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NON-ISOMORPHISM INVARIANT BOREL QUANTIFIERS

FREDRIK ENGSTRÖM AND PHILIPP SCHLICHT

Abstract. Every isomorphism invariant Borel subset of the space of struc-

tures on the natural numbers in a countable relational language is definable
in Lω1ω by a theorem of Lopez-Escobar. We derive variants of this result for

stabilizer subgroups of the symmetric group Sym(N) for families of relations
and non-isomorphism invariant generalized quantifiers on the natural numbers

such as “for all even numbers”. Moreover we produce a binary quantifier Q

for every closed subgroup of Sym(N) such that the Borel sets of structures in-
variant under the subgroup action are exactly the sets of structures definable

in Lω1ω(Q).

1. Introduction

It is useful to represent structures with universe the natural numbers in a given
countable relational signature τ by elements of the associated logic space

Xτ =
∏
R∈τ

2Na(R)

where Xτ is equipped with the product topology and a denotes arity. For example,
the linear orders form a closed subset of the logic space for a single binary relation.
The isomorphism classes of structures with universe N are orbits of the symmetric
group Sym(N) under permutation. This connection between countable model the-
ory and descriptive set theory is important for investigating isomorphism relations
for classes of countable structures.

The relationship between invariant Borel classes of structures on the natural
numbers and theories is described by the Lopez-Escobar theorem [3, theorem 16.8],
which states that every invariant Borel subset of the logic space is defined by a
sentence in Lω1ω. This is an easy consequence, due to Scott, of the interpolation
theorem for Lω1ω [4]: If ϕ is an Lω1ω-sentence in the signature σ and ψ is an
Lω1ω-sentence in the signature τ such that ϕ → ψ holds in all countable models,
then there is an Lω1ω interpolant θ in the signature σ ∩ τ such that ϕ → θ and
θ → ψ hold in all countable models. To derive the Lopez-Escobar theorem from
interpolation, note that every Borel set is defined by an Lω1ω-sentence from a
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sequence of parameters ni ∈ N. If we use constants ci and di for each ni, the
assumption that the Borel set is isomorphism invariant implies that there is an
Lω1ω interpolant (without parameters) defining the set. Vaught [5] found a different
proof which has the advantage that it generalizes to the logic space for structures
of higher cardinalities.

In this paper we consider classes of structures on the natural numbers which are
invariant under the action of a closed subgroup of Sym(N) instead of isomorphism.
Vaught’s proof is generalized to this setting in section 2. A natural example is the
class of models with domain N of a first-order theory in which a given k-ary relation
has a fixed interpretation as a subset of Nk. The set of permutations which fix this
relation forms a closed subgroup of Sym(N) and the class is invariant under the
subgroup action.

We then focus on Lindström quantifiers (generalized quantifiers) on the natural
numbers without the requirement of invariance under isomorphism, i.e., a quantifier
Q of type 〈k〉 is a set of k-ary relations and Aut(Q) is the group of those permu-
tations which fix Q as a set. The logic Lω1ω(Q) is defined as Lω1ω augmented by
the quantifier Q where N � Qxϕ(x) is interpreted as {a ∈ Nk : N � ϕ(a)} ∈ Q;
the process of checking whether an Lω1ω(Q)-sentence holds in a structure can be
thought of as running an algorithm along L

ω
CK(x)
1

[x] for some x ∈ 2ω with input
the atomic diagram which feeds in external information about Q. A version of
the Lopez-Escobar theorem is proved for a class of monotone upwards quantifiers
such as ∀, ∃, “for some prime number”, or “for all even numbers or for all odd
numbers”. Moreover for every closed subgroup of Sym(N) a binary quantifier Q is
produced such that the Borel sets of structures invariant under the subgroup action
are exactly the sets definable in Lω1ω(Q).

Other types of quantifiers for which a version of the Lopez-Escobar theorem
can be proved are clopen quantifiers and finite boolean combinations of principal
quantifiers; this is presented in section 3. In section 4, we observe that some of the
results generalize to the logic space for structures of size κ for uncountable cardinals
κ with κ<κ = κ.

2. Variants of the Lopez-Escobar theorem

Let F denote a countable family of relations on the natural numbers. Every
relation in F has a symbol representing it in Lω1ω(F). The following two kinds of
definability are relevant.

Definition 1. A set A ⊆ Nk is definable in Lω1ω(F) if there is an Lω1ω(F)-
sentence ϕ such that n ∈ A if and only if N � ϕ(n).

Definition 2. Suppose τ is a countable relational signature disjoint from the sym-
bols for F . A set A ⊆ Xτ is definable in Lω1ω(F) if there is an Lω1ω(F)-sentence
ϕ such that for all M ∈ Xτ , M ∈ A if and only if 〈M,F〉 � ϕ.

The second definition covers subsets of the space 2Nk , since this is the logic
space for a single k-ary relation. We will freely identify subsets of Nk with their
characteristic functions.

2.1. Variants relative to relations. We present variants of the Lopez-Escobar
theorem for closed subgroups of Sym(N) and Lω1ω(F). Let G ≤ H mean that G
is a subgroup of H.
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Definition 3. Suppose G ≤ Sym(N). The G-orbits of a tuple a ∈ N<ω and a set
A ⊆ N<ω are defined as OrbG(a) = {g(a) : g ∈ G} and OrbG(A) = {g(a) : g ∈
G, a ∈ A}.

When G is understood from the context, we write Orb(a) and Orb(A) for the
G-orbits. Recall the standard

Fact 4. The closed subgroups of Sym(N) are exactly the automorphism groups of
countable relational structures on N. In fact, if F is the family of orbits of a closed
group G ≤ Sym(N), then G = Aut(F).

See for example [2, theorem 2.4.4] for a proof.

Proposition 5. Suppose G ≤ Sym(N) is closed and F is the family of G-orbits of
tuples. Suppose the signature τ is disjoint from the symbols for F . Then a subset
of Xτ is Borel and G-invariant if and only if it is definable in Lω1ω(F).

Proof. The proof of the forward implication is analogous to Vaught’s proof [5].
Following the proof of [3, theorem 16.8], we replace the set of injections k → N
with the orbit of 〈0, 1, .., k − 1〉. Note that the Baire category theorem holds for G
since G is closed in Sym(N). For every Borel set A ⊆ Xτ , there is a sequence of
Lω1ω(F)-formulas ϕk such that for all M ∈ Xτ and a ∈ Nk, M |= ϕk(a) if and only
if g(M) ∈ A for comeager many g ∈ G with a ⊆ g−1. This is proved by induction
on the Borel rank. The argument for the other implication is a straightforward
induction on formulas of Lω1ω(F). �

While every Gδ subgroup of Sym(N) is closed [1, proposition 1.2.1], the propo-
sition is false for some Fσ subgroups. We write A =∗ B if A4B is finite and
A ⊆∗ B if A − B is finite. Suppose A ⊆ N is infinite and co-infinite and let
G = { g ∈ S∞ : g(A) =∗ A }. Then G is Fσ and has the same orbits as Sym(N).
However, the set {X : A ⊆∗ X} is G-invariant, but not Sym(N)-invariant and hence
not definable from the orbits of G.

It is natural to ask whether the family of orbits can be replaced by the orbit
equivalence relation EG = {〈a, b〉 ∈ N<ω × N<ω : ∃g ∈ G(g(a) = b)}. However, EG
may contain much less information. For example, E{idN} is definable in Lω1ω and
thus no orbit of {idN} is definable from E{idN}.

As a corollary we obtain a variant of Scott sentences for orbits of closed subgroups
of Sym(N).

Corollary 6. Suppose G ≤ Sym(N) is closed and F is the family of G-orbits of
tuples. There is for each M ∈ Xτ an Lω1ω(F)-sentence ϕGM such that for any
N ∈ Xτ , N |= ϕGM if and only if N = g(M) for some g ∈ G.

Proof. The orbit Orb(M) = {g(M) : g ∈ G} is Borel [2, Theorem 3.3.2]. �

When G is the symmetric group we write ϕM = ϕ
Sym(N)
M . While the sentence

obtained in the corollary is not identical with the standard Scott sentence, any
sentence ϕM with this property is sufficient for our purpose. Here is a version of
the Lopez-Escobar theorem relative to a family of relations.

Proposition 7. Suppose F is a countable family of relations and the signature τ
is disjoint from the symbols for F . Then every Aut(F)-invariant Borel subset of
Xτ is definable in Lω1ω(F).
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Proof. It is sufficient to show that the Aut(F)-orbits of tuples are definable in
Lω1ω(F); this implies that all Aut(F)-invariant Borel sets are definable in Lω1ω(F)
by Proposition 5. Note that Aut(F) is closed. Let Ma = 〈N,F , a〉 for a ∈ N<ω.
Then a ∈ Orb(b) if and only if the structures Ma and Mb are isomorphic if and
only if Mb � ϕMa

. Hence ϕMa
defines the orbit of a. �

2.2. Variants relative to quantifiers. We present variants of the Lopez-Escobar
Theorem for Lω1ω(Q) for quantifiers Q. Let us suppose that Q is of type 〈k〉 and
G ≤ Sym(N). The notions of Lω1ω(Q)-definability for subsets of Nl and Xτ are
analogous to those for Lω1ω(F). A permutation f of N is said to fix Q if for
all A ⊆ Nk, A ∈ Q if and only if f(A) ∈ Q. Let Aut(Q) denote the group of
permutations fixing Q. A set A ⊆ Xτ is called G-invariant if g(A) = A for all
g ∈ G.

Proposition 8. Suppose Q ⊆ 2Nk is a Borel quantifier with closed automorphism
group. Suppose the orbits of Aut(Q) are definable in Lω1ω(Q). Then a subset of
Xτ is Borel and Aut(Q)-invariant if and only if it is definable in Lω1ω(Q).

Proof. The forward implication follows from Proposition 5. We are left to show that
every Lω1ω(Q)-definable subset of Xτ is Borel. Note that the Borel sets are exactly
the sets definable in Lω1ω from a sequence of natural parameters. Suppose Q is
defined by an Lω1ω-sentence ϕQ from a parameter sequence sQ, i.e. ϕQ mentions
a sequence of constants interpreted as sQ. We prove by induction on formulas that
for every Lω1ω(Q)-formula ψ and every sequence s, the set of structures defined by
ψ from s is definable by an Lω1ω-formula from some parameter sequence and hence
Borel. Suppose A = {M ∈ Xτ : 〈M, s〉 � Qxχ(x)} where χ is an Lω1ω-formula and
s is a parameter sequence. Then M ∈ A if and only if { a : 〈M, s〉 � χ(a) } ∈ Q if
and only if 〈N, { a : 〈M, s〉 � χ(a) } , sQ〉 � ϕQ if and only if 〈M, sQ, s〉 � ϕχQ, where
ϕχQ is the formula obtained by replacing all occurences of the (only) k-ary predicate
P (x) in ϕ by χQ(x, cs) and interpreting cs as s. Since ϕχQ is an Lω1ω-formula, the
set it defines is Borel. �

An analogous result is true for countable families Q of quantifiers assuming
Aut(Q) is closed. Note that the assumption that Aut(Q) is closed is essential. To
see this, write A =∗ B if A4B is finite and let Q = {X : X =∗ A} where A ⊆ N is
infinite and co-infinite. It can be easily proved by induction on Lω1ω(Q)-formulas
that 〈N, X〉 � ¬Qxϕ(x, a) for all X 6=∗ A,¬A. This implies that any Lω1ω(Q)-
sentence true in a structure 〈N, X〉 for some infinite and co-infinite X 6=∗ A,¬A is
true in all structures 〈N, Y 〉 for infinite and co-infinite Y 6=∗ A,¬A. Hence the set
{X : A ⊆∗ X} is Aut(Q)-invariant but not Lω1ω(Q)-definable.

Definition 9. Suppose Q ⊆ 2Nk is monotone upwards, i.e. closed under supersets.
Let us identify each natural number n with the set {0, ..., n − 1}. A function
p : n→ N is compatible with Q if and only if for every A ⊆ nk, Nk − A ∈ Q if and
only if Nk − p(A) ∈ Q. A function p : n → N is strongly compatible with Q if for
every m, there is a finite injection q compatible with Q extending p such that m is
a subset of the domain and the range of q.

Note that since Q is monotone upwards, for all A ⊆ nk, Nk − A ∈ Q if and
only if nk − A extends to an element of Q, i.e. there is some B ⊆ Nk in Q with
nk − A = B ∩ nk. Hence a function p : n → N is compatible with Q if and only if
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for every function g : nk → {0, 1}, g extends to (the characteristic function of) an
element of Q if and only if p(g) = g ◦ p−1 extends to (the characteristic function
of) an element of Q.

Proposition 10. Suppose Q ⊆ 2Nk is monotone upwards and any finite injection
p : n → N strongly compatible with Q extends to some f ∈ Aut(Q). Then the
Aut(Q)-orbits of tuples are definable in Lω1ω(Q).

Proof. A tuple a = 〈ai : i < n〉 is in the orbit of a tuple b = 〈bi : i < n〉
if and only if for every finite set A, there are extensions 〈ai : i < l〉 of a and
〈bi : i < l〉 of b such that the function p mapping each ai to bi is well-defined and
injective with A a subset of its domain and range and p is compatible with Q. The
compatibility is expressible as the conjunction of Qx

∧
t∈T x 6= 〈at(0), .., at(k−1)〉 ↔

Qx
∧
t∈T x 6= 〈bt(0), .., bt(k−1)〉 over all T ⊆ lk. This can be written as a Lω1ω(Q)-

sentence in which A and b do not appear; the statement is a conjunction over sets
A of disjunctions over extensions of b. �

The information about tuples of natural numbers encoded in a quantifier Q of
this kind is definable in Lω1ω(Q). This suggests the next definition.

Definition 11. A Borel quantifier Q is good if it is monotone upwards, Aut(Q) is
closed, and any finite injection p : n → N strongly compatible with Q extends to
some f ∈ Aut(Q).

Examples for good quantifiers are ∀, ∃, “for infinitely many”, “for all but finitely
many”, “for some prime number”, “for all even numbers or for all odd numbers”,
and any positive boolean combination of quantifiers QA as in the next section. We
do not know if every monotone upwards closed quantifier is good. We also do not
know whether the Lopez-Escobar theorem is true for Lω1ω(Q0, Q1) if Q0 and Q1

are good quantifiers.
Note that the automorphism group of a closed quantifier is closed. Conversely

we have

Proposition 12. Suppose G is a closed subgroup of Sym(N). There is a good
binary quantifier Q with G = Aut(Q).

Proof. Let P be the downward closure of⋃
k∈N

Orb({〈0, 0〉, 〈0, 1〉, 〈1, 2〉, . . . , 〈k − 1, k〉})

Then P is G-invariant, so its closure R is G-invariant as well. Let Q be the set of
A ⊆ N2 with N2 − A ∈ R. Then Q is monotone upwards and Aut(Q) is closed. If
p : k → N is an injection compatible with Q, then

s = {〈p(0), p(0)〉, 〈p(0), p(1)〉, .., 〈p(k − 2), p(k − 1)〉} ∈ R.

Let 〈an : n < ω〉 be a sequence in P converging to s. Then an eventually contains
a set of the form {〈an0 , an0 〉, .., 〈ank−2, a

n
k−1〉} and the eventual value of ani is p(i) for

all i < k. Hence s ∈ P and p can be extended to a permutation in G. To show that
Aut(Q) = G, suppose g ∈ Aut(Q) and thus {〈g(0), g(0)〉, 〈g(0), g(1)〉, .., 〈g(m −
1), g(m)〉} ∈ R for every m. This is in fact an element of P by the previous
argument, so there are permutations hm ∈ G for each m with g(i) = hm(i) for all
i ≤ m. Since hm → g we have g ∈ G. �
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Hence there is a correspondence between the closed subgroups of Sym(N) and
good binary quantifiers Q. Let Inv(G) denote the family of closed G-invariant
subsets of 2N2

. Then
Aut(Inv(G)) = G

for every closed subgroup G ≤ Sym(N).

3. More quantifiers

We consider more quantifiers whose automorphism group is closed and whose
orbits are definable from the quantifier, so that a version of the Lopez-Escobar
theorem holds. To see that this class is neither closed under intersection nor under
union, consider

Definition 13. A principal quantifier is of the form
• QA = {X ⊆ Nk : A ⊆ X } or
• QA = {X ⊆ Nk : X ⊆ A }

where A is a subset of Nk.

The automorphism group Aut(QA) = Aut(QA) = Aut(QA ∩ QA) = Aut(A) of
a principal quantifier is closed and its orbits are definable in Lωω(QA). For A ⊆ N
this is true since m ∈ A if and only iff ¬QAx(m 6= x) holds, and for A ⊆ Nk this
is shown in section 3.2. Let us fix some infinite and co-infinite set A ⊆ N and let
Q = {A}, so Aut(Q) = Aut(A). All sentences Qxϕ(x, a) for Lω1ω-formulas ϕ and
a ∈ N<ω are false, since the set {n : ϕ(n, a)} is invariant under any permutation
fixing a. Thus any subset of N defined by an Lω1ω(Q)-formula with parameters in
m is either a subset of m or includes N −m. Hence the orbits of Aut(Q) are not
definable in Lω1ω(Q).

3.1. Clopen quantifiers. The automorphism group of a closed quantifier is closed.
To see that the orbits of a clopen quantifier Q are definable from Q, we define its
support.

Definition 14. A set S ⊆ Nk supports a quantifier Q of type 〈k〉 if for all A,B ⊆ Nk
with A∩S = B∩S, A ∈ Q if and only if B ∈ Q. A minimal set S ⊆ Nk supporting
Q is called a support of Q.

If Q has a support, then this is unique, since easily the set of S ⊆ Nk which
support Q is closed under finite intersections. Note that for each a ∈ Nk, the set
Nk − {a} supports the set of finite subsets of Nk, so this does not have a support.
However we have

Lemma 15. Every closed quantifier Q has a support.

Proof. Suppose S =
⋂
n∈N Sn, where Sn supports Q for each n ∈ N and Sn ⊆ Sm

for m ≤ n. If A ∈ Q and A∩S = B∩S, then An = (A∩Sn)∪(B−Sn) ∈ Q for each
n, since A ∈ Q. Since B is the limit of the sets An and Q is closed, B ∈ Q. Suppose
Q is of type 〈k〉 and Nk = {an : n ∈ N}. The support of Q is the intersection of
the sets An where A0 = Nk and An+1 = An − {an} if this set supports Q and
An+1 = An otherwise. �

Lemma 16. The support of any clopen quantifier Q is definable in Lωω(Q).
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Proof. Note that a quantifier is clopen if and only if it has finite support. Suppose
Q is of type 〈k〉 and its support is contained in {0, .., n−1}k. We define Rl,m(ā a b̄)
to hold for tuples ā ∈ (Nk)l and b̄ ∈ (Nk)m if the finite partial function mapping
each ai to 1 and each bj to 0 can be extended to the characteristic function of an
element of Q. This can be easily expressed in Lωω(Q) as the existence of a tuple
c̄ ∈ (Nk)n

k

so that the components of ā a b̄ a c̄ are pairwise distinct and

Qx(
∧
j<m

x 6= bj ∧ (
∨
i<l

x = ai ∨
∨
h<nk

x = ch))

holds. Then d ∈ Nk is in the support of Q if and only if there are tuples ā ∈ (Nk)l

and b̄ ∈ (Nk)m with l+m = nk − 1 such that Rl+1,m(ā a 〈d〉 a b̄) and Rl,m+1(ā a
〈d〉 a b̄) have different truth values. �

Proposition 17. The orbits of the automorphism group of any clopen quantifier
Q are definable in Lωω(Q).

Proof. Suppose Q is of type 〈k〉 with finite support S. A tuple a = 〈ai : i < n〉 is
in the orbit of a tuple b = 〈bi : i < n〉 if and only if there are extensions 〈ai : i < l〉
of a and 〈bi : i < l〉 of b whose ranges contain S such that the function p mapping
each ai to bi is well-defined and injective and p, p−1 preserve S and Rj,l for all j, l
with j + l ≤ |S|. The preservation of S is expressible in Lωω(Q) as a conjunction
over S and the preservation of Rj,l as a conjunction over the subsets of S. If this
conditions holds, let f be any permutation of N extending p and let A ⊆ Nk. Then
A ∈ Q if and only if A∩S can be extended to a relation in Q if and only if f(A)∩S
can be extended to a relation in Q if and only if f(A) ∈ Q; hence f ∈ Aut(Q). �

If Q = 〈Qi : i ∈ N〉 is a sequence of clopen quantifiers, then for each n, we
can express that a tuple 〈a0, .., al〉 is extendible to a permutation compatible with
〈Qi : i < n〉 as in the previous proof. The conjunction of these conditions implies
that 〈a0, .., al〉 is in the Aut(Q)-orbit of 〈0, .., l〉. Hence the proposition is true for
Aut(Q) and Lω1ω(Q).

3.2. Combinations of principal quantifiers. We prove that for finite boolean
combination of principal quantifiers QAk the automorphism group is closed and its
orbits are definable from the quantifier. Suppose 〈Ak : k < n〉 is a partition of Nd
with d ∈ N and

Q =
⋃
i

⋂
k<n

Q
si(k)
Ak

with si ∈ {1,−1}n for i < m, where Q1
Ak

= QAk and Q−1
Ak

= ¬QAk . We can
assume that n is minimal with these properties. In this situation we write Q =
〈Ak, si〉 = 〈Ak, si : k < n, i < m〉. We say that a tuple ā ∈ (Nd)<ω occurs
positively (negatively) in Q = 〈Ak, si〉 if there is some i such that for all k, si(k) = 1
(si(k) = −1) if and only if there is j with aj ∈ Ak. A tuple ā occurs negatively if
and only if ψ(ā) := Qx

∧
j(x 6= aj) holds.

Lemma 18. If Q = 〈Ak, si : k < n, i < m〉, then there is an Lωω(Q)-formula χ
with χ(a, b) if and only if a, b ∈ Ak for some k < n.

Proof. Let χ(a, b) state that ψ(〈a〉 a c̄), ψ(〈b〉 a c̄), and ψ(〈a, b〉 a c̄) have equal
truth values for all tuples c̄ ∈ (Nd)n. If a, b ∈ Ak for some k, then χ(a, b) holds.
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Suppose a ∈ A0, b ∈ A1, and χ(a, b) holds. Suppose Q is the union of the sets⋃
t∈T

(¬QA0 ∩ ¬QA1 ∩
⋂
j≥2

Q
t(j)
Aj

)

⋃
u∈U

(QA0 ∩ ¬QA1 ∩
⋂
j≥2

Q
u(j)
Aj

)

⋃
v∈V

(¬QA0 ∩QA1 ∩
⋂
j≥2

Q
v(j)
Aj

)

⋃
w∈W

(QA0 ∩QA1 ∩
⋂
j≥2

Q
w(j)
Aj

)

We claim that T = U = V . To prove T ⊆ U , suppose t ∈ T and pick d̄ so that
there is exactly one dk ∈ Ak for each k ≥ 2 with t(k) = 1, so that ψ(〈a, b〉 a d̄)
holds. Then ψ(〈b〉 a d̄) holds and hence t ∈ U . The other cases are analogous.
This shows that n is not minimal, since

(¬QA0 ∩ ¬QA1) ∪ (QA0 ∩ ¬QA1) ∪ (¬QA0 ∩QA1)

can be replaced by ¬(QA0 ∩QA1) = ¬QA0∪A1 . �

Note that the assumption that n is minimal is essential here, since otherwise the
proof does not even work for quantifiers of the form Q = QA ∩QB .

Lemma 19. If Q = 〈Ak, si : k < n, i < m〉, then for each j ≤ n there is an
Lωω(Q)-formula θj such that θj(ā, b̄) holds if and only if

• ā occurs positively and has length j,
• b̄ occurs negatively and has length n− j, and
• all elements of ā a b̄ are in different Ak.

Proof. The formula θj can be expressed by χ and ψ. Note that if b̄ occurs negatively,
then ā has to occur positively, given the remaining conditions. �

Lemma 20. If Q = 〈Ak, si : k < n, i < m〉, then g ∈ Aut(Q) if and only if there
are a permutation p of n and a permutation r of m such that g(Ak) = Ap(k) for all
k < n and sr(i) = si ◦ p−1 for all i < m.

Proof. If g ∈ Aut(Q), then g permutes the Ak by the previous lemma. Let p : n→ n
be this permutation. For each s : n → {−1, 1}, there is i < m with s = si if and
only if there is some j < m with s ◦ p = sj . Suppose p and r are given and
x ∈

⋂
k<nQ

si(k)
Ak

for some i < n. Then g(x) ∈
⋂
k<nQ

si(k)
Ap(k)

=
⋂
k<nQ

sr(i)
Ak

. �

This implies that Aut(Q) is closed. For suppose gk → g ∈ S∞ with gk ∈ Aut(Q)
for each k < ω and let pk be the permutation of n corresponding to gk in the
previous lemma. Then pk eventually takes a fixed value p, hence g is according to
p.

Given a tuple ā ∈ (Nd)j , we can find f : j → n such that there is a tuple
c̄ ∈ (Nd)n with

• all ci are in different Ak and c̄ is maximal with this property, and
• ai and cf(i) are in the same Ak for each i < j.
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For tuples c̄ with this property, let Mā,c̄ = 〈N, ā, c̄, 〈Ap(k) : k < n〉〉, where p is the
unique permutation of n such that ck ∈ Ap(k). Note that the Scott sentence ϕMā,c̄

of Mā,c̄ is equivalent to a sentence in Lω1ω(Q) with parameters ā and c̄, since Ap(k)

is definable from Q and ck.

Proposition 21. For any finite boolean combination Q of principal quantifiers of
the form QA, the orbits of Aut(Q) are definable in Lω1ω(Q).

Proof. Let Q = 〈Ak, si : k < n, i < m〉. Suppose ā is a tuple of length j and
f : j → n and c̄ are as above. We claim that b̄ ∈ Orb(ā) if and only if there is a
tuple d̄ ∈ Nn such that

• all di are in different Ak and d̄ is maximal with this property,
• bi and df(i) are in the same Ak for each i,
• Mb̄,d̄ � ϕMā,c̄

, and
• for all I ⊆ n, Qn(

∧
k∈I n 6= dk) holds if and only if I = {k < n : si(k) = −1}

for some i < n.
Suppose these conditions hold for b̄ and d̄. Since Mb̄,d̄ models ϕMā,c̄

, there is
a permutation g : N → N mapping ā to b̄ and c̄ to d̄. Let p : n → n be the
permutation of the indices of ci induced by this map. Then g(Ak) = Ap(k) for each
k < n. The last condition implies that for every i < m there is some j < m such
that si ◦ p = sj . Hence g preserves Q by the previous lemma. �

In the previous proof, the condition on the Scott sentence can be replaced by the
condition (expressible in Lω1ω(Q)): If ci ∈ Ak and di ∈ Al, then Ak and Al have the
same size. In fact, any injection q : n → N compatible with Q whose domain and
range contain all finite Ak and at least one element from each Ak extends to some
f ∈ Aut(Q). Hence any monotone upwards finite boolean combination of quantifiers
QAk is good, for instance every positive combination. Note that the proposition
is also valid for boolean combinations of principal quantifiers QAk , since QAxϕ(x)
can be expressed as Q¬Ax¬ϕ(x), and thus any monotone upwards finite boolean
combination of quantifiers QA is good. For example, ”for some prime number” is
expressible as ¬QA where A is the set of non-prime numbers. However, the two
types of principal quantifiers cannot be mixed by the example at the beginning of
section 3.

The proof of the proposition only uses the co-infinite part of Q. We do not
have an example of a quantifier whose elements are all co-infinite and for which the
Lopez-Escobar theorem fails.

4. Classes of uncountable structures

Some of the previous results generalize to the logic space for structures with
domain an uncountable cardinal κ. Let us always assume κ<κ = κ. We briefly
describe the setting. The basic open sets of κκ and the logic space

Xτ =
∏
R∈τ

2κ
a(R)

of structures with domain κ for a relational signature τ of size ≤ κ, where relations
are allowed to have < κ arguments, are given by partial functions of size < κ,
and the κ-Borel sets are generated by unions of length κ and complements. The
symmetric group Sym(κ) has the relative topology from κκ. A topological space is
κ-Baire if

⋂
α<κ Uα is dense for every sequence 〈Uα : α < κ〉 of open dense sets.
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A quantifier of type 〈α〉 on κ is defined as a subset of 2κ
α

for α < κ. To see that
the automorphism group of a closed quantifier Q is closed, suppose gβ ∈ Aut(Q)
for each β < κ and gβ → g ∈ Sym(κ). Then gβ(f) → g(f) and g−1

β (f) → g−1(f)
for all f ∈ 2κ

α

, so f ∈ Q if and only if g(f) ∈ Q and hence g ∈ Aut(Q).
We have the following variants of Propositions 5, 12, and 17 with analogous

proofs.

Proposition 22. Suppose G ≤ Sym(κ) is closed and κ-Baire and F is the family
of G-orbits of elements of κ<κ. Suppose the signature τ is disjoint from the symbols
for F . Then a subset of Xτ is κ-Borel and G-invariant if and only if it is definable
in Lκ+κ(F).

Good quantifiers are defined as in section 2.2 but finite tuples are replaced by
elements of κ<κ. The Lopez-Escobar theorem holds for good quantifiers in this
setting.

Proposition 23. Suppose G ≤ Sym(ω1) is closed and ω1-Baire. Then there is a
good binary quantifier Q with G = Aut(Q).

Proof. Suppose f : ω1 → P(ω) is injective. The proof is analogous to the proof of
Proposition 12, except that P is replaced by the downward closure of the union of
the orbits of

{〈0, 0〉} ∪ {〈n, n+ 1〉 : n < ω} ∪ {〈n, α〉 : ω ≤ α < γ, n ∈ f(α)}
for γ < ω1. �

Moreover if Q is a good quantifier on ω1, then a subset of Xτ is ω1-Borel and
G-invariant if and only if it is definable in Lω2ω1(Q).

Proposition 24. The orbits of the automorphism group of any clopen quantifier
Q on κ are definable in Lκκ(Q).

We do not know if Proposition 23 and the analogue of Proposition 21 are true
for arbitrary uncountable cardinals κ with κ<κ = κ.
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