Independence logic and tuple existence atoms, part 2

Pietro Galliani

Institute for Logic, Language and Computation Universiteit van Amsterdam

Logiikan Seminaari

Outline

Summary of Last Week

- 2 Definability in Tuple Existence Logic
- Strict and Lax Semantics
 - Disjunction
 - Existential Quantification
 - Recovering Strict Semantics

< 🗇 🕨

· < 프 ► < 프 ►

Independence Logic

Independence Atoms (Grädel, Väänänen)

 $M \models_X = \vec{t}_2 \perp_{\vec{t}_1} \vec{t}_3$ if and only if, for all $s, s' \in X$ such that $\vec{t}_1 \langle s \rangle = \vec{t}_1 \langle s' \rangle$ there exists a $s'' \in X$ such that

$$\vec{t}_1 \langle s'' \rangle \vec{t}_2 \langle s'' \rangle = \vec{t}_1 \langle s \rangle \vec{t}_2 \langle s \rangle, \ \vec{t}_1 \langle s'' \rangle \vec{t}_3 \langle s'' \rangle = \vec{t}_1 \langle s' \rangle \vec{t}_3 \langle s' \rangle.$$

Independence Logic \mathcal{I}

 \mathcal{I} = First Order Logic + Independence Atoms

イロト 不得 トイヨト イヨト 二臣

Properties of Independence Logic

Properties of Independence Logic (Grädel, Väänänen)

- Contains Dependence Logic;
- As expressive as Dependence Logic over sentences;
- More expressive on open formulas (no downwards closure).

Open Problem

What classes of teams are definable by open formulas in Independence Logic \mathcal{I} ?

This talk will answer this.

イロト 不得 とくほ とくほ とう

э

Properties of Independence Logic

Properties of Independence Logic (Grädel, Väänänen)

- Contains Dependence Logic;
- As expressive as Dependence Logic over sentences;
- More expressive on open formulas (no downwards closure).

Open Problem

What classes of teams are definable by open formulas in Independence Logic \mathcal{I} ?

This talk will answer this.

ヘロト ヘ戸ト ヘヨト ヘヨト

Tuple Existence Logic

Tuple Existence Atoms (Inclusion Dependencies)

 $M \models_X = \vec{t}_1 @ \vec{t}_2$ if and only if, for all $s \in X$ there exists a $s' \in X$ such that

$$\vec{t}_1 \langle s \rangle = \vec{t}_2 \langle s' \rangle;$$

Negated Tuple Existence Atoms (Exclusion Dependencies)

 $M \models_X = \neg(\vec{t}_1 @ \vec{t}_2)$ if and only if, for all $s, s' \in X$, $\vec{t}_1 \langle s \rangle \neq \vec{t}_2 \langle s' \rangle.$

イロト 不得 トイヨト イヨト 一臣

Tuple Existence Logic

Tuple Existence Logic \mathcal{T}

- T^+ = First Order Logic + Inclusion atoms $\vec{t}_1 \otimes \vec{t}_2$;
- T^- = First Order Logic + Exclusion atoms $\neg(\vec{t}_1 \otimes \vec{t}_2)$;
- T = First Order Logic + Inclusion and Exclusion atoms.

Exclusion Logic and Dependence Logic

Dependence atoms in \mathcal{T}^-

The dependence atom $=(t_1 \dots t_n)$ is equivalent to the expression

$$\forall z(z = t_n \vee \neg (t_1 \ldots t_{n-1}z @ t_1 \ldots t_{n-1}t_n)).$$

Exclusion atoms in \mathcal{D}

There exists a formula ϕ in Dependence Logic such that

$$M \models_X \phi$$
 if and only if $M \models_X \neg(\vec{t}_1 \otimes \vec{t}_2)$

Exclusion Logic and Dependence Logic

Dependence Logic is Exclusion Logic

• For every formula $\phi \in \mathcal{D}$ there exists a $\psi \in \mathcal{T}^-$ such that

$$M \models_X \phi \Leftrightarrow M \models_X \psi;$$

• For every formula $\psi \in \mathcal{T}^-$ there exists a $\phi \in \mathcal{D}$ such that

$$\boldsymbol{M}\models_{\boldsymbol{X}}\psi\Leftrightarrow\boldsymbol{M}\models_{\boldsymbol{X}}\phi.$$

イロト イ押ト イヨト イヨト

3

Tuple Existence Logic and Independence Logic

Independence atoms in $\ensuremath{\mathcal{T}}$

 $ec{t}_2 \perp_{ec{t}_1} ec{t}_3$ is equivalent to

$$\forall \vec{p}_1 \vec{p}_2 \vec{p}_3 (\neg (\vec{p}_1 \vec{p}_2 \ @ \ \vec{t}_1 \vec{t}_2) \lor_{\vec{p}_1 \vec{p}_2 \vec{p}_3} \neg (\vec{p}_1 \vec{p}_3 \ @ \ \vec{t}_1 \vec{t}_3) \lor_{\vec{p}_1 \vec{p}_2 \vec{p}_3} \\ \lor_{\vec{p}_1 \vec{p}_2 \vec{p}_3} \vec{p}_1 \vec{p}_2 \vec{p}_3 \ @ \ \vec{t}_1 \vec{t}_2 \vec{t}_3).$$

Tuple Existence Atoms in \mathcal{I}

 $\vec{t}_1 @ \vec{t}_2$ is equivalent to

$$\forall u_1 u_2 \vec{z} ((\vec{z} \neq \vec{t}_1 \land \vec{z} \neq \vec{t}_2) \lor (u_1 \neq u_2 \land \vec{z} \neq \vec{t}_2) \lor \\ \lor ((u_1 = u_2 \lor \vec{z} = \vec{t}_2) \land \vec{z} \perp_{\emptyset} u_1 u_2)).$$

ヘロマ 人間マ 人間マ 人間マ

Tuple Existence Logic and Independence Logic

Independence Logic is Tuple Existence Logic

• For every formula $\phi \in \mathcal{I}$ there exists a $\psi \in \mathcal{T}$ such that

$$\boldsymbol{M}\models_{\boldsymbol{X}}\phi\Leftrightarrow\boldsymbol{M}\models_{\boldsymbol{X}}\psi;$$

• For every formula $\psi \in \mathcal{T}$ there exists a $\phi \in \mathcal{I}$ such that

$$M\models_{X}\psi\Leftrightarrow M\models_{X}\phi.$$

Definability in Tuple Existence Logic

From Tuple Existence Logic to Σ_1^1

For every formula $\phi \in \mathcal{T}$ there exists a sentence $\phi' \in \Sigma_1^1$ such that $M \models_X \phi$ if and only if M, $\operatorname{Rel}(X) \models \phi'$ for all suitable M and all **nonempty** X.

From Σ_1^1 to Tuple Existence Logic

For every sentence $\phi'(R) \in \Sigma_1^1$ there exists a formula $\phi \in \mathcal{I}$ such that $M \models_X \phi$ if and only if M, $\operatorname{Rel}(X) \models \phi'$ for all suitable M and all **nonempty** X.

Thanks to Juha Kontinen for pointing out this requirement!

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Definability in Tuple Existence Logic

From Tuple Existence Logic to Σ_1^1

For every formula $\phi \in \mathcal{T}$ there exists a sentence $\phi' \in \Sigma_1^1$ such that $M \models_X \phi$ if and only if M, $\operatorname{Rel}(X) \models \phi'$ for all suitable M and all **nonempty** X.

From Σ_1^1 to Tuple Existence Logic

For every sentence $\phi'(R) \in \Sigma_1^1$ there exists a formula $\phi \in \mathcal{I}$ such that $M \models_X \phi$ if and only if M, $\operatorname{Rel}(X) \models \phi'$ for all suitable M and all **nonempty** X.

Thanks to Juha Kontinen for pointing out this requirement!

・ロ と く 厚 と く 思 と く 思 と

Corollary: Definability on Independence Logic

From Independence Logic to Σ_1^1

For every formula $\phi \in \mathcal{I}$ there exists a sentence $\phi' \in \Sigma_1^1$ such that $M \models_X \phi$ if and only if M, $\operatorname{Rel}(X) \models \phi'$ for all suitable M and all **nonempty** X.

From Σ_1^1 to Independence Logic

For every sentence $\phi'(R) \in \Sigma_1^1$ there exists a formula $\phi \in \mathcal{I}$ such that $M \models_X \phi$ if and only if M, $\operatorname{Rel}(X) \models \phi'$ for all suitable M and all **nonempty** X.

イロト 不得 とくほ とくほ とう

Left to Right

From Tuple Existence Logic to Σ_1^1

For every formula $\phi \in \mathcal{T}$ there exists a sentence $\phi' \in \Sigma_1^1$ such that $M \models_X \phi$ if and only if M, Rel $(X) \models \phi'$ for all suitable M and all **nonempty** X.

Proof.

By structural induction over ϕ .

• If ϕ is a first order literal,

 $M \models_X \phi \Leftrightarrow M, \operatorname{Rel}(X) \models \forall \vec{x} (R\vec{x} \to \phi);$

Left to Right

From Tuple Existence Logic to Σ_1^1

For every formula $\phi \in \mathcal{T}$ there exists a sentence $\phi' \in \Sigma_1^1$ such that $M \models_X \phi$ if and only if M, Rel $(X) \models \phi'$ for all suitable M and all **nonempty** X.

Proof.

By structural induction over ϕ .

• If ϕ is a first order literal,

$$M \models_X \phi \Leftrightarrow M, \operatorname{Rel}(X) \models \forall \vec{x} (R\vec{x} \to \phi);$$

Proof (Continued).

• If ϕ is an inclusion dependency $\vec{t}_1 \otimes \vec{t}_2$, $M \models_X \phi$ iff

 $M, \mathsf{Rel}(X) \models \forall \vec{x}_1(R\vec{x}_1 \to \exists \vec{x}_2(R\vec{x}_2 \land \vec{t}_1 \langle \vec{x}_1 \rangle = \vec{t}_2 \langle \vec{x}_2 \rangle));$

If φ is ψ₁ ∨ ψ₂, let ψ^{*}₁(R) and ψ^{*}₂(R) be the corresponding Σ¹₁ sentences. Then

 $M \models_X \phi \Leftrightarrow M, \operatorname{Rel}(X) \models \exists Y \exists Z (Y \cup Z = R \land Y \cap Z = \emptyset \land \land \psi_1^*(Y) \land \psi_2^*(Z)).$

Proof (Finished).

If φ is ψ₁ ∧ ψ₂, let ψ^{*}₁(R) and ψ^{*}₂(R) be the corresponding Σ¹₁ sentences. Then

$$M \models_X \phi \Leftrightarrow M, \mathsf{Rel}(X) \models \psi_1^*(R) \land \psi_2^*(R))$$

• If ϕ is $\exists x_{n+1}\psi$, $M \models_X \phi$ if and only if

 $M, \operatorname{Rel}(X) \models \exists Z (\forall \vec{x} (R\vec{x} \to \exists^{=1} x_{n+1} Z \vec{x} x_{n+1}) \land \psi^*(Z));$

• If ϕ is $\forall x_{n+1}\psi$, $M \models_X \phi$ if and only if

 $M, \operatorname{Rel}(X) \models \exists Z (\forall \vec{x} (R\vec{x} \rightarrow \forall x_{n+1} \ Z\vec{x}x_{n+1}) \land \psi^*(Z)).$

イロト 不得 トイヨト イヨト 二日・

Right to Left

From Σ_1^1 to Tuple Existence Logic

For every sentence $\phi'(R) \in \Sigma_1^1$ there exists a formula $\phi \in \mathcal{I}$ such that $M \models_X \phi$ if and only if M, $\operatorname{Rel}(X) \models \phi'$ for all suitable M and all **nonempty** X.

Proof.

Similar to the ones in KV 2009 and KN 2009. Write $\phi'(R)$ as $\exists R' \exists \vec{f} \forall \vec{z}((R'\vec{x} \leftrightarrow R\vec{x}) \land \psi(R', \vec{z}))$ where \vec{x} subsequence of \vec{z} , ψ quantifier free, R not in ψ , each f_i only as $f_i(\vec{w}_i)$ for some fixed $\vec{w}_i \subseteq \vec{z}, R'$ only as $R'\vec{x}$.

< □ > < 同 > < 三 > <

Right to Left

Proof (continued).

Write $\phi'(R)$ as $\exists R' \exists \vec{f} \forall \vec{z}((R'\vec{x} \leftrightarrow R\vec{x}) \land \psi(R', \vec{z}))$ where \vec{x} subsequence of \vec{z} , ψ quantifier free, R not in ψ , each f_i only as $f_i(\vec{w}_i)$ for some fixed $\vec{w}_i \subseteq \vec{z}$, R' only as $R'\vec{x}$. Then M, Rel $(X) \models \phi'$ if and only if

 $M, \mathsf{Rel}(X) \models \exists g_1 g_2 \exists \vec{f} \; \forall \vec{z} ((f_1(\vec{x}) = f_2(\vec{x}) \leftrightarrow R\vec{x}) \land \psi'(\vec{z}))$

where $\psi' = \psi[f_1 \vec{x} = f_2 \vec{x} / R \vec{x}].$

イロト 不得 とくほ とくほ とう

3

Right to Left

Proof (continued).

$$\phi' \equiv \exists g_1 g_2 \exists \vec{f} \; \forall \vec{z} ((g_1(\vec{x}) = g_2(\vec{x}) \leftrightarrow R\vec{x}) \land \psi'(\vec{z}))$$

where $\psi' = \psi[g_1 \vec{x} = g_2 \vec{x} / R \vec{x}]$. Then, if X nonempty, $\text{Dom}(X) = \vec{y}$, M, $\text{Rel}(X) \models \phi'$ iff

$$M \models_X \forall \vec{z} \exists u_1 u_2 \vec{v} \left(\left(\bigwedge_{i=1}^2 = (\vec{x}, u_i) \land \bigwedge_j = (\vec{w}_j, v_j) \right) \land \\ \land \left((\vec{x} @ \vec{y} \land u_1 = u_2) \lor (\neg \vec{x} @ \vec{y} \land u_1 \neq u_2) \right) \land \theta$$

where θ is $\psi'[u_1/g_1\vec{x}][u_2/g_2\vec{x}][\vec{w}/\vec{f}\vec{w}]$.

イロト イ押ト イヨト イヨト

э

Right to Left

Proof (continued).

Suppose that, for all *s* with domain \vec{z} ,

$$M, \operatorname{\mathsf{Rel}}(X), g_1, g_2, \vec{f} \models (g_1(\vec{x}) = g_2(\vec{x}) \leftrightarrow R\vec{x}) \land \psi'(\vec{z}).$$

Extend X to Y choosing the u_1 , u_2 , \vec{v} according to g_1 , g_2 , \vec{f} .

•
$$M \models_{\mathsf{Y}} \bigwedge_{i=1}^{2} = (\vec{x}, u_i) \land \bigwedge_j = (\vec{w}_j, v_j)$$
: obvious;

• $M \models_Y \theta$: by construction;

•
$$M \models_{Y} (\vec{x} @ \vec{y} \land u_1 = u_2) \lor (\neg \vec{x} @ \vec{y} \land u_1 \neq u_2)$$
:
If $u_1 = u_2, \vec{x} \in \text{Rel}(X)$, so $\vec{x} @ \vec{y}$;
If $u_1 \neq u_2, \vec{x} \notin \text{Rel}(X)$, so $\neg \vec{x} @ \vec{y}$.

・ロト ・ 日本 ・ 日本 ・ 日本

э

Right to Left

Proof (continued).

Conv., suppose X nonempty, $Y = X[M/\vec{z}][G_1/u_1][G_2/u_2][\vec{F}/\vec{v}]$,

$$M \models_{\mathbf{Y}} \bigwedge_{i=1}^{2} = (\vec{x}, u_{i}) \land \bigwedge_{j} = (\vec{w}_{j}, v_{j}),$$
$$M \models_{\mathbf{Y}} (\vec{x} @ \vec{y} \land u_{1} = u_{2}) \lor (\neg \vec{x} @ \vec{y} \land u_{1} \neq u_{2}),$$
$$M \models_{\mathbf{Y}} \theta.$$

Choose $g_1(\vec{x}), g_2(\vec{x}), \vec{f}(\vec{w})$ according to G_1, G_2, \vec{F} . Let *s* be any assignment, domain = \vec{z} .

Right to Left

Proof (continued).

Choose $g_1(\vec{x}), g_2(\vec{x}), \vec{f}(\vec{w})$ according to G_1, G_2, \vec{F} . Let *s* be any assignment, domain = \vec{z} .

- M, Rel(R), g_1 , g_2 , $\vec{f} \models_s \psi'$: Take $h \in X$. Then $h[s/\vec{z}][g_1/u_1][g_2/u_2][\vec{f}/\vec{v}] \in Y$, $M \models_Y \theta$.
- $M, \operatorname{Rel}(R), g_1, g_2, \vec{f} \models_s g_1(\vec{x}) = g_2(\vec{x}) \leftrightarrow R\vec{x}$: Suppose $g_1(\vec{x}) = g_2(\vec{x})$, let $h \in X$. Consider $o = h[s/\vec{z}][g_1/u_1][g_2/u_2][\vec{f}/\vec{v}]$: $o \in Y_1, M \models_{Y_1} \vec{x} @ \vec{y}$. So $\exists o' \in Y_1, o'(\vec{y}) = o(\vec{x})$, so $s(\vec{x}) = o(\vec{x}) \in \operatorname{Rel}(X)$.

< □ > < 同 > < 回 > < 回 > < 回 > < 回

Right to Left

Proof (finished).

Choose $g_1(\vec{x}), g_2(\vec{x}), \vec{f}(\vec{w})$ according to G_1, G_2, \vec{F} . Let *s* be any assignment, domain = \vec{z} .

• M, Rel(R), g_1 , g_2 , $\vec{f} \models_s g_1(\vec{x}) = g_2(\vec{x}) \leftrightarrow R\vec{x}$: Suppose $g_1(\vec{x}) \neq g_2(\vec{x})$, let $h \in X$. Consider $o = h[s/\vec{z}][g_1/u_1][g_2/u_2][\vec{f}/\vec{v}]$: $o \in Y_2$, $M \models_{Y_2} \neg \vec{x} \oplus \vec{y}$. So $\forall o' \in Y_2$, $o'(\vec{y}) \neq o(\vec{x})$. But for all $h' \in X$, $o' = h'[s/\vec{z}][g_1/u_1][g_2/u_2][\vec{f}/\vec{v}] \in Y_2$; then, for all such h', $s(\vec{x}) = o(\vec{x}) \neq o'(\vec{y}) = h'(\vec{y})$. Therefore, $s(\vec{x}) \notin \text{Rel}(X)$.

Definability in Tuple Existence Logic

Equality Generating Dependencies

$$\forall \vec{x} (R\vec{t}_1 \land \ldots \land R\vec{t}_n \to t_{n+1} = t_{n+2})$$

Tuple Generating Dependencies

$$\forall \vec{x} (R\vec{t}_1 \land \ldots \land R\vec{t}_n \to \exists \vec{y} R\vec{t}')$$

Corollary

All Tuple Generating and Equality Generating Dependencies are expressible in Independence Logic (or in T).

イロト 不得 トイヨト イヨト

э

Definability in Tuple Existence Logic

Equality Generating Dependencies

$$\forall \vec{x} (R\vec{t}_1 \land \ldots \land R\vec{t}_n \to t_{n+1} = t_{n+2})$$

Tuple Generating Dependencies

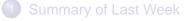
$$\forall \vec{x} (R\vec{t}_1 \land \ldots \land R\vec{t}_n \to \exists \vec{y} R\vec{t}')$$

Corollary

All Tuple Generating and Equality Generating Dependencies are expressible in Independence Logic (or in T).

Disjunction Existential Quantification Recovering Strict Semantics

Outline



2 Definability in Tuple Existence Logic

- 3 Strict and Lax Semantics
 - Disjunction
 - Existential Quantification
 - Recovering Strict Semantics

4 Inclusion Logic

Disjunction Existential Quantification Recovering Strict Semantics

Two Semantics for Disjuction

A lax semantics

$$M \models_X \psi_1 \lor^L \psi_2 \Leftrightarrow \exists Y, Z \text{ s.t. } X = Y \cup Z, M \models_Y \psi_1 \text{ and } M \models_Z \psi_2;$$

A strict semantics

$$M \models_X \psi_1 \lor^S \psi_2 \Leftrightarrow \exists \mathbf{Y}, \mathbf{Z} \text{ s.t. } \mathbf{X} = \mathbf{Y} \cup \mathbf{Z}, \mathbf{X} \cap \mathbf{Y} = \emptyset,$$
$$M \models_{\mathbf{Y}} \psi_1 \text{ and } M \models_{\mathbf{Z}} \psi_2;$$

\mathcal{D} is usually given with \exists^{L} (or even: $X \subseteq Y \cup Z$!).

Disjunction Existential Quantification Recovering Strict Semantics

Two Semantics for Disjuction

A lax semantics

$$M \models_X \psi_1 \vee^L \psi_2 \Leftrightarrow \exists \mathbf{Y}, \mathbf{Z} \text{ s.t. } \mathbf{X} = \mathbf{Y} \cup \mathbf{Z}, \mathbf{M} \models_\mathbf{Y} \psi_1 \text{ and } \mathbf{M} \models_\mathbf{Z} \psi_2;$$

A strict semantics

$$M \models_X \psi_1 \lor^S \psi_2 \Leftrightarrow \exists \mathbf{Y}, \mathbf{Z} \text{ s.t. } \mathbf{X} = \mathbf{Y} \cup \mathbf{Z}, \mathbf{X} \cap \mathbf{Y} = \emptyset,$$
$$M \models_{\mathbf{Y}} \psi_1 \text{ and } M \models_{\mathbf{Z}} \psi_2;$$

 \mathcal{D} is usually given with \exists^{L} (or even: $X \subseteq Y \cup Z$!).

Disjunction Existential Quantification Recovering Strict Semantics

In Dependence Logic, Lax = Strict

No difference for \mathcal{D} (or for \mathcal{T}^-)

If $\psi_1, \psi_2 \in \mathcal{D}$, $M \models_X \psi_1 \vee^S \psi_2$ iff $M \models_X \psi_1 \vee^L \psi_2$.

Proof.

• If
$$M \models_X \psi_1 \vee^S \psi_2$$
, $M \models_X \psi_1 \vee^L \psi_2$;

• If $M \models_X \psi_1 \lor^L \psi_2$ then $X = X_1 \cup X_2$, $M \models_{X_1} \psi_1$, $M \models_{X_2} \psi_2$. Take $Y = X_2 \setminus X_1$: by downwards closure, $M \models_Y \psi_2$, $X_1 \cup Y = X$, so $M \models_X \psi_1 \lor^S \psi_2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Disjunction Existential Quantification Recovering Strict Semantics

In Inclusion or Independence Logic, Lax \neq Strict

Different for \mathcal{T}^+ (and for \mathcal{T} , and for \mathcal{I})!

There exist *M*, *X* and $\psi_1, \psi_2 \in \mathcal{T}^+$ such that

 $M \models_X \psi_1 \vee^L \psi_2 \text{ but } M \not\models_X \psi_1 \vee^S \psi_2.$

Proof.

Let
$$X = \frac{\begin{vmatrix} x & y & z \\ \hline s_0 & 0 & 1 & 2 \\ \hline s_1 & 1 & 0 & 3 \\ \hline s_2 & 4 & 3 & 0 \end{vmatrix}$$
 and Dom(M) = {0...4}. Then

 $M \models_X (x @ y) \lor^L (y @ z), M \not\models_X (x @ y) \lor^S (y @ z).$

Disjunction Existential Quantification Recovering Strict Semantics

In Inclusion or Independence Logic, Lax \neq Strict

Proof (continued).

$$X = \begin{array}{c|c|c} & x & y & z \\ \hline s_0 & 0 & 1 & 2 \\ s_1 & 1 & 0 & 3 \\ s_2 & 4 & 3 & 0 \end{array}$$

•
$$M \models_X (x @ y) \lor^L (y @ z)$$
:
Let $Y = \{s_0, s_1\}, Z = \{s_1, s_2\}.$
 $M \models_Y x @ y, M \models_Z y @ z.$

Disjunction Existential Quantification Recovering Strict Semantics

In Inclusion or Independence Logic, Lax \neq Strict

Proof (continued).

$$X = \frac{\begin{vmatrix} x & y & z \\ s_0 & 0 & 1 & 2 \\ s_1 & 1 & 0 & 3 \\ s_2 & 4 & 3 & 0 \end{vmatrix}$$

•
$$M \models_X (x @ y) \lor^L (y @ z)$$
:
Let $Y = \{s_0, s_1\}, Z = \{s_1, s_2\}.$
 $M \models_Y x @ y, M \models_Z y @ z.$

Disjunction Existential Quantification Recovering Strict Semantics

In Inclusion or Independence Logic, Lax \neq Strict

Proof (continued).

$$X = \frac{\begin{vmatrix} x & y & z \\ s_0 & 0 & 1 & 2 \\ s_1 & 1 & 0 & 3 \\ s_2 & 4 & 3 & 0 \end{vmatrix}$$

•
$$M \models_X (x @ y) \lor^L (y @ z)$$
:
Let $Y = \{s_0, s_1\}, Z = \{s_1, s_2\}, M \models_Y x @ y, M \models_Z y @ z.$

Disjunction Existential Quantification Recovering Strict Semantics

In Inclusion or Independence Logic, Lax \neq Strict

Proof (finished).

$$X = \frac{\begin{vmatrix} x & y & z \\ \hline s_0 & 0 & 1 & 2 \\ \hline s_1 & 1 & 0 & 3 \\ \hline s_2 & 4 & 3 & 0 \end{vmatrix}$$

•
$$M \not\models_X (x @ y) \lor^L (y @ z)$$
:
Let $X = Y \cup Z$, $M \models_Y x @ y$, $M \models_Z y @ z$.
 $s_2 \notin Y$, so $s_2 \in Z$, so $s_1 \in Z$;
 $s_0 \notin Z$, so $s_0 \in Y$, so $s_1 \in Y$.
So $Y \cap Z \neq \emptyset$.

Disjunction Existential Quantification Recovering Strict Semantics

In Inclusion or Independence Logic, Lax \neq Strict

Proof (finished).

$$X = \frac{\begin{vmatrix} x & y & z \\ \hline s_0 & 0 & 1 & 2 \\ \hline s_1 & 1 & 0 & 3 \\ \hline s_2 & 4 & 3 & 0 \end{vmatrix}$$

•
$$M \not\models_X (x @ y) \lor^L (y @ z)$$
:
Let $X = Y \cup Z$, $M \models_Y x @ y$, $M \models_Z y @ z$.
 $s_2 \notin Y$, so $s_2 \in Z$, so $s_1 \in Z$;
 $s_0 \notin Z$, so $s_0 \in Y$, so $s_1 \in Y$.
So $Y \cap Z \neq \emptyset$.

イロン 不得と イヨン イヨン

Disjunction Existential Quantification Recovering Strict Semantics

In Inclusion or Independence Logic, Lax \neq Strict

Proof (finished).

$$X = \frac{\begin{vmatrix} x & y & z \\ \hline s_0 & 0 & 1 & 2 \\ \hline s_1 & 1 & 0 & 3 \\ \hline s_2 & 4 & 3 & 0 \end{vmatrix}$$

•
$$M \not\models_X (x @ y) \lor^L (y @ z)$$
:
Let $X = Y \cup Z$, $M \models_Y x @ y$, $M \models_Z y @ z$.
 $s_2 \notin Y$, so $s_2 \in Z$, so $s_1 \in Z$;
 $s_0 \notin Z$, so $s_0 \in Y$, so $s_1 \in Y$.
So $Y \cap Z \neq \emptyset$.

イロト イポト イヨト イヨト

Disjunction Existential Quantification Recovering Strict Semantics

In Inclusion or Independence Logic, Lax \neq Strict

Proof (finished).

$$X = \frac{\begin{vmatrix} x & y & z \\ \hline s_0 & 0 & 1 & 2 \\ \hline s_1 & 1 & 0 & 3 \\ \hline s_2 & 4 & 3 & 0 \end{vmatrix}$$

•
$$M \not\models_X (x @ y) \lor^L (y @ z)$$
:
Let $X = Y \cup Z$, $M \models_Y x @ y$, $M \models_Z y @ z$.
 $s_2 \notin Y$, so $s_2 \in Z$, so $s_1 \in Z$;
 $s_0 \notin Z$, so $s_0 \in Y$, so $s_1 \in Y$.
So $Y \cap Z \neq \emptyset$.

イロン 不得と イヨン イヨン

Disjunction Existential Quantification Recovering Strict Semantics

In Inclusion or Independence Logic, Lax \neq Strict

Proof (finished).

$$X = \frac{\begin{vmatrix} x & y & z \\ \hline s_0 & 0 & 1 & 2 \\ \hline s_1 & 1 & 0 & 3 \\ \hline s_2 & 4 & 3 & 0 \end{vmatrix}$$

•
$$M \not\models_X (x @ y) \lor^L (y @ z)$$
:
Let $X = Y \cup Z$, $M \models_Y x @ y$, $M \models_Z y @ z$.
 $s_2 \notin Y$, so $s_2 \in Z$, so $s_1 \in Z$;
 $s_0 \notin Z$, so $s_0 \in Y$, so $s_1 \in Y$.
So $Y \cap Z \neq \emptyset$.

イロン 不得と イヨン イヨン

Disjunction Existential Quantification Recovering Strict Semantics

From Strict to Lax Disjunction

From strict to lax

If z not in ψ_1, ψ_2 ,

$$M \models_X \psi_1 \vee^L \psi_2 \Leftrightarrow M \models_X \forall z(\psi_1 \vee^S \psi_2).$$

Proof.

Let $0 \in \text{Dom}(M)$, assume $|\text{Dom}(M)| \ge 2$. Suppose $X = Y \cup Z$, $M \models_Y \psi_1$, $M \models_Z \psi_2$, and let $W = Y \cap Z$. Now define

$$\mathbf{Y}' = (\mathbf{Y} \setminus \mathbf{W})[\mathbf{M}/\mathbf{z}] \cup (\mathbf{W}[\mathbf{0}/\mathbf{z}]), \mathbf{Z}' = \mathbf{Z}[\mathbf{M}/\mathbf{z}] \setminus \mathbf{Y}'.$$

Then $Y' \cap Z' = \emptyset$, $Y' \cup Z' = X[M/z]$, $M \models_{Y'} \psi_1$, $M \models_{Z'} \psi_2$.

ヘロト 人間 とく ヨ とく ヨン

Disjunction Existential Quantification Recovering Strict Semantics

Trivial Quantification and VS

Corollary: \vee^{S} is not invariant under trivial quantifications!

There exist formulas ψ_1 and $\psi_2 \in \mathcal{T}$, such that z does not occur in ψ_1 , ψ_2 but

$$\psi_1 \vee^{\mathsf{S}} \psi_2 \not\equiv \forall \mathbf{Z} (\psi_1 \vee^{\mathsf{S}} \psi_2).$$

イロト イポト イヨト イヨト 一臣

Disjunction Existential Quantification Recovering Strict Semantics

Trivial Quantification and \vee^L

\vee^{L} invariant under trivial quantification

For all ψ_1 and ψ_2 in \mathcal{T} and all $z \notin \psi_1, \psi_2$,

$$\psi_1 \vee^{\mathsf{S}} \psi_2 \not\equiv \forall z(\psi_1 \vee^{\mathsf{S}} \psi_2).$$

Proof.

Obvious from definition: if $X = Y \cup Z$, $M \models_Y \psi_1$, $M \models_Y \psi_2$, then $X[M/z] = Y[M/z] \cup Z[M/z]$, $M \models_{Y[M/z]} \psi_1$, $M \models_{Z[M/z]} \psi_2$. \Box

This strongly suggests that we want \vee^{L} in our semantics.

イロト 不得 トイヨト イヨト 一臣

Disjunction Existential Quantification Recovering Strict Semantics

Trivial Quantification and \vee^L

\vee^{L} invariant under trivial quantification

For all ψ_1 and ψ_2 in \mathcal{T} and all $z \notin \psi_1, \psi_2$,

$$\psi_1 \vee^{\mathsf{S}} \psi_2 \not\equiv \forall z (\psi_1 \vee^{\mathsf{S}} \psi_2).$$

Proof.

Obvious from definition: if $X = Y \cup Z$, $M \models_Y \psi_1$, $M \models_Y \psi_2$, then $X[M/z] = Y[M/z] \cup Z[M/z]$, $M \models_{Y[M/z]} \psi_1$, $M \models_{Z[M/z]} \psi_2$.

This strongly suggests that we want \vee^{L} in our semantics.

<ロン <回と < 注入 < 注入 < 注入 = 注

Disjunction Existential Quantification Recovering Strict Semantics

Outline

- 2 Definability in Tuple Existence Logic
- 3 Strict and Lax Semantics
 - Disjunctior
 - Existential Quantification
 - Recovering Strict Semantics

4 Inclusion Logic

イロト イポト イヨト イヨト

Disjunction Existential Quantification Recovering Strict Semantics

Two Semantics for Existentials

A strict semantics

$$M \models_{\mathsf{X}} \exists^{\mathsf{S}} \mathsf{x} \psi \Leftrightarrow \exists \mathsf{F} : \mathsf{X} \to \mathsf{M} \text{ s.t. } M \models_{\mathsf{X}[\mathsf{F}/\mathsf{x}]} \psi,$$

for $X[F/x] = \{s[F(s)/x] : s \in X\};$

A lax semantics

 $M \models_X \exists^L x \psi \Leftrightarrow \exists F : H \to \mathcal{P}(M) \setminus \{\emptyset\} \text{ s.t. } M \models_{X[F/x]} \psi,$ for $X[H/x] = \{s[m/x] : s \in X, m \in H(s)\}.$

 \mathcal{D} is usually given with \exists^{S} .

イロト イポト イヨト イヨト 一臣

Disjunction Existential Quantification Recovering Strict Semantics

Two Semantics for Existentials

A strict semantics

$$M \models_{\mathsf{X}} \exists^{\mathsf{S}} \mathsf{x} \psi \Leftrightarrow \exists \mathsf{F} : \mathsf{X} \to \mathsf{M} \text{ s.t. } M \models_{\mathsf{X}[\mathsf{F}/\mathsf{x}]} \psi,$$

for $X[F/x] = \{s[F(s)/x] : s \in X\};$

A lax semantics

$$M \models_X \exists^L x \psi \Leftrightarrow \exists F : H \to \mathcal{P}(M) \setminus \{\emptyset\} \text{ s.t. } M \models_{X[F/x]} \psi,$$

for $X[H/x] = \{s[m/x] : s \in X, m \in H(s)\}.$

 \mathcal{D} is usually given with $\exists^{\mathcal{S}}$.

イロト イポト イヨト イヨト 一臣

Disjunction Existential Quantification Recovering Strict Semantics

In Dependence Logic, Strict = Lax

No difference for \mathcal{D} (or for \mathcal{T}^-)

If $\psi \in \mathcal{D}$, $M \models_X \exists^S x \psi$ iff $M \models_X \exists^L x \psi$ (using AC).

Proof.

• If
$$M \models_X \exists^S x \psi$$
, $M \models_X \exists^L x \psi$;

 If M ⊨_X ∃^Lxψ, M ⊨_{X[H/x]} ψ for some H : X → P(M)\{∅}. Let F : X → M be such that F(s) ∈ H(s) for all s ∈ X: then X[F/x] ⊆ X[H/x], so by downward closure M ⊨_{X[F/x]} ψ. Then M ⊨_X ∃^Sxψ, as required.

イロト 不得 トイヨト イヨト 一臣

Disjunction Existential Quantification Recovering Strict Semantics

In Independence and Inclusion Logic, Strict \neq Lax

Different for \mathcal{T}^+ (and for \mathcal{T} , and for \mathcal{I})!

There exist *M*, *X* and $\psi \in \mathcal{T}^+$ such that

$$M \models_X \exists^L x \psi$$
 but $M \not\models_X \exists^S \psi$.

Proof.

Let Dom(
$$M$$
) = {0, 1, 2}, P^M = {(0, 2), (1, 0), (1, 1)}, and
 $X = \{s_0, s_1\}$ for $s_0 = (y : 0), s_1 = (y : 1)$.
Then
 $M \models_X \exists^L x (y @ x \land Pyx)$ but $M \not\models_X \exists^S x (y @ x \land Pyx)$.

イロト イボト イヨト イヨト

Disjunction Existential Quantification Recovering Strict Semantics

In Independence and Inclusion Logic, Strict \neq Lax

Proof (continued).

Dom(
$$M$$
) = {0, 1, 2}, P^M = {(0, 2), (1, 0), (1, 1)}, and $X = \{s_0, s_1\}$ for $s_0 = (y : 0), s_1 = (y : 1)$.

• $M \models_X \exists^L x (y @ x \land Pyx)$: let $H : X \to \mathcal{P}(M)$ be such that $H(s_0) = \{2\}, H(s_1) = \{0, 1\}$. Then

$$X[H/x] = \frac{\begin{vmatrix} y & x \\ s'_0 & 0 & 2 \\ s'_1 & 1 & 0 \\ s'_2 & 1 & 1. \end{vmatrix}$$

and this team satisfies y@x and Pyx.

Disjunction Existential Quantification Recovering Strict Semantics

In Independence and Inclusion Logic, Strict \neq Lax

Proof (finished).

Dom
$$(M) = \{0, 1, 2\}, P^M = \{(0, 2), (1, 0), (1, 1)\}, \text{ and } X = \{s_0, s_1\} \text{ for } s_0 = (y : 0), s_1 = (y : 1).$$

• $M \not\models_X \exists^S x (y @ x \land Pyx)$: take any $F : X \to M$, and consider X[F/x].

If $F(s_0) \neq 2$, $M \not\models_{X[F/x]} Pyx$; so $F(s_0) = 2$. But then

$$X[F/x] = \frac{\begin{array}{|c|c|c|} y & x \\ \hline s'_0 & 0 & 2 \\ \hline s'_1 & 1 & F(s_1) \end{array}}{}$$

and $M \not\models_{X[F/x]} y @ x$, since $F(s_1) \neq 0$ or $F(s_1) \neq 1$.

イロト イポト イヨト イヨト

Disjunction Existential Quantification Recovering Strict Semantics

From Strict to Lax Existentials

From strict to lax semantics

If *z* not in ψ and $z \neq x$,

$$M \models_X \exists^L x \psi \Leftrightarrow M \models_X \forall z \exists^L x \psi.$$

イロト イボト イヨト イヨト

Disjunction Existential Quantification Recovering Strict Semantics

From Strict to Lax Existentials

Proof.

Suppose that for $H : X \to \mathcal{P}(X) \setminus \{\emptyset\}$, $M \models_{X[H/X]} \psi$. For every $s \in X$, let $m_s \in H(s)$; then define $F : X[M/Z] \to M$ as

$$F(s[m/z]) = \left\{ egin{array}{cc} m & ext{if} & m \in H(s); \ m_s & ext{otherwise}. \end{array}
ight.$$

Forgetting the variable z, X[M/z][F/x] is precisely X[H/z]; hence,

 $M \models_{X[M/z][F/x]} \psi$, as required (other direction is trivial).

イロト 不得 トイヨト イヨト 一臣

Disjunction Existential Quantification Recovering Strict Semantics

Trivial Quantification and \exists^{S}

Corollary: \exists^{S} is not invariant under trivial quantifications!

There exists a $\psi \in \mathcal{T}$, such that *z* does not occur in it but

$$\exists^{\mathsf{S}} \mathbf{x} \psi \not\equiv \forall \mathbf{z} \exists^{\mathsf{S}} \mathbf{x} \psi.$$

イロト イポト イヨト イヨト

Disjunction Existential Quantification Recovering Strict Semantics

Trivial Quantification and \exists^L

 \exists^{L} invariant under trivial quantification

For all ψ in \mathcal{T} and all $z \notin \psi$,

$$\exists^{L} \mathbf{x} \psi \equiv \forall \mathbf{z} \exists^{L} \mathbf{s} \psi.$$

Proof.

If for $H : X[M/z] \to \mathcal{P}(M)$ it holds that $M \models_{X[M/z][H/x]} \psi$, define $H' : X \to \mathcal{P}(M)$ as

 $H'(\mathbf{s}) = \{ m \in M : \exists m' \in M \text{ s.t. } m \in H(\mathbf{s}[m'/z]) \}.$

Then $M \models_{X[H'/z]} \psi$, as required.

This strongly suggests that we want ∃[⊥] in our semantics.

Disjunction Existential Quantification Recovering Strict Semantics

Trivial Quantification and \exists^L

 \exists^{L} invariant under trivial quantification

For all ψ in \mathcal{T} and all $z \notin \psi$,

$$\exists^{L} \mathbf{x} \psi \equiv \forall \mathbf{z} \exists^{L} \mathbf{s} \psi.$$

Proof.

If for $H : X[M/z] \to \mathcal{P}(M)$ it holds that $M \models_{X[M/z][H/x]} \psi$, define $H' : X \to \mathcal{P}(M)$ as

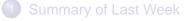
 $H'(\mathbf{s}) = \{ m \in M : \exists m' \in M \text{ s.t. } m \in H(\mathbf{s}[m'/z]) \}.$

Then $M \models_{X[H'/z]} \psi$, as required.

This strongly suggests that we want \exists^{L} in our semantics.

Disjunction Existential Quantification Recovering Strict Semantics

Outline



- 2 Definability in Tuple Existence Logic
- 3 Strict and Lax Semantics
 - Disjunction
 - Existential Quantification
 - Recovering Strict Semantics

4 Inclusion Logic

イロト イポト イヨト イヨト

Disjunction Existential Quantification Recovering Strict Semantics

Strict Existentials on a Fixed Domain

Recovering strict existentials

Let \vec{x} be a fixed tuple of variables. Then, for all teams X with $Dom(X) = \vec{x}$, for all z and all $\psi \in \mathcal{T}$,

$$M \models_X \exists^{S} z \psi \Leftrightarrow M \models_X \exists^{L} z (= (\vec{x}, z) \land \psi).$$

Recovering strict disjunctions

Let \vec{x} be a fixed tuple of variables. Then, for all teams X with $Dom(X) = \vec{x}$, for all z and all $\psi_1, \psi_2 \in \mathcal{T}$,

$$M\models_X \psi_1 \vee^{S} \psi_2 \Leftrightarrow M\models_X \exists^{S} z_1 z_2((z_1 = z_2 \wedge \psi_1) \vee^{L} (z_1 \neq z_2 \wedge \psi_2)).$$

ヘロト 人間ト ヘヨト ヘヨト

Disjunction Existential Quantification Recovering Strict Semantics

Recovering Strict Operators in ${\mathcal T}$ and ${\mathcal I}$

Corollary

As long as the domain of the team X is fixed, we can use the strict semantics for \mathcal{T} or \mathcal{I} , and the result will be transferable to the lax one.

This does not necessarily hold for Inclusion Logic \mathcal{T}^+ !

Convention: \mathcal{T}^+ has the lax semantics, unless otherwise specified.

イロト イポト イヨト イヨト

э

Disjunction Existential Quantification Recovering Strict Semantics

Recovering Strict Operators in ${\mathcal T}$ and ${\mathcal I}$

Corollary

As long as the domain of the team X is fixed, we can use the strict semantics for \mathcal{T} or \mathcal{I} , and the result will be transferable to the lax one.

This does not necessarily hold for Inclusion Logic \mathcal{T}^+ !

Convention: \mathcal{T}^+ has the lax semantics, unless otherwise specified.

ヘロト ヘ戸ト ヘヨト ヘヨト

Another question

What we know so far

$$\begin{aligned} \textit{FOL} &\subseteq \mathcal{T}^{-} \equiv \mathcal{D} \subseteq \mathcal{I} \equiv \mathcal{T}; \\ \textit{FOL} &\subseteq \mathcal{T}^{+} \subseteq \mathcal{I} \equiv \mathcal{T}. \end{aligned}$$

What about \mathcal{T}^+ ?

- Is it stronger than First Order Logic?
- Is it contained in Dependence Logic?
- Does it contain Dependence Logic?
- Is it Independence Logic and T already?

イロト イポト イヨト イヨ

Another question

What we know so far

$$\begin{aligned} \textit{FOL} &\subseteq \mathcal{T}^{-} \equiv \mathcal{D} \subseteq \mathcal{I} \equiv \mathcal{T}; \\ \textit{FOL} &\subseteq \mathcal{T}^{+} \subseteq \mathcal{I} \equiv \mathcal{T}. \end{aligned}$$

What about T^+ ?

- Is it stronger than First Order Logic?
- Is it contained in Dependence Logic?
- Does it contain Dependence Logic?
- Is it Independence Logic and T already?

< ロ > < 同 > < 回 > .

\mathcal{T}^+ is not downward closed

A simple Inclusion Logic formula

 $M \models_X \forall y (y @ x)$ if and only if $X(x) \in \{\emptyset, M\}$.

Proof.

If $X \neq \emptyset$,

$$M \models_X \forall y(y @ x) \Leftrightarrow M \models_{X[M/y]} y @ x \Leftrightarrow$$
$$\Leftrightarrow \forall m \in M \exists s \in X \text{ s.t. } s(x) = m \Leftrightarrow X(x) = M.$$

イロト 不得 トイヨト イヨト 一臣

\mathcal{T}^+ is not downward closed

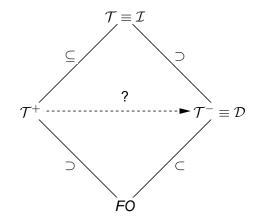
Corollary

- First Order Logic is properly contained in T⁺;
- Dependence Logic does not contain \mathcal{T}^+ .

イロト イポト イヨト イヨト

э

Inclusions between logics of imperfect information



★ Ξ → < Ξ</p>

A Closure Property for \mathcal{T}^+

Theorem

Let $\phi \in \mathcal{T}^+$. Then, for all *M* and all *X*, *Y*,

$$M\models_{X}\phi,\ M\models_{Y}\phi\Rightarrow M\models_{X\cup Y}\phi.$$

Proof.

By induction over ϕ .

• If ϕ is a first order literal, obvious;

• If ϕ is $\vec{t}_1 \oplus \vec{t}_2$, take $s \in X \cup Y$.

• If $s \in X$, since $M \models_X \vec{t}_1 @ \vec{t}_2$ there is $s' \in X$, $\vec{t}_1 \langle s \rangle = \vec{t}_2 \langle s' \rangle$;

• If $s \in Y$, since $M \models_Y \vec{t}_1 \otimes \vec{t}_2$ there is $s' \in Y$, $\vec{t}_1 \langle s \rangle = \vec{t}_2 \langle s' \rangle$.

So $\exists s' \in X \cup Y$, $t_1 \langle s \rangle = t_2 \langle s' \rangle$, and $M \models_{X \cup Y} t_1 @ t_2$;

A Closure Property for \mathcal{T}^+

Theorem

Let $\phi \in \mathcal{T}^+$. Then, for all *M* and all *X*, *Y*,

$$M\models_{X}\phi,\ M\models_{Y}\phi\Rightarrow M\models_{X\cup Y}\phi.$$

Proof.

By induction over ϕ .

• If ϕ is a first order literal, obvious;

• If
$$\phi$$
 is $\vec{t}_1 \otimes \vec{t}_2$, take $s \in X \cup Y$.
• If $s \in X$, since $M \models_X \vec{t}_1 \otimes \vec{t}_2$ there is $s' \in X$, $\vec{t}_1 \langle s \rangle = \vec{t}_2 \langle s' \rangle$;
• If $s \in Y$, since $M \models_Y \vec{t}_1 \otimes \vec{t}_2$ there is $s' \in Y$, $\vec{t}_1 \langle s \rangle = \vec{t}_2 \langle s' \rangle$.
So $\exists s' \in X \cup Y$, $\vec{t}_1 \langle s \rangle = \vec{t}_2 \langle s' \rangle$, and $M \models_{X \cup Y} \vec{t}_1 \otimes \vec{t}_2$;

A Closure Property for \mathcal{T}^+

Proof (continued):

• If $M \models_X \psi_1 \lor \psi_2$ and $M \models_Y \psi_1 \lor \psi_2$, then $X = X_1 \cup X_2$, $Y = Y_1 \cup Y_2$ and

$$M \models_{X_i} \psi_i$$
, $M \models_{Y_i} \psi_i$ for $i = 1, 2$.

So $M \models_{X_1 \cup Y_1} \psi_1$, $M \models_{X_2 \cup Y_2} \psi_2$ and $M \models_{X \cup Y} \psi_1 \lor \psi_2$. • If $M \models_X \psi_1 \land \psi_2$ and $M \models_Y \psi_1 \land \psi_2$ then

$$\boldsymbol{M}\models_{\boldsymbol{X}}\psi_{1}, \boldsymbol{M}\models_{\boldsymbol{X}}\psi_{2}, \boldsymbol{M}\models_{\boldsymbol{Y}}\psi_{1}, \boldsymbol{M}\models_{\boldsymbol{Y}}\psi_{2}.$$

Then $M \models_{X \cup Y} \psi_1$, $M \models_{X \cup Y} \psi_2$ and $M \models_{X \cup Y} \psi_1 \land \psi_2$.

イロト イ押ト イヨト イヨト

A Closure Property for \mathcal{T}^+

Proof (finished):

- If $M \models_X \exists z \phi$ and $M \models_Y \exists z \psi$, then $M \models_{X[H_1/z]} \psi$ and $M \models_{Y[H_2/z]} \psi$ for some *F*, *G*. By induction hypothesis, $M \models_{X[H_1/z] \cup H_2[G/z]} \psi$. Now let $H = H_1 \cup H_2$: then $(X \cup Y)[H/z] = X[H_1/z] \cup Y[H_2/z]$ and hence $M \models_{X \cup Y} \exists z \psi$.
- If $M \models_X \forall z\psi$ and $M \models_Y \forall z\psi$, $M \models_{X[M/z]} \psi$ and $M \models_{X[M/z]} \psi$. But $(X \cup Y)[M/z] = X[M/z] \cup Y[M/z]$ and $M \models_{X[M/z] \cup Y[M/z]} \psi$ by induction hypothesis, so $M \models_{X \cup Y} \forall z\psi$.

ヘロト ヘ戸ト ヘヨト ヘヨト

A closure property for \mathcal{T}^+

Theorem

Let $\phi \in \mathcal{T}^+$ (Strict Semantics). Then, for all *M* and all *X*, *Y* with $X \cap Y = \emptyset$, $M \models_X \phi, M \models_Y \phi \Rightarrow M \models_{X \sqcup Y} \phi$.

Proof.

Just like the previous one.

イロト イポト イヨト イヨト

э

Dependence Logic and \mathcal{T}^+

Corollary: $\mathcal{D} \not\subseteq \mathcal{T}^+$

Dependence Logic is not contained in \mathcal{T}^+ , and

 $FOL \subsetneq T^+ \subsetneq T \equiv I.$

Proof of the corollary:

Consider $X = \{(x : 0)\}, Y = \{(x : 1)\}$. Then $M \models_X = (x)$ and $M \models_Y = (x)$, but

 $M \not\models_{X \cup Y} = (x).$

Hence, constancy atoms are not expressible in Inclusion Logic.

イロト イポト イヨト イヨー

Dependence Logic and \mathcal{T}^+

Corollary: $\mathcal{D} \not\subseteq \mathcal{T}^+$

Dependence Logic is not contained in \mathcal{T}^+ , and

 $FOL \subsetneq T^+ \subsetneq T \equiv I.$

Proof of the corollary:

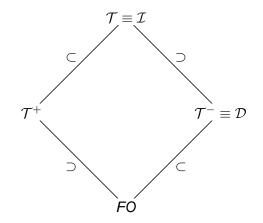
Consider $X = \{(x : 0)\}, Y = \{(x : 1)\}$. Then $M \models_X = (x)$ and $M \models_Y = (x)$, but

 $M \not\models_{X \cup Y} = (x).$

Hence, constancy atoms are not expressible in Inclusion Logic.

イロト イポト イヨト イヨト

Inclusions between logics of imperfect information



< □ > < 同

★ Ξ ► ★ Ξ

\mathcal{T}^+ and \mathcal{T}^- for Quantifier Free Formulas

Corollary

Let $\phi \in \mathcal{T}$ be quantifier-free. If ϕ is expressible in Dependence Logic and in Inclusion Logic then it is expr. in *FO*.

Proof of the corollary:

 ϕ expr. in Dependence Logic, so ϕ is downwards closed:

$$M \models_X \phi \Rightarrow \forall s \in X, M \models_{\{s\}} \phi.$$

 ϕ expr. in Inclusion Logic, so ϕ is closed under unions:

$$\forall s \in X, M \models_{\{s\}} \phi \Rightarrow M \models_X \phi.$$

Therefore ϕ is *flat*, and, by (Väänänen 2007), it is first order.

\mathcal{T}^+ and \mathcal{T}^- for Quantifier Free Formulas

Corollary

Let $\phi \in \mathcal{T}$ be quantifier-free. If ϕ is expressible in Dependence Logic and in Inclusion Logic then it is expr. in *FO*.

Proof of the corollary:

 ϕ expr. in Dependence Logic, so ϕ is downwards closed:

$$\boldsymbol{M}\models_{\boldsymbol{X}}\phi\Rightarrow\forall\boldsymbol{s}\in\boldsymbol{X},\boldsymbol{M}\models_{\{\boldsymbol{s}\}}\phi.$$

 ϕ expr. in Inclusion Logic, so ϕ is closed under unions:

$$\forall s \in X, M \models_{\{s\}} \phi \Rightarrow M \models_X \phi.$$

Therefore ϕ is *flat*, and, by (Väänänen 2007), it is first order.

A Conjecture: $\mathcal{T}^+ \cap \mathcal{T}^- \equiv FO$

Conjecture

Let $\phi \in \mathcal{T}^+$, $\phi' \in \mathcal{T}^-$ (or $\phi' \in \mathcal{D}$) be such that

$$\boldsymbol{M}\models_{\boldsymbol{X}}\phi\Leftrightarrow\boldsymbol{M}\models_{\boldsymbol{X}}\phi'$$

for all suitable *M* and *X*. Then there exists a $\phi'' \in FO$ s.t.

$$\phi \equiv \phi' \equiv \phi''.$$

Perhaps prove using Craig Interpolation (as in KV 2009)?

イロト イポト イヨト イヨト 一臣

A Conjecture: $\mathcal{T}^+ \cap \mathcal{T}^- \equiv FO$

Conjecture

Let $\phi \in \mathcal{T}^+$, $\phi' \in \mathcal{T}^-$ (or $\phi' \in \mathcal{D}$) be such that

$$M\models_{X}\phi\Leftrightarrow M\models_{X}\phi'$$

for all suitable *M* and *X*. Then there exists a $\phi'' \in FO$ s.t.

$$\phi \equiv \phi' \equiv \phi''.$$

Perhaps prove using Craig Interpolation (as in KV 2009)?

イロト イポト イヨト イヨト 一臣