].
If F (s0) 6= 2, M 6|=X [F/x ] Pyx ; so F (s0) = 2.
But then

X [F/x ] =
y x

s′
0 0 2

s′
1 1 F (s1)

and M 6|=X [F/x ] y @ x , since F (s1) 6= 0 or F (s1) 6= 1.
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From Strict to Lax Existentials

From strict to lax semantics

If z not in ψ and z 6= x ,

M |=X ∃Lxψ ⇔ M |=X ∀z∃Lxψ.
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From Strict to Lax Existentials

Proof.

Suppose that for H : X → P(X )\{∅}, M |=X [H/x ] ψ.
For every s ∈ X , let ms ∈ H(s); then define F : X [M/z] → M as

F (s[m/z]) =
{

m if m ∈ H(s);
ms otherwise.

Forgetting the variable z, X [M/z][F/x ] is precisely X [H/z];
hence,
M |=X [M/z][F/x ] ψ, as required (other direction is trivial).
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Trivial Quantification and ∃S

Corollary: ∃S is not invariant under trivial quantifications!

There exists a ψ ∈ T , such that z does not occur in it but

∃Sxψ 6≡ ∀z∃Sxψ.
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Trivial Quantification and ∃L

∃L invariant under trivial quantification

For all ψ in T and all z 6∈ ψ,

∃Lxψ ≡ ∀z∃Lsψ.

Proof.

If for H : X [M/z] → P(M) it holds that M |=X [M/z][H/x ] ψ, define
H ′ : X → P(M) as

H ′(s) = {m ∈ M : ∃m′ ∈ M s.t. m ∈ H(s[m′/z])}.

Then M |=X [H′/z] ψ, as required.

This strongly suggests that we want ∃L in our semantics.
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Strict Existentials on a Fixed Domain

Recovering strict existentials

Let ~x be a fixed tuple of variables. Then, for all teams X with
Dom(X ) = ~x , for all z and all ψ ∈ T ,

M |=X ∃Szψ ⇔ M |=X ∃Lz(=(~x , z) ∧ ψ).

Recovering strict disjunctions

Let ~x be a fixed tuple of variables. Then, for all teams X with
Dom(X ) = ~x , for all z and all ψ1, ψ2 ∈ T ,

M |=X ψ1∨
Sψ2 ⇔ M |=X ∃Sz1z2((z1 = z2∧ψ1)∨

L(z1 6= z2∧ψ2)).
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Recovering Strict Operators in T and I

Corollary

As long as the domain of the team X is fixed, we can use the
strict semantics for T or I, and the result will be transferable to
the lax one.

This does not necessarily hold for Inclusion Logic T +!

Convention: T + has the lax semantics, unless otherwise
specified.
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Another question

What we know so far

FOL ⊆ T − ≡ D ⊆ I ≡ T ;

FOL ⊆ T + ⊆ I ≡ T .

What about T +?

Is it stronger than First Order Logic?

Is it contained in Dependence Logic?

Does it contain Dependence Logic?

Is it Independence Logic and T already?
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T + is not downward closed

A simple Inclusion Logic formula

M |=X ∀y(y @ x) if and only if X (x) ∈ {∅,M}.

Proof.

If X 6= ∅,

M |=X ∀y(y @ x) ⇔ M |=X [M/y ] y @ x ⇔

⇔ ∀m ∈ M∃s ∈ X s.t. s(x) = m ⇔ X (x) = M.
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T + is not downward closed

Corollary

First Order Logic is properly contained in T +;

Dependence Logic does not contain T +.
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Inclusions between logics of imperfect information

FO

T + T − ≡ D

T ≡ I

⊆ ⊃

⊃ ⊂

?
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A Closure Property for T +

Theorem

Let φ ∈ T +. Then, for all M and all X ,Y ,

M |=X φ, M |=Y φ⇒ M |=X∪Y φ.

Proof.
By induction over φ.

If φ is a first order literal, obvious;

If φ is~t1 @~t2, take s ∈ X ∪ Y .
If s ∈ X , since M |=X ~t1@~t2 there is s′ ∈ X ,~t1〈s〉 =~t2〈s′〉;
If s ∈ Y , since M |=Y ~t1@~t2 there is s′ ∈ Y ,~t1〈s〉 =~t2〈s′〉.

So ∃s′ ∈ X ∪ Y ,~t1〈s〉 =~t2〈s′〉, and M |=X∪Y
~t1 @~t2;
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A Closure Property for T +

Proof (continued):

If M |=X ψ1 ∨ ψ2 and M |=Y ψ1 ∨ ψ2, then X = X1 ∪ X2,
Y = Y1 ∪ Y2 and

M |=Xi ψi , M |=Yi ψi for i = 1, 2.

So M |=X1∪Y1 ψ1, M |=X2∪Y2 ψ2 and M |=X∪Y ψ1 ∨ ψ2.

If M |=X ψ1 ∧ ψ2 and M |=Y ψ1 ∧ ψ2 then

M |=X ψ1,M |=X ψ2,M |=Y ψ1,M |=Y ψ2.

Then M |=X∪Y ψ1, M |=X∪Y ψ2 and M |=X∪Y ψ1 ∧ ψ2.
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A Closure Property for T +

Proof (finished):

If M |=X ∃zφ and M |=Y ∃zψ, then M |=X [H1/z] ψ and
M |=Y [H2/z] ψ for some F ,G. By induction hypothesis,
M |=X [H1/z]∪H2[G/z] ψ. Now let H = H1 ∪ H2: then
(X ∪ Y )[H/z] = X [H1/z] ∪ Y [H2/z] and hence
M |=X∪Y ∃zψ.

If M |=X ∀zψ and M |=Y ∀zψ, M |=X [M/z] ψ and
M |=X [M/z] ψ. But (X ∪ Y )[M/z] = X [M/z] ∪ Y [M/z] and
M |=X [M/z]∪Y [M/z] ψ by induction hypothesis, so
M |=X∪Y ∀zψ.
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A closure property for T +

Theorem

Let φ ∈ T + (Strict Semantics). Then, for all M and all X ,Y with
X ∩ Y = ∅,

M |=X φ, M |=Y φ⇒ M |=X∪Y φ.

Proof.
Just like the previous one.
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Dependence Logic and T +

Corollary: D 6⊆ T +

Dependence Logic is not contained in T +, and

FOL ( T+ ( T ≡ I.

Proof of the corollary:

Consider X = {(x : 0)}, Y = {(x : 1)}.
Then M |=X=(x) and M |=Y=(x), but

M 6|=X∪Y=(x).

Hence, constancy atoms are not expressible in Inclusion
Logic.
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Inclusions between logics of imperfect information

FO

T + T − ≡ D

T ≡ I

⊂ ⊃

⊃ ⊂
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T + and T− for Quantifier Free Formulas

Corollary

Let φ ∈ T be quantifier-free. If φ is expressible in Dependence
Logic and in Inclusion Logic then it is expr. in FO.

Proof of the corollary:

φ expr. in Dependence Logic, so φ is downwards closed:

M |=X φ⇒ ∀s ∈ X ,M |={s} φ.

φ expr. in Inclusion Logic, so φ is closed under unions:

∀s ∈ X ,M |={s} φ⇒ M |=X φ.

Therefore φ is flat, and, by (Väänänen 2007), it is first order.
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A Conjecture: T + ∩ T − ≡ FO

Conjecture

Let φ ∈ T +, φ′ ∈ T − (or φ′ ∈ D) be such that

M |=X φ⇔ M |=X φ′

for all suitable M and X . Then there exists a φ′′ ∈ FO s.t.

φ ≡ φ′ ≡ φ′′.

Perhaps prove using Craig Interpolation (as in KV 2009)?
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