
Consequence Mining:

A New Approach to Logical Constants∗

Denis Bonnay
Université Paris Ouest Nanterre

Dag Westerst̊ahl
University of Gothenburg

May 9, 2010

1 Introduction

Why is the concept of a logical constant important? Surely the strongest reason
is that it appears to be involved in any attempt to identify a precise notion
of logical consequence, and related notions like logical truth and analyticity.
Whether you approach logical consequence semantically, in terms of preservation
of truth, or syntactically, in terms of derivability in a formal system, you first
need to make a selection of logical constants, which will play a special role in
your definition of consequence, in contrast with other symbols which can be
treated schematically.

1.1 The problem of logicality

The recognition that different words play different roles for the consequence
relation is an old one. An early expression of it was the medieval distinction
between categorematic and syncategorematic terms, the dominant idea being
that the latter had no independent meaning (did not correspond to anything
‘definite’ in the mind). This particular idea is hard to defend in present day se-
mantics, where familiar logical constants like every and or do receive seemingly
independent interpretations of their own. And similarly straightforward mod-
ern dichotomies, like the one in linguistics between functional and descriptive
terms, don’t seem to give the right result either.1

Of course, it is not necessary to have a characterization of logicality before
doing logic. Most presentations of formal systems, and their associated notion of
consequence, simply start by choosing some familiar logical words, or inventing
some new ones, without giving other reasons than, possibly, various desirable
properties of the resulting system. It is only when the target of interest is
∗Various thanks TBW.
1For example, in type-theoretic semantics, all types except the basic ones are functional.

And even in higher types there seem to be plenty of non-logical words.

1

the concept of logical consequence itself, that the need for some independent
grounds for that choice makes itself felt.

When Tarski gave the first version of the model-theoretic definition of log-
ical consequence, in Tarski (1936), he plainly recognized that you need such
grounds — and that he had none. In fact, this recognition itself is a non-trivial
intellectual achievement. The same thing was recognized by Bolzano — whose
investigations of logical consequence in the Wissenschaftslehre were in some re-
spects more wide-ranging and penetrating than Tarski’s (as we will see shortly)
— one hundred years earlier.2 But apart from those two cases, recognition of
the problem of logical constants, let alone analyses of logicality — of precisely
what it is that distinguishes words like every from words like man, for example
— have been rare until fairly recently.

One reason for this state of affairs was presumably that for a long time, the
‘candidate’ logical constants seemed few and familiar. But with the advent of
generalized quantifier theory in the 1950’s and 60’s, there suddenly appeared
a huge number of expressions about which it makes sense to ask whether they
are logical or not. Likewise, the present day explosion of logical systems for
various purposes (think of intensional logics, dynamic logics, game-theoretic
logics, linear logic, etc.) has also significantly increased the range of putative
logical expressions. In any case, there are now some rather well developed
attempts on the market to explicate the notion of logicality.

Perhaps the most successful of these to date are characterizations in terms
of invariance under (a group of) transformations. Starting with Tarski (1986),
the plan is to characterize logical notions as the ones invariant under the most
general kind of transformation, thereby capturing the idea that logic is the most
general of sciences. This field has been rather active recently.3

1.2 Constants from consequence: Bolzano reversed

In the present paper, however, we shall approach the notion of a logical constant
from a different, and as far as we know, unexplored direction.4 In a nutshell, the
idea is to combine Bolzano’s insight that any choice of constants determines a
semantic consequence relation with a method for going in the opposite direction:

2It is only in one short paragraph in §148 of Bolzano (1837) that he mentions the problem
and connects it to defining what he calls logical analyticity. According to Bar-Hillel (1950), this
was “surely one of the most important and ingenious single logical achievements of all times.”
(p. 101) Bar-Hillel notes that this notion of logical truth or analyticity is not used in the rest
of the book, and hypothesizes that it was a late insight, inserted just before publication. Be
that as it may, an equally important achievement in Wissenschaftslehre, which pervades the
book, is the analysis of consequence, and the realization that it is relative to a selection of
constants; see Section 3 below.

3See, for example, Bonnay (2008) and Feferman (2010), and the references cited therein,
for recent surveys and contributions in this area. For a non-technical overview of various
approaches to logical constants, see MacFarlane (2009).

4The only exception is Carnap. He did address the question in Carnap (1937), suggesting
that the set of logical constants be the maximal set of expressions such that every sentence
built out of these expressions is either valid or invalid. Our proposal is essentially different,
and closer in spirit to standard accounts of validity.

2

to extract, from any given consequence relation, its constants. The method
might thus be called consequence mining. We see this as a complement rather
than an alternative to the invariance approach. The two approaches focus as it
were on different aspects of logical constants. Very roughly, invariance targets
logicality : the generality and formality of logic. Our approach here targets
constanthood, in the sense of what must be held constant for an inference to
be valid. This goes beyond pure logic, since it applies to any given notion of
consequence, of what ‘follows from’ what, in formal or natural languages.

How can one ‘extract the constants’ if nothing but a language and a conse-
quence relation is given? The idea is embarrassingly simple. In a given inference
which is valid according to that relation, it is often perfectly clear which words
or symbols are constant and which are not: Just replace them by others of
the same category and see what happens. If validity (according to the given
consequence relation) is always preserved under such replacement, we are not
dealing with a constant. But if validity can be destroyed in this way, we are.
In other words, the constants of that inference are those words or symbols that
are essential to its validity, in the sense indicated. Here is an example.

(1) a. Most French movies encourage introspection
b. All movies which encourage introspection are commercial failures
c. Hence: Most French movies are commercial failures

(1) is presumably valid according to most natural notions of consequence: the
conclusion follows from the premises. Now replace words like French, movies,
etc. with others of the same category (in some suitable sense):

(2) a. Most red sports cars are convertibles
b. All cars which are convertibles are unsuitable for cold climates
c. Hence: Most red sports cars are unsuitable for cold climates

Nothing happens. The inference is still valid. Indeed, in a sense it is the same
inference. But try instead to replace words like most or all :

(3) a. No French movies encourage introspection
b. All movies which encourage introspection are commercial failures
c. Hence: No French movies are commercial failures

This is not only invalid: whether it is valid or not seems to have nothing to do
with the validity of (1)! Hence, most is a constant in (1), French is not.

These observations are so obvious that they are easy to overlook. But that
doesn’t make them trivial. The method of replacing words by others of the
same category, and seeing what happens, was precisely Bolzano’s approach to
consequence. In his case, the criterion was that truth should be preserved (for
consequence to hold). In the reverse direction, we ask instead if validity is
preserved.

So far, however, we have only given a way to detect constanthood relative
to a particular valid inference. The next task is to extract the constants from
the consequence relation itself. The present approach to constanthood was first

3

proposed in Peters and Westerst̊ahl (2006), Ch. 9. The suggestion there was
that a symbol u is constant if every valid inferences in which it occurs essentially
can be destroyed by some replacement. The problem with this idea is that the
qualification “in which it occurs essentially” is crucial, and must be explained
independently, as the following examples from first-order logic illustrate:

(4) a. Pa |= Pa ∨ ∃xRx
b. ∃xPx,∀x(Px↔ Rx) |= ∃xRx

In both of these inferences, the quantifier ∃ can be replaced by any type 〈1〉
quantifier Q, i.e. with any symbol of the same category, without destroying
validity. Cases like (4a) are easy to set aside: the occurrence of ∃ there is
spurious, in that (4a) is an instance of a (in a precise sense) more general
inference (i.e. ϕ |= ϕ ∨ ψ) in which ∃ does not occur. But (4b) is more
tricky: it expresses a principle of extensionality, and it is not clear how all
such principles can be set aside on syntactic or other grounds. In particular,
the suggested notion of constanthood makes it a non-trivial task to verify that
the usual logical symbols in familiar consequence relations, such as first-order
consequence, are indeed constants according to the criterion.

Here we shall use a weaker and, as it turns out, more satisfactory criterion:
It suffices, for a word or symbol to be constant relative to the given consequence
relation, that there be at least one valid inference which can be destroyed by a
replacement.

To repeat, the main innovation is extraction (mining): starting from a given
consequence relation, we identify its constants. There is an intuitive appeal to
this idea, we feel, which is lacking in abstract discussions of logicality. Often,
speakers have rather clear judgments about ‘what follows from what’, at least
much clearer than about the theoretical issue of which words are logical. Our
proposal allows us to use only judgments about validity and non-validity of
inferences to identify the constants.

1.3 Two criteria of adequacy

Although our general idea is fairly clear, there are choices to be made about
the details of its implementation. Moreover, there doesn’t seem to exist any
similar investigations, or any accepted requirements that such an investigation
should satisfy. In order to have some guarantee that we are on the right track,
we shall be guided by two criteria. The first is straightforward: The method of
extraction should yield the expected logical constants when applied to familiar
and well-defined notions of logical consequence.

The second criterion is more vague, but still useful as a guide. Bolzano’s
definition of consequence is unique in its generality. He realized that any set
X of words could in principle be selected as constants, and logical consequence
with respect to X be defined in a uniform way: preservation of truth however the
words outside X are replaced. Some choices of X may yield unintuitive results,
others may give rise to interesting consequence relations, but the definition

4

is completely general. In effect, he defines a function from arbitrary sets of
words to consequence relations. Now, extraction of constants is a function in
the opposite direction, from consequence relations to sets of words. But the
method of abstraction is based on the same fundamental idea: to study what
happens to truth and validity, respectively, under appropriate replacements of
words. Therefore, we would hope for the extraction function to be an inverse
of Bolzano’s function, in some suitable sense.

This second guiding principle turns out to be quite fruitful. We will see
what kind of inverse relationship can be expected, and get to know in some
detail under what conditions on the language and on the notion of consequence
it holds. In fact, most of the technical work to follow was driven by the goal of
understanding the relationship between the two functions.

1.4 Plan

Our aim is to draw an abstract mathematical picture of the situation just in-
dicated for a given language, with the two functions, one forming consequence
relations from constants, and the other extracting constants from consequence
relations. We make as few assumptions as possible about the language. But we
start from Bolzano’s substitutional perspective rather than the model-theoretic
one: there is a given interpreted language, in which meaningful expressions can
be replaced, rather than reinterpreted. The reasons for this are twofold, but they
are not historical.

A first reason is that while there are well-known facts about how lack of
expressivity in the language may affect the consequence relations (for example,
by inability to express an existing counter-example to an inference), there are
analogous effects on the extraction function which are not well-known. It will be
instructive to study such effects on both sides in some detail, and to see precisely
what is required to avoid them. So our procedure will be to add requirements
successively, eventually arriving at a situation where all unwanted effects have
been removed. In that situation, the Bolzano style account will be equivalent
to the Tarskian account for interpreted languages5, so the results obtained will
transfer to it, but we will have obtained several insights along the way.

The second and main reason, however, for not starting in a model-theoretic
setting is that it is not so clear what an arbitrary consequence relation in an
uninterpreted language is, or if such a notion even makes sense. In standard
model-theoretic accounts, languages are partially interpreted: the logical sym-
bols have fixed interpretations, the others not. But for our purposes, we need
to start without any such distinction: all symbols must be treated equally, and
the task is precisely to use properties of the consequence relation to single out
its constants. On the other hand, in an interpreted language the concept of an
arbitrary consequence relation is straightforward and unproblematic. In fact,

5The model-theoretic definition of logical consequence is given for (partly) uninterpreted
languages. However, the semantic account is of course not tied to the use of uninterpreted
languages. Tarski’s original definition of logical consequence in Tarski (1936) is given for an
interpreted language.

5

when we eventually come to the Tarskian semantic account, we will see that
languages must still be treated as interpreted, although there is a mechanism
for arbitrarily changing the interpretation.

Thus, we begin, after preliminary definitions of the notions of language,
replacement, and consequence relation to be used (Section 2), with a precise
account of Bolzano’s function from sets of symbols to consequence relations,
and some of its properties (Sections 3 and 4). We then introduce in Section 5
the extraction function in the other direction, and see how it behaves on certain
examples, compared to how we would like it to behave, in view of our two
adequacy criteria. It turns out to be the second criterion that requires additional
assumptions, and the rest of the paper investigates the effects of these. The form
of inverse relationship that we find is that of a Galois connection (Sections 6
and 7). It holds under certain requirements, in particular in our most general
version of the substitutional framework, which essentially is equivalent to a
model-theoretic one (Section 8). We end with some concluding remarks and
directions for further study.

2 Preliminaries

2.1 Languages

In the Bolzano setting with an interpreted language, we shall take every sentence
to be either true or false. We need very few assumptions about what sentences
look like or how they are structured. Most of what we need is captured in the
following definition.

Definition 1
An (interpreted) language is a triple

L = 〈SymbL,SentL,TrL〉,

where

(i) SymbL is a countable set of atomic symbols;
(ii) SentL is a set of sentences, which are finite strings of signs, some of

which belong to SymbL;6

(iii) TrL, the set of true sentences, is a subset of SentL.

As long as we only consider replacement of symbols by other symbols, we
may disregard finer aspects of the structure of sentences, such as tree structure.
But since we cannot realistically expect a symbol to be meaningfully replaceable
by any other symbol, we shall presuppose a partition of symbols into categories.
More precisely, let a set Cat of categories be given. We assume that for each
language L,

CatL = {CL : C ∈ Cat}
6Think of the other signs as grammatical morphemes, parentheses, commas, variables, etc.

We assume there are at most countably many of those too, and then SentL is also countable.

6

is a partition of SymbL. We say that u ∈ SymbL is of category C if u ∈ CL, and
we allow that CL is empty when L has no symbols of category C. Note that
symbols in distinct languages can be of the same category.

Whenever convenient, we drop the subscript L. We let u, v, u′, . . . vary over
Symb, ϕ,ψ, . . . over Sent, and Γ,∆, . . . over subsets sets of Sent. Also,

Vϕ

is the set of symbols occurring in ϕ. Likewise, VΓ = ∪{Vϕ : ϕ ∈ Γ}.

2.2 Replacement

A replacement is a partial function ρ from Symb to Symb that respects cate-
gories: if u ∈ dom(ρ) is of category C ∈ CatL, then so is ρ(u). We write

ϕ[ρ]

for the result of replacing each occurrence of u in ϕ by ρ(u).7 It is convenient
to assume that Vϕ ⊆ dom(ρ) — in words, ρ is a replacement for ϕ — so that ρ
is the identity on symbols that don’t get replaced.

We make the extra assumption that Sent is closed under replacement. Then
the following conditions hold:8

(5) a. If ρ is a replacement for ϕ, ϕ[ρ] ∈ Sent and Vϕ[ρ] = range(ρ � Vϕ)
b. ϕ[idVϕ

] = ϕ
c. If ρ, σ agree on Vϕ, then ϕ[ρ] = ϕ[σ].
d. ϕ[ρ][σ] = ϕ[σρ], when σ is a replacement for ϕ[ρ]

2.3 Consequence relations

Following the Bolzano-Tarski tradition, we take consequence relations to hold
between sets of sentences and sentences.9

Definition 2
A relation R ⊆ ℘(SentL)× SentL is

a. reflexive iff for all ϕ ∈ SentL, ϕRϕ ;10

b. transitive iff whenever ∆Rϕ and ΓRψ for all ψ ∈ ∆, we have ΓRϕ;
c. monotone iff ∆Rϕ and ∆ ⊆ Γ implies ΓRϕ;
d. truth-preserving iff whenever ΓRϕ and (every sentence in) Γ is true,

ϕ is also true.
7Other notations will also be used. For example, when dom(ρ) = {u1, . . . , un} and ρ(ui) =

u′i, we may write ϕ[u1/u′1, . . . , un/u′n]. Further, we often write just ϕ[u/u′] for the result
applying a replacement ρ such that ρ(u) = u′ and ρ is the identity on all other symbols in ϕ.

8These are essentially the conditions in Peter Aczel’s notion of a replacement system from
Aczel (1990).

9More general notions take the conclusion to be a set of sentences as well, or use sequences
or multisets instead of sets. In this paper we stick to the classical format.

10Writing ψRϕ instead of {ψ}Rϕ.

7

A consequence relation in L is a reflexive, transitive, monotone, and truth-
preserving relation (between sets of sentences and sentences). CONSL is the set
of consequence relations in L. We let⇒,⇒′, . . . vary over consequence relations.

If only finite sets of premises are considered, i.e. if⇒⊆ ℘<ω(SentL)×SentL,
we say that⇒ is finitary. Results using the finiteness restriction will be marked
(Fin). A weaker constraint is to consider compact consequence relations, in the
sense that

If Γ⇒ ϕ, then Γ′ ⇒ ϕ for some finite subset Γ′ of Γ.

Define:

(6) a. Γ⇒max ϕ iff it is not the case that Γ is true and ϕ is false.

b. Γ⇒min ϕ iff ϕ ∈ Γ.

⇒max is essentially material implication. ⇒max and⇒min are the smallest and
the largest elements of the partial order (CONSL,⊆). Note also that for every
truth-preserving relation R on ℘(SentL)×SentL, there is a smallest consequence
relation clL(R) extending R. clL(R) is the intersection of all consequence rela-
tions in which R is included.

3 Consequence from constants

Of particular interest are the consequence relations generated from a set of
constants. The idea is familiar to every logician: ϕ follows from Γ, relative to
a set X of constants, iff any reinterpretation of symbols outside X that makes
the premises true also makes the conclusion true. In the Bolzano setting with
an interpreted language we do not reinterpret symbols but replace them. As is
well-known, this means that the availability of symbols in the language L may
‘accidentally’ effect the consequence relation. We will note such effects as we go
along, and see what sort of assumptions about L will prevent them.

3.1 Bolzano consequence

Bolzano stressed the fact that we are in principle free to regard any set of
symbols as constants. As pointed out in van Benthem (2003), one may thus
think of Bolzano consequence as a ternary relation, between a set of premises, a
conclusion, and a set X of symbols treated as constants. Equivalently, we shall
define a function ⇒ from sets of symbols to consequence relations, as follows:11

11We do not follow Bolzano to the letter; for example, we do not require, as he did, that the
set of premises should be consistent in order to have any consequences. For a discussion of this
and several other aspects of Bolzano’s notion of consequence, see van Benthem (2003). Another
departure from Bolzano’s original approach is that ours is syntactic, replacing symbols, whereas
he replaced concepts (‘Vorstellungen an sich’). Incidentally, this might make his account less
vulnerable to detrimental effects due to lack of symbols in the language.

8

Definition 3
For any X ⊆ SymbL, define the relation ⇒X by

Γ⇒X ϕ iff for every replacement ρ (for Γ and ϕ) that only moves symbols
outside X (i.e. that is the identity on X), if Γ[ρ] is true, so is ϕ[ρ].

A relation of the form ⇒X is called a Bolzano consequence (relation), and we
let BCONSL be the set of Bolzano consequences in L.12

It is straightforward to verify the following claims.

Fact 4
(a) BCONSL ⊆ CONSL
(b) In addition, Bolzano consequences are base monotone, in that

X ⊆ Y implies ⇒X ⊆ ⇒Y

(c) (BCONSL,⊆) is a partial order which has ⇒∅ as its smallest and ⇒Symb

as its largest element.

So (BCONSL,⊆) is a sub-order of (CONSL,⊆), and we see that

(7) ⇒max = ⇒Symb

It often happens,13 however, that

(8) ⇒min (⇒∅

so BCONSL can be a proper subset of CONSL. The following is trivial but
fundamental:

Lemma 5
(Replacement Lemma) If Γ ⇒X ϕ and ρ only replaces symbols outside X,
then Γ[ρ]⇒X ϕ[ρ].

Proof. Use the composition property (5d) in Section 2.2 of replacement, noting
that if both ρ and σ only move symbols outside X, so does σρ. 2

Furthermore, from base monotonicity and (5c) we see that only symbols
occurring in premises and conclusion matter for Bolzano consequence:

Lemma 6
(Occurrence Lemma) Γ⇒X ϕ if and only if Γ⇒X∩VΓ∪{ϕ} ϕ.

12For readability, we use ‘⇒X ’ in two ways: as a relation symbol, which enables us to
write things like Γ⇒X ϕ, and as the value of the function ⇒ : SymbL −→ BCONSL for the
argument X.

13For example, in propositional logic, ∗ ∗ ∗ p ⇒∅ ∗ p, where p is a propositional letter and
∗ a unary truth function. Likewise, in all of the particular examples to follow, ⇒∅ is distinct
from ⇒min.

9

3.2 Example: propositional logic

Let PL be a standard language of propositional logic, whose symbols con-
sist of a suitable set and an infinite supply of propositional letters — say,
SymbPL = {¬,∨,∧}∪{p0, p1, . . .} with the (non-empty) categories ‘unary truth
function’, ‘binary truth function’, and ‘propositional letter’ — and let |=PL be
the corresponding (classical) consequence relation. The usual definition of con-
sequence in this language is model-theoretic, but we can ‘simulate’ |=PL also in
our substitutional setting, where p0, p1, . . . are sentences with fixed truth values,
and the truth values of complex sentences are computed from these by the usual
truth tables. Replacing proposition letters by others amounts to ‘assigning’ ar-
bitrary truth values to them, under a simple assumption: let us say that PL,
viewed as an interpreted language, is non-trivial iff the sequence of truth values
of p0, p1, . . . is not eventually constant. Clearly,

(9) If PL is non-trivial, then for every (countable) sequence α1, α2, . . . of
truth values there are propositional letters pi1 , pi2 , . . . such that the truth
value of pij is αj , for all j.

Using (9), one easily verifies:

Fact 7
If PL is non-trivial, then Γ |=PL ϕ iff Γ⇒{¬,∨,∧} ϕ.

3.3 Example: first-order logic

Now let FO be a standard language of first-order logic. We have SymbFO =
{¬,∨,∧,∀,∃,=} ∪ {P0, P1, . . . , c0.c1, . . .} with obvious (non-empty) categories
such as ‘type 〈1〉 quantifier’, ‘binary predicate symbol’, ‘individual constant’,
etc. We also assume that all symbols (also the non-logical ones) have fixed
interpretations. Truth values of sentences are calculated as usual, and we let
|=FO be the standard (classical) consequence relation.

At first blush, one might think the Bolzano approach simply amounts to
FO with substitutional interpretation of the quantifiers, but this is not so. The
reason is that in standard definitions of logical consequence with substitutional
quantification, as in Dunn and Belnap (1968), only the quantifiers are inter-
preted substitutionally, but not the rest of the language. In more detail, in
their substitutional account of FO, call it FOsubst, truth is defined relative to
an arbitrary assignment ν of truth values to the atomic sentences, extended
in the usual way to negations and conjunctions, and to universally quantified
sentences by

(10) ∀xϕ(x) is true relative to ν iff ϕ(c) is true relative to ν for all individual
constants c.

Logical consequence is defined as follows:

10

(11) Γ |=FOsubst ϕ iff every assignment ν relative to which Γ is true is also
one relative to which ϕ is true.

Dunn and Belnap show that if there are only finitely many individual constants,
c1, . . . , cn, then |=FOsubst will seriously diverge from |=FO since, for example,

{Pc1, . . . , P cn} |=FOsubst ∀xPx,

but if there are infinitely many constants, FO-validity (consequence of the
empty set) coincides with FOsubst-validity, although FO-consequence still dif-
fers from FOsubst-consequence, since we have

{Pc : c is an individual constant} |=FOsubst ∀xPx

In particular, |=FOsubst is not compact, in contrast with |=FO.
In the Bolzano setting, on the other hand, there is no such thing as an

arbitrary assignment of truth values to atomic sentences. These have fixed
truth values, which can be ‘varied’ by replacing predicate symbols and individual
constants to the extent that such are available. Every replacement corresponds
to an assignment of truth values to atomic sentences, but the converse would
be a rather substantial requirement. Without that, what we get is

(12) |=FO (|=FOsubst (⇒{¬,∨,∧,∀,∃,=}

So |=FO is a consequence relation, but not in general a Bolzano consequence.
However, we will see in Section 8 that in a slightly more general but still Bolzano
style framework, |=FO is what we will call a general Bolzano consequence rela-
tion.

3.4 Two toy languages

We now describe in some detail two very simple languages and their consequence
relations. These examples, and variants of them, will serve later on to illustrate
various features of Bolzano consequence.

3.4.1 The language L1

Let the language L1 be specified as follows:

SymbL1
= {R, a, b} (with a, b of the same category)

SentL1 = {Raa,Rab,Rba,Rbb}
TrL1 = {Raa,Rab,Rbb}

Here R is the only symbol of its category. It can only be replaced by itself,
which means that it can in effect be disregarded. So in this and similar examples
to follow, when writing things like X ⊆ SymbL1

, we really mean X ⊆ SymbL1
−

{R}.

11

L1 has the feature that no replacement of a single symbol can turn a true
sentence into a false one; only a permutation of a and b can do that. We have,
for example,

(13) ∅ ⇒∅ Raa, ∅ ⇒∅ Rbb, ∅ 6⇒∅ Rab, but if a ∈ X or b ∈ X, then
∅ ⇒X Rab

Note that the first claim already shows that ⇒∅ 6=⇒min. As to the last claim
of (13), since we are only allowed to replace symbols outside X, in this case at
most one of a and b can be replaced, so the conclusion cannot be falsified. The
following is a complete description of the Bolzano consequence relations in L1:

Fact 8
In the language L1:

(i) ⇒∅ = clL1({〈∅, Raa〉, 〈∅, Rbb〉})
(ii) If a or b belong to X ⊆ SymbL1

, then
⇒X = clL1({〈∅, Raa〉, 〈∅, Rbb〉, 〈∅, Rab〉})

Proof. (i) By (13) and monotonicity, we need only consider inferences with the
conclusion Rab. (I.e. for all Γ ⊆ SentL1 , Γ ⇒∅ Raa follows from ∅ ⇒∅ Raa
by monotonicity.) Suppose Γ ⇒∅ Rab. We can assume Raa,Rbb 6∈ Γ, by (13)
and transitivity: if e.g. Raa ∈ Γ then Γ − {Raa} ⇒∅ Rab. By reflexivity and
monotonicity, we can also assume that Rab 6∈ Γ. But Rba 6⇒∅ Rab (permuting
a and b makes the premise true and the conclusion false). So all valid inferences
Γ⇒∅ ϕ in L1 belong to the closure of the two listed in (i). The proof of (ii) is
similar, using base monotonicity (⇒∅ ⊆ ⇒X), and the last claim of (13). 2

In particular,

(14) ⇒∅ (⇒{b} =⇒{a} =⇒{a,b}

3.4.2 The language L2

L2 just adds one symbol (of the same category) to L1, but no new false sentences:

SymbL2
= {R, a, b, c}

SentL2 = {Rxy : x, y ∈ {a, b, c}}
TrL2 = {Raa,Rbb,Rcc,Rab,Rac,Rbc,Rca,Rcb}

First, clearly,

(15) ∅ ⇒∅ Raa, ∅ ⇒∅ Rbb, ∅ ⇒∅ Rcc, but if x 6= y, then ∅ 6⇒∅ Rxy

Next,

(16) If x 6= y and Rxy 6∈ Γ, then Γ 6⇒∅ Rxy.

12

For if ρ maps x to b, y to a, and the remaining symbol to c, it is a permutation
of SymbL2

, and then no sentence except Rxy is mapped to Rba, so all premises
in Γ are true.

With respect to ⇒{a}, we have, in addition to the valid inferences with ⇒∅,

(17) a. ∅ ⇒{a} Rab and ∅ ⇒{a} Rac
b. Rca⇒{a} Rcb and Rba⇒{a} Rbc

Next, if Rba 6∈ Γ, then Γ is true, and so cannot imply Rba. Also

(18) {Rba,Rbc,Rcb} 6⇒{a} Rca [map a to itself and permute b and c]

For ⇒{a,c}, the situation is quite simple, since the empty set now implies
each sentence except Rba, and no set of premises not containing Rba implies
Rba. Our findings can be summarized as follows:

Fact 9
Let Let Φ0 = {〈∅, Rxx〉 : x ∈ SymbL2

}, and Φ1 = Φ0 ∪ {〈∅, Rab〉, 〈∅, Rac〉}. In
the language L2:

(i) ⇒∅ = clL2(Φ0)

(ii) ⇒{a} = clL2(Φ1 ∪ {〈{Rba}, Rbc〉, 〈{Rca}, Rcb〉})
(iii) ⇒{a,c} = clL2({〈∅, Rxy〉 : (x, y) 6= (b, a)}) = ⇒{a,b,c}

4 Minimality

L1 and L2 provide examples where different sets X,Y generate the same Bolzano
consequence. One would expect sets that are minimal in this respect to be
particularly well behaved. Perhaps the most obvious idea about minimality is
the following.

Definition 10
X is minimal iff for all u ∈ X, ⇒X 6⊆ ⇒X−{u}.

SoX is minimal in the sense that if any one of its symbols is left out, a smaller
consequence relation results. The other natural sense of ‘minimal’, as we noted,
is minimality with respect to the sets generating the same consequence relation.
In fact, it is easy to see that these two notions of minimality are equivalent.
∅ is minimal in any language. In the languages L1 and L2 of Section 3.4, all

singleton sets are minimal, since in each case, ⇒{x} is distinct from ⇒∅. Also,
it is easy to see that {a, c} is minimal in L2, but {a, b} in L1, and {a, b, c} in
L2, are not minimal.

Being minimal doesn’t entail being the smallest set generating the same
consequence relation; e.g. in L1 there is a set of symbols X with distinct minimal
subsets in {Y :⇒Y =⇒X}. However, in Westerst̊ahl (2010) it was shown that

13

there always exists at least one subset which is minimal among these, at least
if we restrict attention to compact consequence relations (see Section 2.3):14

Theorem 11
For every X ⊆ SymbL, if⇒X is compact, then X has a subset which is minimal
among those generating ⇒X .

Thus, if we restrict attention to minimal subsets of Symb, no compact con-
sequence relation of the form ⇒X will be left out.

In this paper, we shall prove related and in a sense stronger results. First,
we show that under some additional assumptions about the language L, there
actually is a smallest subset generating⇒X ; moreover, this subset has a simple
independent description (Corollary 26). Then we prove that the same result
holds if we lift those restrictions (but not compactness), but use a slightly more
general framework for Bolzano consequence (Corollary 39).

The requirement of compactness in Theorem 11, however, cannot be re-
moved, as we now show.

Fact 12
There is a language L and a set X ⊆ SymbL of constants such that ⇒X is not
compact, and there is no minimal X ′ with ⇒X =⇒X′ .

Proof. We use a language LN for arithmetic with numerals and predicates for
any finite or co-finite set of natural numbers, plus a quantifier for “there are
infinitely many”. The symbols in SymbLN

are thus constants cn for every n ∈ N,
predicates PA and ¬PA for every finite set A of numbers, and a predicate functor
Inf. (So the non-empty categories here are ‘numeral’, ‘1-place predicate’ and
‘1-place predicate functor’.) The sentences in SentLN are of one of the forms
PAcn, ¬PAcn, Inf PA, and Inf¬PA. A sentence ϕ is in TrLN iff ϕ is PAcn and
n ∈ A, or ϕ is ¬PAcn and n 6∈ A, or ϕ is Inf¬PA. Note that LN is countable.

Let X = {cn}n∈N. In what follows, (¬)PA stands for an arbitrary predicate
PA or ¬PA. First:

(19) If there are infinitely many sentences of the form (¬)PAci in Γ, then
Γ⇒X Inf (¬)PA.

This is because a replacement that makes all the sentences in Γ true then has
to replace (¬)PA by a predicate with an infinite extension (that is, a predicate
of the form ¬PB), since the ci must not be replaced. But then, after such a
replacement, the conclusion is also true. On the other hand,

(20) If Inf (¬)PA 6∈ Γ, and only finitely many sentences of the form (¬)PAci
are in Γ, then Γ 6⇒X Inf (¬)PA.

14Actually, the proof in Westerst̊ahl (2010) was given for finitary Bolzano consequence
relations, but it is easily adapted to compact relations. That paper also identified a stricter
notion of minimality, called strong minimality, and proved some results about it. These results
are subsumed under the treatment in the present paper. In particular, in the more general
Bolzano style framework introduced in Section 7, minimality and strong minimality coincide.

14

To see this, let A′ be the finite set of numbers i such that (¬)PAci ∈ Γ. Consider
the replacement ρ which replaces (¬)PA by PA′ and all other predicates by ¬P∅.
Since Inf (¬)PA 6∈ Γ, it follows that all sentences in Γ[ρ] are true (note that
Inf¬P∅ and all sentences ¬P∅cj are true), but ϕ[ρ], i.e. Inf PA′ , is false. And
since ρ does not act on X, this shows that Γ 6⇒X ϕ. Next, we observe

(21) If (¬)PAci 6∈ Γ, then Γ 6⇒X (¬)PAci.

For consider the replacement ρ which replaces (¬)PA by ¬P{i} and all other
predicates by ¬P∅. ρ doesn’t act on X, all sentences in Γ[ρ] are true (even if
Inf (¬)PA ∈ Γ, since Inf¬P{i} is true), but (¬)PAci[ρ], i.e. ¬P{i}ci, is false.

This allows us to conclude:

(22) ⇒X is not compact.

Take Γ = {P{0}cn}n∈N and ϕ = Inf P{0}. Then Γ ⇒X ϕ by (19), but, by (20),
there is no finite subset Γ′ of Γ such that Γ′ ⇒X ϕ.

Now let X− ⊆ X be any set of symbols such that the number of constants ci
which are in X but not in X− is finite, and let X−− ⊆ X be any set of symbols
such that the number of constants ci in X but not in X−− is infinite. Then we
have:

(23) ⇒X− =⇒X

For suppose Γ ⇒X ϕ. We must show Γ ⇒X− ϕ. This is clear if ϕ ∈ Γ, so
suppose ϕ 6∈ Γ. It then follows from (21) that ϕ cannot be of the form (¬)PAci.
So we have ϕ = Inf (¬)PA for some A, and then it follows from (20) that there
must be infinitely many sentences of the form (¬)PAci in Γ. Thus, there are
infinitely many sentences (¬)PAci in Γ such that ci is in X−. So it is still the
case that for a replacement ρ to make all the sentences in Γ true, ρ has to replace
(¬)PA by a predicate ¬PB with an infinite extension. Finally,

(24) ⇒X−− 6=⇒X

Take for Γ all sentences of the form P{0}ci for ci not in X−−, and InfP{0} for
ϕ. By (19), Γ⇒X ϕ, but now Γ 6⇒X−− ϕ. Consider a replacement ρ such that
ρ(ci) = c0 for all ci not in X−−, but nothing else is moved. All sentences in
Γ[ρ] are true, since Γ[ρ] is the singleton {P{0}c0}, but ϕ[ρ], i.e. InfP{0}, is false.

Now the desired claim follows: there is no minimal subset X ′ of X such that
⇒X = ⇒X′ . Subsets of X are either of the form X− or X−−. But subsets
of the form X− are clearly not minimal, and subsets of the form X−− do not
generate a consequence relation identical to ⇒X . 2

15

(CONSL,⊆)

C

''
(℘(SymbL),⊆)

⇒

gg

Figure 1: Logical consequence and constant extraction

5 Extracting constants from consequence rela-
tions

5.1 Defining extraction

We now introduce an operation corresponding to the extraction of logical con-
stants from a consequence relation. When a particular consequence relation
is given, certain symbols are to be considered as logical constants because the
consequence relation makes them play a special role with respect to validity. As
explained in the Introduction, our guiding intuition is that a symbol is constant
if replacing it can destroy at least one inference.

Definition 13
The function C : CONSL → ℘(SymbL) is defined for ⇒ ∈ CONSL by:

u ∈ C⇒ iff there are Γ, ϕ, and u′ such that Γ⇒ ϕ but Γ[u/u′] 6⇒ ϕ[u/u′]

We first observe, as a direct consequence of the Replacement Lemma, that
when C is applied to a Bolzano consequence relation, it will never pick out a
non-logical constant:

Fact 14
For all X ⊆ Symb, C⇒X

⊆ X.

Proof. Suppose u ∈ C⇒X
, and Γ, ϕ, and u′ are as above. If u 6∈ X we would

have Γ[u/u′]⇒X ϕ[u/u′] by Replacement. So u ∈ X. 2

Logical consequence can be construed as a function from sets of symbols to
consequence relations. Extraction goes in the opposite direction. Moreover, the
domains of both functions are naturally ordered by inclusion, so the situation
is as shown in Figure 1. Fact 4(b) said that ⇒ is an order-preserving mapping
from (℘(SymbL),⊆) to (CONSL,⊆). We would like C to provide some sort of
inverse order-preserving mapping. Before looking into this and other properties
of C , let us see some examples of how C works.

5.2 Examples

There is one case when the function C trivially fails to yield the intended result
because of its substitutional character, namely, when a symbol u is unique in its

16

category. Then there is no other symbol to replace u with, so it will not count as
a logical constant, no matter what inferential role it plays. This situation arises
with negation, which is usually the only unary connective in logical languages.
To sidestep this difficulty, we shall assume, when considering propositional logic
or first-order logic, that they come equipped with another unary connective, say
†, interpreted by the constant unary truth-function ‘equal to false’.15 With this
assumption, we can verify that C satisfies the first criterion mentioned in the
Introduction for a reasonable ‘extraction function’: it gives the correct set of
logical constants in familiar logical languages.

5.2.1 Familiar logical languages

Fact 15
C|=P L

is the standard set of logical constants of propositional logic.

Proof. p |=PL p ∨ q but p 6|=PL p ∧ q. That is, replacing ∨ by ∧ destroys
the validity of the first inference, so ∨ ∈ C|=P L

. Likewise, p |=PL ¬¬p but
p 6|=PL † † p, and thus ¬ ∈ C|=P L

. Similarly for other familiar constants. On
the other hand, (uniformly) replacing propositional letters can never destroy a
valid |=PL-inference. 2

Recall from Section 3.2 that if the interpreted propositional language is non-
trivial (the sequence of truth values of p0, p1, . . . is not eventually constant),
then |=PL is a Bolzano consequence, say, |=PL = ⇒{¬,†,∨,∧}. But the fact
that C recovers the right constants doesn’t depend on this. We get, with the
same kind of argument as above, the correct result also for first-order logic, even
though neither |=FO nor |=FOsubst (Section 3.3) is usually a Bolzano consequence
relation:

Fact 16
C|=F O

= C|=F Osubst
is the standard set of logical constants of first-order logic.

Indeed, most familiar consequence relations are such that suitably replac-
ing a logical symbol can destroy an inference, while this is not possible for
non-logical symbols. For example, consider an intuitionistic propositional logic
whose consequence relation is defined not model-theoretically but axiomatically
(with suitable extra axioms for †). Again, virtually the same kind of arguments
show that C extracts precisely the logical symbols from this relation.

5.2.2 Application to L1 and L2

C behaves rather badly for L1, since C⇒X
= ∅ for all X ⊆ SymbL1

. This
is because replacing just one symbol can never destroy a ⇒X -inference in L1;
you need to replace two symbols simultaneously. Can we revise the extraction

15An alternative option is to simply recognize that in a substitutional framework, the ques-
tion whether some symbol which is alone in its category is constant or not, is deprived of
interest.

17

method so that it handles such cases better? There is actually a way (see
Section 9.3), but in in this paper we shall stick to the function C and make it
behave better by placing requirements on the language. For now, we observe
that already in L2, which contains just one extra symbol (of the same category),
the situation is significantly different.

First, note that replacing a by c destroys the inference ⇒{a}Rab.16 Thus,
a ∈ C⇒{a} , so by Fact 14,

(25) C⇒{a} = {a}

Next, since ⇒{a,c}Rbc but 6⇒{a,c}Rba, c ∈ C⇒{a,c} in L2. But a 6∈ C⇒{a,c} ;
this follows by checking that replacing a by b or c does not destroy any of the
basic inferences listed in Fact 9 (iii). Thus, in L2,

(26) C⇒{a,c} = {c}

So the situation for L2 is better than for L1, but it is still not good, at
least if we want C to be an order-preserving inverse on CONSL. The failure
of order preservation is no surprise given that there are both a positive and a
negative condition in the definition of C . The witness to a non-valid inference
might disappear by shifting to a bigger consequence relation. Perhaps more
surprisingly, the situation is no better for Bolzano consequences.

Fact 17
There are languages L and sets X,Y ⊆ SymbL such that:

(a) ⇒X ⊆ ⇒Y but C⇒X
6⊆ C⇒Y

(b) ⇒X 6⊆ ⇒C⇒X

Proof. An example is provided by (25) and (26) for L2. There we have ⇒{a}
⊆ ⇒{a,c} by base monotonicity, but {a} = C⇒{a} 6⊆ C⇒{a,c} = {c}. Also,
⇒{a,c} 6⊆ ⇒C⇒{a,c}

= ⇒{c}, since, for example, ∅ ⇒{a,c} Rab but ∅ 6⇒{c} Rab.
2

6 A Galois connection under special assump-
tions

Fact 17 shows that C does not yet behave in the way we would like. On the
other hand, C passes the first part of the test: it gives the right results when
applied to familiar logical systems. Our diagnosis will be that the problems are
due to particular features of the languages used in the counter-examples, rather
to shortcomings of the definition itself. The present section isolates a subclass
of languages, sets of constants, and consequence relations for which C behaves
well, within the classical Bolzano framework introduced in Section 2. In the

16Here and in what follows we write ⇒X ϕ rather than ∅ ⇒X ϕ; meaning that ϕ is valid
(relative to ⇒X).

18

next section we will see that with a slight extension of that framework, many
(but not all) of those restrictions can be lifted.

6.1 A factorization property for replacements

Let us take a closer look at the failure of monotonicity with respect to Bolzano
consequence relations. In L2, as we saw, ⇒{a} ⊆ ⇒{a,c} but C⇒{a} 6⊆ C⇒{a,c} ,
the reason being that a ∈ C⇒{a} but a 6∈ C⇒{a,c} .

Relative to ⇒{a} (and to ⇒{a,c} as well), a should clearly be identified as a
constant. After all, holding a fixed does make a difference, e.g. ⇒{a} Rab but
6⇒∅ Rab (recall that Rba is false). But this is not sufficient for C to spot a
as a constant. ⇒{a} Rab and 6⇒{a} Rba, but Rab cannot be turned into Rba
by replacing only a, as the definition of C requires. For ⇒{a}, this is not a
problem, because the non-constant symbol c can be used as a stop-over on the
journey. Instead of jumping from the validity of Rab to the falsity of Rba, one
can stop by the invalidity of Rcb. Then a ∈ C⇒{a} , because ⇒{a} Rab and
6⇒{a}Rab[a/c].

Shifting to⇒{a,c}, things are different: ⇒{a,c}Rab[a/c]. As it happens, there
is no alternative way in L2 to witness the constancy of a, and a ends up being
outside C⇒{a,c} . But consider a language L3 which is just as L2 except that it
contains another symbol d of the same category as c. So TrL2 = TrL3 ∩ SentL2 ,
and let us also assume that Rad is true. In L3, the situation improves because
d can be used as a substitute stop-over: now a ∈ C⇒{a,c} , because ⇒{a,c}Rab
and 6⇒{a,c}Rab[a/d].

The lesson we would like to draw is that monotonicity holds when the lan-
guage is rich enough (so that a d is available) and fails when it is not. We shall
now spell out a general factorization property for replacements, which reflects
the availability of stop-overs, and connect it to properties of languages, sets of
constants, and consequence relations. This will enable us to prove monotonicity
and more.

Definition 18 (Factorization Property)
Let X,Y ⊆ SymbL and ∆ ⊆ SentL. We say that X-replacements in ∆ factor
through Y iff for any replacement ρ which is defined on V∆ and acts outside X,
there are replacements σ and τ such that:

(i) σ acts only on Y −X
(ii) σ(Y −X) ∩ V∆ = ∅
(iii) τ acts outside Y
(iv) ρ = τ ◦ σ

where a replacement acts outside a set if it is the identity on every element in
that set for which it is defined, and acts on a set if every element for which it
is not the identity is in that set.

Note that σ needs to have the same domain as ρ, whereas the domain of τ
can be taken to be no wider than the range of σ. Sentences in ∆ will typically

19

be the sentences in an inference Γ⇒X ϕ. σ(Y −X) ∩ V∆ = ∅ then means that
σ replaces symbols in Y −X by ‘new’ symbols not occurring in the inference. In
our earlier example, with X = {a} and Y = {a, c}, σ corresponds to replacing
c with d, so that everything that a replacement ρ which moves c could do can
now be done by a replacement τ moving d instead of c.

When is this factorization possible, i.e. when are helpful symbols like d avail-
able? First, d qualified as a substitute for c because it was of the same category
as c and did not belong to the old set of constants. In order to secure avail-
ability of such ds, a simple requirement would be that there are infinitely many
symbols in each non-empty category. In Bonnay and Westerst̊ahl (2010) we
called such languages rich. But we also need that these rich resources cannot
be all consumed by the chosen constants. For each non-empty category, there
should always be infinitely many symbols in that category not taken as con-
stants. The simplest requirement would be to restrict attention to finite sets of
symbols. But we can replace these two by the single weaker requirement that
we only consider co-infinite sets of symbols, i.e. in each non-empty category,
there are infinitely many symbols in SymbL −X. Let ℘coinf(SymbL) be the set
of such sets of symbols. As long as (in each non-empty category) ℘coinf(SymbL)
is not empty, assuming that the sets of symbols discussed are co-infinite entails
assuming that L is rich.

In addition we need an assumption on the consequence relations. For sim-
plicity, we shall assume that they are finitary, i.e. that only finite sets of premises
are considered — marked by writing (Fin) — but in fact our proofs work under
the weaker hypothesis that they are compact (Section 2.3; we shall indicate the
required changes in the proofs).17

Co-infiniteness of the set of constants and finiteness of the set of sentences
guarantee that new symbols are available, so the factorization property holds:

Lemma 19
If Y ∈ ℘coinf(SymbL) and ∆ is a finite set of L-sentences, then for allX ⊆ SymbL,
X-replacements in ∆ factor through Y .

Proof. Since Y is co-infinite in each non-empty category, so is Y − X. Since
moreover ∆ is finite, for every symbol ai in (Y −X) ∩ V∆, there is a different
symbol bi which is of the same category as ai but does not belong to V∆ or to
Y . Define σ by

σ(x) =
{
bi if x = ai
x otherwise

Then define τ on the range of σ by
17Rather than (Fin), we could instead use the actually weaker requirement that the set of

symbols occuring in an inference Γ⇒ ϕ is finite. Interestingly, our proofs do not go through
if the set of symbols occurring in Γ ∪ {ϕ} is assumed to be co-infinite (in each non-empty
category). This asymmetry suggests that the finiteness requirement does not play the same
role for sets of symbols as it does for sets of premises. This is one reason we choose to work
with the more precise if less simple assumption of co-infinity, rather than with richness and
finite sets of symbols.

20

τ(x) =
{
ρ(ai) if x = bi
ρ(x) otherwise

It is easy to check that ρ = τ ◦ σ and all other conditions in Definition 18 are
satisfied. 2

6.2 Monotonicity and preservation

The factorization property ensures monotonicity of C with respect to Bolzano
consequence relations. The proof hinges on the same kind of reasoning we went
through in the example.

Theorem 20
(Fin) If Y is co-infinite, then ⇒X ⊆ ⇒Y implies C⇒X

⊆ C⇒Y
.

Proof. Assume ⇒X ⊆ ⇒Y , where Y is co-infinite, and u ∈ C⇒X
. We want to

show that u ∈ C⇒Y
. By definition of C , there are Γ, ϕ and u′ in L such that

Γ⇒X ϕ and Γ[u/u′] 6⇒X ϕ[u/u′]. By definition of⇒X , there is a replacement ρ
acting outside of X such that the sentences in Γ[u/u′][ρ] are true but ϕ[u/u′][ρ]
is false.

The hypotheses of Lemma 19 apply with respect to X, Y , and ∆ = Γ∪{φ}∪
Γ[u/u′]∪{φ[u/u′]}, because of (Fin).18 So X-replacements in ∆ factor through
Y , i.e. there are σ and τ such that σ acts only on Y −X, σ(Y −X)∩ (V∆) = ∅,
τ acts outside Y , and ρ = τ ◦ σ.

Since σ acts outside X we get, by Replacement,

Γ[σ]⇒X ϕ[σ]

Hence, by assumption,

Γ[σ]⇒Y ϕ[σ]

It is now sufficient to prove

(27) Γ[σ][u/σ(u′)] 6⇒Y ϕ[σ][u/σ(u′)]

Since σ(Y −X) ∩ V∆ = ∅, it follows that [σ][u/σ(u′)] = [u/u′][σ]. Hence, since
ρ = τ ◦ σ, Γ[σ][u/σ(u′)][τ] is Γ[ρ], a set of true sentences, and ϕ[σ][u/σ(u′)][τ]
is ϕ[ρ], a false sentence. Since τ acts outside Y , this proves (27). 2

In a similar manner, we can establish a more satisfactory inverse relationship
between the mappings ⇒ and C restricted to Bolzano consequences. The
consequence relation generated by any co-infinite set X of symbols is the same
as what you get by first extracting the constants from ⇒X and then generating

18If Γ were infinite but⇒X compact, the remainder of the proof would go through working
with a finite subset Γ′ of Γ such that Γ′ ⇒X ϕ and Γ′[u/u′] 6⇒X ϕ[u/u′]. Similarly for the
proof of Theorem 21 below.

21

the Bolzano consequence from those constants, even if they form a proper subset
of X.

Theorem 21
(Fin) If X is co-infinite, ⇒X =⇒C⇒X

Proof. C⇒X
⊆ X already implies ⇒C⇒X

⊆ ⇒X , so all we need to prove is
⇒X ⊆ ⇒C⇒X

. Assume Γ ⇒X ϕ. We must show Γ ⇒C⇒X
ϕ. Let ρ be a

replacement acting outside of C⇒X
. It is sufficient to show

(28) Γ[ρ]⇒X φ[ρ]

The hypotheses in Lemma 19 apply, since X is co-infinite and ∆ = Γ ∪ {ϕ}
is finite. So C⇒X

-replacements in Γ ∪ {φ} factor through X. Hence we have σ
and τ such that σ acts only on X−C⇒X

, σ(X−C⇒X
)∩V∆ = ∅, τ acts outside

X, and ρ = τ ◦ σ.
First, we show that

(29) Γ[σ]⇒X ϕ[σ]

Since σ can be taken to be defined on the finite vocabulary of Γ ∪ {ϕ}, σ acts
on X − C⇒X

, and no symbol in that set is replaced by a symbol occurring in
Γ ∪ {ϕ}, we have σ = σn for some n, where, for i ≤ n,

σi = id ∪ {(a1, σ(a1)), . . . , (ai, σ(ai))}

for some a1, . . . , an ∈ X − C⇒X
, and id is the identity function on the rest of

VΓ∪{ϕ}. Moreover, by the choice of the σ(ai), replacing a1, . . . , an simultane-
ously according to σ and successively replacing them one by one gives the same
result: for ψ ∈ Γ ∪ {ϕ},

ψ[σi+1] = ψ[σi][ai+1/σ(ai+1)]

Assume for contradiction that ai+1 is the first symbol in the sequence for which
consequence is not preserved, that is Γ[σi+1] 6⇒X ϕ[σi+1], but Γ[σi] ⇒X ϕ[σi].
So Γ[σi][ai+1/σ(ai+1)] 6⇒X ϕ[σi][ai+1/σ(ai+1)], but then ai+1 ∈ C⇒X

, a con-
tradiction. This proves (29).

Second, by Replacement, since τ acts outside X,

Γ[σ][τ]⇒X ϕ[σ][τ]

Since ρ = τ ◦ σ, this proves (28). 2

Theorem 21 relies on two assumptions: that X is co-infinite and that we
consider only finitary (or compact) consequence relations. That none of these
assumptions can be dropped follows from the next two facts.

Fact 22
(Fin) There is a language L and a set X ⊆ SymbL with finite complement such
that ⇒X 6⊆ ⇒C⇒X

.

22

Proof. Consider the language L′2, which is a rich variant of L2: SymbL′2 =
{R, a, b, c0, c1, . . .}, SentL′2 = {Rxy : x, y ∈ SymbL′2}, and TrL′2 = SentL′2 −
{Rba}. Now let

X = {a, c0, c1, ...}

Then we claim

a 6∈ C⇒X

Otherwise, there would be a finite set Γ, and ϕ, u′ such that Γ ⇒X ϕ but
Γ[a/u′] 6⇒X ϕ[a/u′]. The latter means that there would be a replacement of b
only — since b is the only symbol outside X — such that Γ[a/u′][b/b′] is true and
ϕ[a/u′][b/b′] is false. Now observe that ϕ[a/u′] does not contain a; otherwise
u′ = a which contradicts the assumptions. If b′ = b, then ϕ[a/u′][b/b′] does not
contain a either. If b′ 6= b, then ϕ[a/u′][b/b′] does not contain b. So ϕ[a/u′][b/b′]
is a sentence of the form Rxy which does not contain both a and b. But all
those sentences are true: contradiction.

Next, note that ⇒X Rcia but 6⇒X Rba. This shows that each ci belongs to
C⇒X

, and so

(30) C⇒X
= X − {a} = {c0, c1, . . .}

But now observe that⇒XRab but 6⇒X−{a}Rab. Together with (30) this proves
⇒X 6⊆ ⇒C⇒X

. 2

Fact 23
There is a language L and a co-infinite set X ⊆ SymbL such that ⇒X is not
compact and ⇒X 6⊆ ⇒C⇒X

.

Proof. We use a variant L′N of the arithmetical toy language LN from the proof
of Lemma 12 in Section 4. To the symbols of LN we add predicate functors Infn
for n ≥ 1, letting Inf0 = Inf. We also add new numerals zn for n ≥ 0. The
predicate symbols are the same, and the intuitive idea is that each Infn means
the same as Inf (i.e. ‘is infinite’), ci denotes the number i as before, and zn may
denote any number. The sentences have the same forms as in LN, using also the
new predicate functors and numerals. Thus, for each finite A ⊆ N, Infn¬PA is
true, InfnPA is false, and if d is a numeral denoting i, then PAd is true iff i ∈ A,
and ¬PAd is true iff i 6∈ A.

As before, let X = {c0, c1, . . .}. Note that in L′N, X is co-infinite (in each
non-empty category). Now claims corresponding to (19) – (24) in the proof of
Lemma 12 go through in L′N as well. First, with the same proof, we have

(31) If there are infinitely many sentences of the form (¬)PAci in Γ, then
Γ⇒X Infn(¬)PA.

Likewise, with very small changes, we obtain

23

(32) If Γ contains no sentence of the form Infm(¬)PA, and only finitely many
sentences of the form (¬)PAci, then Γ 6⇒X Infn(¬)PA.

Also, for any numeral d and finite set A,

(33) If (¬)PAd 6∈ Γ, then Γ 6⇒X (¬)PAd.

For suppose d denotes the number i, and consider a replacement ρ mapping
(¬)PA to ¬P{i} and all other predicate symbols to ¬P∅, while Infn is mapped
to Inf, d is mapped to ci (so if d is ci, it is not moved), all the other zk are
mapped to some cj with j 6= i, and no ck is moved. Since (¬)PAd 6∈ Γ, one
readily checks that Γ[ρ] is true but ϕ[ρ] = ¬P{i}ci is false.

Now, we claim:

(34) C⇒X
= ∅

It suffices to show that ci 6∈ C⇒X
, for all i. Otherwise, there are i, Γ, ϕ, and d

such that Γ ⇒X ϕ but Γ[ci/d] 6⇒X ϕ[ci/d]. It follows that ϕ 6∈ Γ, and thus by
(33), that ϕ is not of the form (¬)PAd′. So ϕ has to be Infn(¬)PA for some A
and n. Since Infn(¬)PA is not in Γ, hence not in Γ[ci/d] either, no sentence of
the form Infm(¬)PA is in Γ[ci/d]; this follows since obviously, for all m,n,

Infm(¬)PA ⇒X Infn(¬)PA

So no sentence of the form Infm(¬)PA is in Γ, and then (32) implies that there
are infinitely many sentences of the form (¬)PAcj in Γ, since Γ⇒X ϕ. However,
from (31) it follows that only finitely many sentences of this form belong to
Γ[ci/d], since Γ[ci/d] 6⇒X ϕ. But this is impossible, since Γ[ci/d] results from Γ
by replacing ci in at most one such sentence. This proves (34).

The example Γ = {P{0}cn : n ∈ N} and ϕ = Inf P{0} shows as before that
⇒X is not compact. It also shows that ⇒X 6⊆ ⇒C⇒X

= ⇒∅, since Γ ⇒X ϕ,
but, clearly, Γ 6⇒∅ ϕ. 2

6.3 A Galois connection

Let us take stock. What kind of correspondence do we get between C and
⇒ ? We wanted something as close as possible to an isomorphism, with as
few assumptions as possible. A relevant notion of correspondence in that con-
text is the notion of a Galois connection. A Galois connection is a quadruple
〈A,B, f, g〉 with A and B two ordered structures, f : A→ B and g : B → A two
functions, such that the following four conditions hold: (I) f is monotone, (II)
g is monotone, (III) g ◦f is increasing, (IV) f ◦g is decreasing.19 An interesting

19A more compact characterization is that for all a ∈ A and b ∈ B,

a ≤ g(b) iff f(a) ≤ b

This is equivalent to the combination of (I)–(IV).

24

property of Galois connections is that f and g, even though they do not consti-
tute a full-blown isomorphism, give rise to an isomorphism. From (I)–(IV), one
can prove that f is an isomorphism with inverse g between the well-behaved
subsets g(B) and f(A) of A and B.

Consider now an arbitrary language L. Think of (CONSL,⊆), the set of
all consequence relations on L ordered by inclusion, as A, and (℘(SymbL),⊆),
the set of all possible sets of constants ordered by inclusion, as B. C and
⇒ are candidates for providing a Galois connection between A and B. Base
monotonicity (Fact 4) says that⇒ is monotone — this is condition (II). The fact
that the set of constants extracted from a Bolzano consequence relation ⇒X is
included in the original set X of constants (Fact 14) says that C⇒ is decreasing
— this is condition (IV). Conditions (I) and (III) do not hold in general, not
even (Fact 17) when attention is restricted from CONSL to the proper subset
BCONSL of Bolzano consequence relations. However, for BCONSL, suitable
assumptions give us what we need: Theorem 20 is condition (I), and Theorem
21 implies that ⇒C is increasing, this is condition (III). Putting this together,
we get

Theorem 24
(Fin) C and ⇒ constitute a Galois connection between (BCONS coinf

L ,⊆) and

(℘coinf(SymbL),⊆).

Here BCONS coinf
L is the set of consequence relations of the form ⇒X for some

X ∈ ℘coinf(SymbL).
Our Galois connection is rather special in that the image of ℘coinf(SymbL)

under⇒ is the whole of BCONS coinf
L .20 This reflects the fact that all of CONS

or BCONS could not be part of the connection: restriction to the image of
℘coinf(SymbL) under ⇒ is needed not only to get an isomorphism but already
to satisfy conditions (I) and (III). Indeed, we do not have a characterization
of the action of C on consequence relations which are not of the form ⇒X for
some X (but see the informal discussion in Section 9.2).

Of special interest is now the image of BCONS coinf
L under C . Which well-

behaved subset of ℘coinf(SymbL) gets selected by the Galois connection to be
the codomain of the isomorphism? The answer is given by the next result.

Corollary 25
(Fin) The image under C of BCONS coinf

L is the set of minimal sets in ℘coinf(SymbL).

Proof. First, to prove that every minimal co-infinite set X is the image of some
⇒Y under C , we prove that it is the image of the consequence relation generated
by itself, that is:

If X is minimal and co-infinite, X = C⇒X
.

20This also corresponds to the fact that not only is g ◦f increasing, but actually g ◦f = IdA

as stated in Theorem 21.

25

Because of Fact 14, we need only show X ⊆ C⇒X
. This follows from ⇒X =

⇒C⇒X
(Theorem 21), since X is minimal and co-infinite.

Second, we prove:

For every co-infinite X, C⇒X
is minimal.

Take u ∈ C⇒X
. We must show that ⇒C⇒X

6⊆ ⇒C⇒X
−{u}. By definition, there

are Γ, ϕ, and u′ such that Γ⇒X ϕ but Γ[u/u′] 6⇒X ϕ[u/u′]. So, by Theorem 21,
Γ⇒C⇒X

ϕ. Also, by Replacement, Γ 6⇒X−{u} ϕ. Since C⇒X
− {u} ⊆ X − {u}

we get, by base monotonicity, Γ 6⇒C⇒X
−{u} ϕ. 2

Thus, by general facts about Galois connections:

Corollary 26
(Fin) C is an isomorphism, whose inverse is ⇒ , from (BCONS coinf

L ,⊆) onto

(℘coinf(SymbL),⊆) restricted to minimal sets.

Assuming (Fin) but without the restriction to co-infinite sets of symbols,
there is for every X at least one minimal set generating the same consequence
relation as X (Theorem 11), but uniqueness is not guaranteed. With the supple-
mentary assumption that only co-infinite sets are considered, Corollary 26 says
that C⇒X

is the unique minimal set generating the same consequence relation
as X.

All the results in this section are made possible by considering only special
languages (the rich ones), special consequence relations (the finite or compact
ones) and special sets of constants (the co-infinite ones). Rather than making
specific assumptions such as these, another way to get results would be to work
with a more general definition of ⇒ that would encapsulate what is necessary
to get Lemma 19. This alternative route is explored in the next section.

7 Languages permitting expansions

Richness, or co-infinity, is all about having available symbols in the language
L. But these symbols are just, as we said, ‘stop-over’ symbols enabling us to
spot logical constants; they play no other role in L. It may seem ad hoc, or
even unreasonable, to require of an interpreted language that it contain such
an unlimited supply of extra symbols. It would be much more reasonable to
have a mechanism for adding them whenever needed. Instead of L, you go to
a suitable expansion of L. We shall slightly revise our Bolzano set-up to make
this possible, with the aim of eliminating seemingly ad hoc assumptions like
richness.

This is also a further step towards a Tarskian model-theoretic framework. In
such a framework, merely expanding the language is always conservative in the
sense that the consequence relation for the old language is not affected. As is
clear from the previous sections, this may fail drastically in a substitutional set-

26

ting.21 We now eliminate this obvious limitation of the classical substitutional
framework, while still remaining in a Bolzano style setting.22

Why not go directly to the model-theoretic framework? As we said in the
Introduction, one reason is that although logical consequence (with respect to a
set X of constants) then becomes essentially the familiar notion, it is less clear
how to extract constants from consequence relation in a (partly) uninterpreted
language. Indeed, the notion of an arbitrary consequence relation in an inter-
preted language is robust, but much less so if the language is not interpreted
(and the constants are not selected in advance). Furthermore, the possibility
to add new symbols to a given interpreted language, without disturbing any
sentence of the old language, seems like a very mild extension of the Bolzano
framework.

There might still be the following worry: If we start with an interpreted
language, and then expand this language in various ways, how do we know what
the new symbols (and sentences) mean? In principle, the answer is: we are free
to stipulate what they mean, as long as this doesn’t ‘disturb’ the meanings of
symbols (and sentences) in L. In fact, we shall see that for the applications
in this section, each new symbol we introduce can be taken to be synonymous
with some L-symbol, in the precise sense that interchanging occurrences of these
two symbols never changes the truth values of sentences containing them. Such
expansions will be called expansions with copies. Then, the extra feature added
to the Bolzano framework is merely to allow free introduction of new names for
old things.

7.1 Expansions

Recall that, for each language L, CatL = {CL : C ∈ Cat} partitions SymbL.

Definition 27
We say that L′ is an expansion of L, in symbols L ≤ L′, iff

SymbL ⊆ SymbL′
For each category C ∈ Cat, CL ⊆ CL′
SentL = {ϕ ∈ SentL′ : Vϕ ⊆ SymbL}
TrL = TrL′ ∩ SentL

One easily verifies that

(35) ≤ is a partial order (reflexive, antisymmetric, and transitive).
21For example, expand the language L1 by adding a new symbol c such that Rac is false.

Then, although ⇒{a}Rab holds in L1, it fails in the expanded language.
22The idea is not new; it was proposed, for example, in Bonevac (1985), in the context of

first-order logic. There the motivation was to be able to talk about uncountable domains in
a countable language with substitutional interpretation of the quantifiers. Here our topic is
consequence relations in general and logical constants, but it will be clear from Lemma 42 in
Section 8 that in the framework proposed in that section, the consequence relations |=FOsubst
and |=FO (Section 3.3) will coincide. Most of Bonevac’s paper is about arguing that it is
natural to consider expansions in a substitutional setting; we can only agree.

27

A partially ordered set Z is directed iff it is upward closed: if a, b ∈ Z there
is c ∈ Z such that a ≤ c and b ≤ c. Now, our idea is to start as before with a
fixed language L, but also consider a directed family L of expansions of L. We
must then reformulate what have done so far accordingly. First, here is the new
notion of Bolzano consequence:

Definition 28
For Γ∪ {ϕ} ⊆ SentL and X ⊆ SymbL: ΓVX,L ϕ iff for every L′ ∈ L and every
replacement ρ in L′ (for Γ and ϕ) which is the identity on X, if Γ[ρ] ⊆ TrL′ ,
then ϕ[ρ] ∈ TrL′ .

The family L is suppressed in this notation, and has to be made clear in
context. If L = {L}, we have our previous notion of Bolzano consequence:
VX,L =⇒X . But in general, VX,L (⇒X .

Normally, the sentences we talk about will belong to several languages in
L. But since consequence is defined in terms of all expansions (in L) of a
given language, this is not a problem. That is, we now have the conservativity
property for expansions that fails in the old setting (cf. note 21):

Lemma 29
(Conservativity Lemma) If Γ∪ {ϕ} ⊆ SentL, X ⊆ SymbL, and L′ ∈ L, then

ΓVX,L ϕ iff ΓVX,L′ ϕ

or, equivalently,

VX,L = VX,L′� SentL

where the right-hand side is relative to the subfamily L′ = {L′′ ∈ L : L′ ≤ L′′}.

Proof. If there is a counter-example, via a replacement in some L′′ ≥ L′, to
ΓVX,L′ ϕ, then there is one to ΓVX,L ϕ as well, since L ≤ L′′. Conversely, if
there is a counter-example, via a replacement in some L′′′ ≥ L, to Γ VX,L ϕ,
choose, by directedness, L′′′′ such that L′′′ ≤ L′′′′ and L′ ≤ L′′′′. Then we have
a counter-example in L′′′′ (with the same replacement) to ΓVX,L′ ϕ. 2

In what follows, when L is given and L′ ∈ L, we always understand VX,L′

to be relative to the corresponding subfamily generated by L′. Note that each
VX,L′ is a consequence relation in L′ — i.e. reflexive, transitive, monotone, and
truth-preserving — but also, by the Conservativity Lemma, in each expansion of
L′. Moreover, relations of this form are base monotone, and (straightforwardly
adjusted versions of) the Replacement and Occurrence lemmas hold.

7.2 Useful classes of expansions

Our revised notions of consequence, extraction, etc. (see below) work for any
directed class L of expansions of L. In particular, let

exp(L)

28

be the class of all expansions of L, and let

copies(L)

be the class of expansions with copies of L, i.e. expansions such that each new
symbol is synonymous, in the sense indicated above, to some L-symbol. It is
straightforward to verify that (copies(L),≤) is also a directed partial order.

Our toy language L2 is an expansion of L1, but not an expansion with copies.
To make c a copy of b, both of Rba and Rca must be false, not just Rba as in
L2.

We say that a class L of expansions of L is full, if for all sets {ai : i ∈ I} ⊆
SymbL there is an expansion L′ ∈ L and distinct symbols bi ∈ SymbL′ − SymbL
of the same category as ai, for i ∈ I. Clearly, copies(L) (and hence exp(L)) is
full.

Suppose Γ VX,L ϕ, L′ is an expansion with copies of L, and Γ′,ϕ′ result
from Γ,ϕ by replacing some occurrences of L-symbols with copies in L′. We
cannot conclude that Γ′ VX,L′ ϕ

′, for it may be the case that some but not
all occurrences of an L-symbol u have been replaced by a copy u (or distinct
occurrences by distinct copies), and a replacement of u and u by distinct symbols
may then yield a counter-example that was not available before. One easily
verifies, however, that the following converse holds:

(36) With L,L′,Γ,Γ′, ϕ, ϕ′ as above: if Γ′ VX,L′ ϕ
′, then ΓVX,L ϕ.

7.3 General consequence relations

Definition 28 associates with each X ⊆ SymbL not just one consequence relation,
but a conservative family of consequence relations, one for each L′ ∈ L. Such
families can be seen as instances of a new notion of consequence. As before, L
is a directed family of expansions of a base language L.

Definition 30
A general consequence relation (for L) is a family of consequence relations (in
the old sense) V = {⇒L′}L′∈L such that for all L′, L′′ ∈ L with L′ ≤ L′′,
⇒L′ = ⇒L′′� SentL′ .

General consequence relations are partially ordered under a generalized no-
tion of inclusion: define

(37) VvV′ iff for all L′ ∈ L, ⇒L′ ⊆ ⇒′L′

Furthermore, we write, when Γ ∪ {ϕ} ⊆ SentL,

ΓV ϕ

instead of Γ⇒L ϕ. By conservativity, this is equivalent to Γ⇒L′ ϕ holding for
all L′ ∈ L (or for some L′ ∈ L).23

23The notation is handy, but strictly speaking it means that we are using ‘V’ in two senses:
as a family of consequence relations and as a consequence relation. Thus, we employ v for

29

General Bolzano consequence relations are of course prime examples of gen-
eral consequence relations, and we shall write

VX = {VX,L′}L′∈L

for the family of consequence relations generated from X ⊆ SymbL and L ac-
cording to Definition 28. General consequence relations of this form satisfy base
monotonicity, and the Replacement and Occurrence Lemmas hold.

Next, the notion of minimality is as before: X ⊆ SymbL is minimal iff for
each u ∈ X, VX 6v VX−{u}. Again it is clear that minimality coincides with
being minimal among the sets generating the same general consequence relation.

We say that a general consequence relation V = {⇒L′}L′∈L is compact if
each ⇒L′ is compact. The proof of Theorem 11 in Westerst̊ahl (2010) is easily
modified to give:

Theorem 31
For every X ⊆ SymbL, if the general consequence relationVX is compact, then
X has a subset which is minimal among those generating VX .

We shall, however, obtain another proof of this theorem in the next subsec-
tion.

Finally, we generalize the definition of C to general consequence relations
of the form V = {⇒L′}L′∈L. Let u ∈ SymbL.

Definition 32
u ∈ CV iff for some L′ ∈ L, u ∈ C⇒L′ .

Thus, CV may properly include C⇒L , since the inference that gets destroyed
by replacing u may belong to a proper expansion of L.

We now have the two ‘easy’ Galois conditions:

(38) a. If X ⊆ Y , then VX v VY [base monotonicity]

b. CVX
⊆ X [by Replacement as before]

the partial order among such families, but

V⊆V′

is used as before for the inclusion relation between (ordinary) consequence relations, meaning
that if Γ V ϕ then Γ V′ ϕ; a weaker claim than VvV′. Likewise, let us agree to use

V = V′

for equality between the consequence relations (i.e. ⇒L =⇒′L), and instead

V≡V′

for equality between the families (i.e. for all L′ ∈ L, ⇒L′ =⇒′L′).

30

7.4 The Galois connection liberated

With expansions available, we don’t have to worry about sufficiently many sym-
bols being in the base language L. More precisely, Lemma 19 now holds without
the restriction to co-infinite sets of symbols or finite sets of sentences.

In the remainder of this section, let L be any full directed class of expansions
of L (Section 7.2).

Lemma 33
If ∆ is any set of L-sentences, then for all X,Y ⊆ SymbL, there is an expansion
L′ ∈ L such that in L′, X-replacements in ∆ factor through Y .

Proof. Let (Y −X) ∩ V∆ = {ai : i ∈ I}. Since L is full, some expansion L′ ∈ L
contains for each ai a distinct symbol bi outside L of the same category. The
rest of the proof is exactly as the proof of Lemma 19. 2

As a result, we obtain monotonicity of C (Theorem 20) without the previous
restrictions.

Theorem 34
VX vVY implies CVX

⊆ CVY
.

Proof. The proof is essentially the same, but we repeat it to indicate the use
of expansions. Thus, assume VX v VY and u ∈ CVX

. We must show that
u ∈ CVY

. By definition, there is an expansion L′ of L in L, and Γ∪{ϕ} ⊆ SentL′
and u′ ∈ SymbL′ such that Γ VX,L′ ϕ but Γ[u/u′] 6VX.L′ ϕ[u/u′]. Thus, there
are L′′ ≥ L′ in L and a replacement ρ in L′′ acting outside of X, such that
Γ[u/u′][ρ] ⊆ TrL′′ but ϕ[u/u′][ρ] 6∈ TrL′′ .

By Lemma 33 with respect to X,Y and ∆ = Γ ∪ {φ} ∪ Γ[u/u′] ∪ {φ[u/u′]},
there is L′′′ ≥ L′′ in L such that in L′′′, X-replacements in ∆ factor through Y .
So there are σ and τ such that σ acts only on Y −X, σ(Y −X) ∩ (V∆) = ∅, τ
acts outside Y , and ρ = τ ◦ σ. By Replacement and conservativity,

Γ[σ]VX,L′′′ ϕ[σ]

and thus, by hypothesis,

(39) Γ[σ]VY,L′′′ ϕ[σ]

Then we can show exactly as before that

(40) Γ[σ][u/σ(u′)] 6VY,L′′′ ϕ[σ][u/σ(u′)]

(39) and (40) entail that u ∈ CVY
. 2

Similarly, by following the earlier proof, inserting expansions at suitable
points, we get a new version of Theorem 21. However, at one crucial step in
that proof (the proof of (29)), it is required that VΓ∪{ϕ} is finite (not just that
it is co-infinite). Therefore, we still need the assumption (Fin), or at least
compactness, for this result:

31

Theorem 35
(Fin) For every X ⊆ SymbL, VX ≡VCVX

.

Interestingly, although compactness plays no role for the monotonicity of C
in the expansions framework, it cannot be dropped in Theorem 35:

Fact 36
There is a language L and a full directed class of expansions of L with respect
to which, for some X ⊆ SymbL, VX is not compact, and VX 6vVCVX

.

Proof. Consider again the language LN defined in the proof of Fact 12, and let
L = copies(LN). As before, take X = {c0.c1, . . .}. Now suitable versions of (19)
– (21) will hold, in fact with proofs very similar to those for (31) – (33) in the
proof of Fact 23; note that the language L′N considered there was an expansion
with copies of LN. We give some indications. First,

(41) If L is an expansion with copies of LN, Γ ⊆ SentL, and infinitely many
sentences of the form Qci belong to Γ (where Q is a 1-place predicate
symbol in L), then ΓVX,L InfQ.

The proof is as before, except that a replacement ρ such that all sentences in
Γ[ρ] are true may now replace Q by a new predicate symbol ρ(Q). But since
ρ(Q) must be a copy some (¬)PA, and since ρ(Inf) must be a copy of Inf, it
follows in the same way that ρ(Inf)ρ(Q) is true. Next,

(42) If L is an expansion with copies of LN, Inf Q 6∈ Γ, and if only finitely
many sentences of the form Qci belong to Γ, then Γ 6VX,L InfQ.

(43) If L is an expansion with copies of LN and Qd 6∈ Γ, then Γ 6VX,L Qd.

The proof of (43) uses essentially the replacement used for (33) in the proof of
Fact 23. Now we can follow the argument for (34) in that proof to establish

(44) CVX
= ∅

Then we have (from (41) with L = LN) that {P{0}cn : n ∈ N} VX Inf P{0}.
This inference gives a counter-example to compactness as before. But non-
compactness also follows from Theorem 35, together with the obvious fact that
{P{0}cn : n ∈ N} 6V∅ Inf P{0}, which establishes that VX 6vVCVX

. 2

The corollaries of Theorems 34 and 35 follow just as in Section 6.3. Let
GBCONSL be the set of general consequence relations of the formVX for some
X ⊆ SymbL.

Theorem 37
(Fin) C and V constitute a Galois connection between (GBCONSL,v) and
(℘(SymbL),⊆).

Corollary 38
(Fin) The image under C of GBCONSL is the set of minimal sets in ℘(SymbL).

32

Corollary 39
(Fin) C is an isomorphism, whose inverse is V , from (GBCONSL,v) onto
(℘(SymbL),⊆) restricted to minimal sets.

Thus, as before, under (Fin) (or compactness) we have shown that CVX

is the unique minimal set generating the same consequence relation as X. In
particular, we have a (new) proof of Theorem 31.

8 From Bolzano to Tarski

Finally, we extend our results in the previous section to cover the more familiar
Tarskian semantic notion of logical consequence. This hinges on the fact that
substitutional consequence is equivalent to semantic consequence when quan-
tification over expansions is allowed.

8.1 Tarskian interpreted languages

Up to now, our interpreted languages L came equipped only with a set of true
sentences. No more was needed to define a substitutional notion of consequence
‘à la Bolzano’. For a Tarski style notion of consequence we also need a notion
of interpretation for a language and a notion of truth with respect to interpre-
tations. Accordingly, we now introduce Tarskian interpreted languages, which
come equipped with interpretations, and we assume that a general definition of
truth with respect to an interpretation is available for the family of languages
under consideration. We shall assume as little as possible regarding the nature
of interpretations and the truth relation.

For each (syntactic) category C, let SC be a corresponding semantic category,
intended to be the class of possible semantic values for symbols of category C.

Definition 40
A Tarskian interpreted language is a triple L = 〈SymbL,SentL, IL〉, where
SymbL and SentL are as before, and IL is an L-interpretation, i.e. a function
mapping each symbol u ∈ SymbL of category C to a semantic value I(u) in SC .
IL is called the standard interpretation of L.

Let IL be the class of L-interpretations. We assume that the general truth
definition yields, for each Tarskian interpreted language L, a truth relation
|=L ⊆ IL × SentL. Defining

TrL = {ϕ ∈ SentL : IL |=L ϕ}

we see that Tarskian interpreted languages are special cases of interpreted lan-
guages: the case when every symbol has its standard interpretation. Note,
however, that in contrast with the more familiar situation in model-theoretic
semantics, an interpretation here interprets all symbols of the language, not
just the ‘non-logical’ ones.

33

When I and I ′ are two interpretations and X is a set of symbols,24

I =X I ′

means that I and I ′ agree on symbols in X, that is for all u ∈ X, I(u) = I ′(u).
Our only requirement on the truth definition is that truth should be local in the
following sense:

(45) If ρ is a replacement such that for all u ∈ Vϕ, I(u) = I ′(ρ(u)), then
I |= ϕ iff I ′ |= ϕ[ρ].

Locality means that the question whether a sentence is true or not depends
only on the semantic values of its symbols. In particular, if I =Vϕ

I ′, then I |= ϕ
iff I ′ |= ϕ. Arguably, any reasonable truth definition makes truth local — if
semantic values do not determine truth values, they are not semantic values.
Thus, we do not consider any other component in interpretations over and above
semantic values. For example, there is in the present set-up no varying domain
of interpretation which could make the truth value of sentences vary even when
the semantic values of their symbols remain the same.25

8.2 The semantic notion of logical consequence

Tarski’s semantic definition of logical consequence as preservation of truth under
all possible reinterpretations of non-logical constants can be stated for a Tarskian
interpreted language L in the usual way:

Definition 41
ϕ is a logical consequence of Γ with respect to a set of symbols X,

Γ |=X,L ϕ ,

iff for all interpretations J such that J =X IL, if J |= Γ, then J |= ϕ.

Given a Tarskian interpreted language L, substitutional consequence ⇒X

and semantic consequence |=X,L may be compared. As discussed by Tarski
himself in Tarski (1936), the substitutional definition makes logical consequence
depend on the availability of symbols in L. An inference might be valid just
because some semantic values needed to provide a counter-example are not the
interpretations of any L-symbols. By contrast, the semantic definition makes
all semantic values available by allowing for arbitrary reinterpretation. Thus,
Γ |=X,L ϕ implies Γ ⇒X ϕ, but the converse is not true in general. However,

24We drop L as a prefix or subscript when no ambiguity arises.
25We take this to be consonant with the original definition of logical consequence in Tarski

(1936), which, in contrast to the modern model-theoretic one, was also given for an interpreted
language and did not mention varying domains. Actually, the question whether changes in
a domain’s size were considered by Tarski at the time is a matter of dispute among Tarski
scholars; see, for example, Gómez-Torrente (1996). Independently of historical issues, and for
the sake of generality, one could think of ways to encode domain variations in the changes of
semantic values, but we shall not pursue that here.

34

the substitutional definition acquires a semantic flavor when expansions come
into play as they did in the previous section.

The Tarskian consequence relation |=X,L relative to a set X of constants
was defined as usual: there is no need to mention expansions of the interpreted
language L since its symbols can be reinterpreted. But just like other interpreted
languages, Tarskian interpreted languages can be expanded. The definition
is the same as before, except that we require IL′ = IL � SymbL instead of
TrL = TrL′ ∩ SentL. Locality guarantees that the former implies the latter. As
a consequence, Tarskian expansions are a special kind of expansions. Given a
Tarskian language L, we can consider the family

expT (L)

of all its Tarskian expansions. One can easily check that it is a full and directed
family. Now substitutional consequence with respect to expT (L) becomes equiv-
alent to semantic consequence:

Lemma 42
With respect to L = expT (L), Γ |=X,L ϕ iff ΓVX,L ϕ.

Proof. From left to right: assume Γ |=X,L ϕ. Let L′ be a Tarskian expansion
of L and ρ a replacement in L′ acting outside X. We need to show that if
IL′ |= Γ[ρ], then IL′ |= ϕ[ρ]. Define an L′-interpretation J by

J(u) =
{
IL′(ρ(u)) if u ∈ dom(ρ)
IL(u) otherwise

By definition of J and locality, for any ψ ∈ SentL, J |= ψ iff IL′ |= ψ[ρ]. But
IL =X J , therefore Γ |=L,X ϕ implies that if J |= Γ, then J |= ϕ. Hence if
IL′ |= Γ[ρ], then IL′ |= ϕ[ρ], as required.

From right to left: assume ΓVX,L ϕ. Let J be an interpretation such that
IL =X J . We need to show that if J |= Γ then J |= ϕ. We define a Tarskian
expansion L′ by adding a copy u′ of each symbol u for which J(u) 6= IL(u).
Copies have the same interpretation as the symbols they are copies of, that is,
we set IL′(u′) = J(u). Now consider the replacement ρ which maps each such
u to u′ and is the identity elsewhere. Again, by locality, for any ψ ∈ SentL,
J |= ψ iff IL′ |= ψ[ρ]. Therefore, since IL′ |= Γ[ρ] implies IL′ |= ϕ[ρ], J |= Γ
implies J |= ϕ, as required. 2

It follows that the general consequence relation VX = {VX,L′}L′∈expT (L)

can also be written |=X = {|=X,L′}L′∈expT (L). In this case there is essentially
only a notational difference between the consequence relation |=X,L and the
family of consequence relations it generates, since each |=X,L′ is defined inde-
pendently of the expansions of L′. Still, since |=X can be seen as a general
consequence relation in our sense, and since expT (L) is a full family, Theorem
37 applies. Let TCONSL be the set of general consequence relations of the form
|=X for some X ⊆ SymbL, where L is a Tarskian interpreted language.

35

Theorem 43
(Fin) C and |= constitute a Galois connection between (TCONSL,v) and
(℘(SymbL),⊆).

This happy ending stems from a double virtue of expansions. On the one
hand, they allow the Galois connection to hold. On the other hand, they allow
semantic consequence to be reduced to substitutional consequence. Even though
the problem in both cases amounts to circumventing potential limitations in the
richness of the language, expansions do not play exactly the same role in the
two cases. To get the equivalence between semantic consequence on the one
hand and the substitutional definition of consequence with quantification over
expansions on the other, expansions have to be semantically rich, they need
to provide enough symbols to make all semantic values available. To get the
Galois connection, expansions have to be syntactically rich, they need to have
enough new symbols for the purely syntactic factorization property (Lemma 33)
to hold.

9 Further perspectives

9.1 Where we are

The extraction procedure hardwired in the definition of C can rightly be taken
to satisfy the two adequacy criteria mentioned in the Introduction. First, C
yields results in accordance with our intuitions when applied to standard ex-
amples of logical consequence relations. Second, extraction thus defined does
provide an inverse to the process of generating a consequence relation from a
set of constants. This claim was made mathematically precise by means of the
concept of a Galois connection. In particular, if one allows expansions to play
a role in the definition V of consequence, C turns out to constitute a Galois
inverse to VX (on compact consequence relations defined on a full family of
expansions). This was eventually shown to cover the familiar case of compact
Tarskian consequence relations. In these settings, the role of C on VX is to
pick out a unique minimal set of constants.

We shall end by noting some potential limitations of the definition of C
and, reflecting on them, suggest a few leads for further work. Our extraction
procedure can be claimed to be both quite liberal and quite severe. We say
that u is constant if it occurs essentially in at least one valid inference, in the
sense that one can get to an invalid inference by replacing that symbol and
nothing else. The phrase ‘occurs essentially in at least one valid inference’ in
the definitional clause is responsible for the liberality. Is one inference enough
for constancy?26 The phrase ‘by replacing that symbol and nothing else’ is
responsible for the severity. Why should one replace only one thing at a time?

26As we noted in Section 1.2, the stronger version (which would read ‘in all valid inferences’)
is not easily workable because of the necessary qualification regarding valid inferences whose
validity is not due to the purported constant.

36

9.2 Analytic and logical consequence

As a consequence of the definition of C being liberal, C⇒ is bound to declare
many more inferences valid than ⇒ does, at least for many relations ⇒ not of
the form ⇒X . The reason is that ⇒ might include some meaning postulates
for a symbol u, even though it does not treat u as a logical constant. The kind
of scenario we have in mind is one where ⇒ partly fixes the interpretation of a
symbol u by declaring valid some inferences essentially involving u, but cannot
be construed as being of the form ⇒X for some X with u ∈ X. In such a
scenario, u will belong to C⇒, so that ⇒C⇒ , contrary to ⇒, relies on keeping
the denotation of u completely fixed.

The fact that ⇒C⇒ properly extends ⇒ may not be a problem per se. The
problem is that C cannot be used to tell the difference between logical inferences
and merely analytic inferences. One might have hoped that C would select
logical constants, in a way such that the further application of ⇒ would have
isolated a core of purely logical inferences. Thus, ⇒C⇒ would have been a
subset of ⇒, the subset of its purely logical inferences, whereas inferences in
⇒ −⇒C⇒ would have been the analytic ones.

Failure of C to do this job is particularly unfortunate with respect to the
intended application to (logically uneducated) speakers of a language, if identi-
fication of the logical apparatus of the language is the goal. Speakers can hardly
be assumed to be able by themselves to tell the difference between logical and
analytic inferences. The only notion⇒ of valid inference on which a linguist can
rely is bound to include both logical and analytic inferences. In that circum-
stance, C⇒ will overgenerate by encompassing every basic expression to which
a meaning postulate is attached.

A solution to this problem would consist in finding ways to further filter
the results given by C . A difference between analytic inferences and logical
inferences is that the latter but not the former are schematic. An analytic
inference is specific to the expressions involved, whereas a logical inference is
generally valid. One idea would be to retain only those constants in C whose
valid inferences are schematic with respect to ⇒.27

9.3 Non-uniform consequence

Let us turn to C being too severe. In principle, it seems that nothing pre-
cludes the role played by a constant u to show up only in connection with other
substitutions. In that case, C would fail to select u. By contrast, one might
consider a different extraction procedure, say C∗. As before, u ∈ C∗⇒ would
require finding a valid inference Γ⇒ ϕ in which u occurs. But now the invalid
inference which is to witness u’s essential involvement in that validity could be
obtained by means of a replacement ρ which moves u (as before) but possibly
other symbols as well. However, this cannot be the whole story. It could not
yet capture the fact that u was essential to the validity of Γ ⇒ ϕ, since, after

27A definition of schematicity has not been given, but it could rely on C⇒ to state the
necessary restriction on the range of replacements.

37

all, putting some other symbol in place of u could be totally contingent to the
destruction of the inference. We need to require that substituting u was indeed
necessary for ρ to do so. This leads to the following definition: u ∈ C∗⇒ iff
there is an inference Γ ⇒ ϕ and a replacement ρ such that Γ[ρ] 6⇒ ϕ[ρ] but
Γ[ρ−u]⇒ ϕ[ρ−u], where ρ−u is the replacement which differs from ρ at most on
u and maps u to itself.

C∗ is indeed less severe than C . It is easy to check that, for any ⇒, C⇒ ⊆
C∗⇒.28 The converse is not true in general, as witnessed by our language L1. We
had a 6∈ C⇒{a} but we get a ∈ C∗⇒{a} . To see this, recall that ⇒{a} Rab (and
⇒{a}Raa) but 6⇒{a} Rba. Let ρ swap a and b. We get ⇒{a}Rab, 6⇒{a}Rab[ρ]
and ⇒{a} Rab[ρ{−a}]. Not uninterestingly, this suggests that C∗ solves some
of the problems on account of which we had to introduce rich languages or full
expansions. By way of ρ, no stop-over is needed, so that a ∈ C∗⇒{a} not only
in the context of L2 (where c is available) but already in L1 (where no symbol
different from a and b is available).

We shall not engage here in a thorough examination of the properties of C∗.
Despite what was pointed out in the previous paragraph, C∗ does not yield a
straightforward Galois correspondence for ⇒ or |=X . However, let us mention
that it can be shown that C∗ does yield a straightforward Galois connection for
another notion of logical consequence. The notion we have in mind is stronger
than the standard one in that it allows for non-uniform replacements of non-
logical constants. Accordingly, a classical tautology such as p ∨ ¬p ceases to be
valid, since p ∨ ¬q is not valid. This stronger notion of logical consequence has
recently received a lot of interest from linguists who are looking for a connec-
tion between logicality and grammaticality (not all validities or contradictions
are ungrammatical, but validity or contradiction seems to play a role in some
sentences being ungrammatical).29 It is a rather pleasant surprise that this no-
tion independently appears in connection with the extraction problem and the
contrast between C and C∗.

References

Abrusán, M. (2008). Presuppositional and negative islands: a semantic account. Nat-
ural Language Semantics, to appear.

Aczel, P. (1990). Replacement systems and the axiomatization of situation theory. In
R. Cooper, K. Mukai, and J. Perry, editors, Situation Theory and its Applications,
Vol 1 , pages 3–33. CLSI Publications, Stanford.

Bar-Hillel, Y. (1950). Bolzano’s definition of analytic propositions. Theoria, 16:2,
91–117.

28As a consequence, C∗ cannot help with the conceptual difficulties surrounding the differ-
ence between logical and analytic inferences.

29The idea was introduced by Gajewski under the name of L-analyticity in connection
with ‘there’ sentences and exceptives (Gajewski (2002)). It has then been taken up to help
explain various other phenomena, including measurement scales (Fox and Hackl (2006)) and
presuppositional or negative islands (Abrusán (2008)).

38

Bolzano, B. (1837). Theory of Science. ed. Jan Berg, D. Reidel, Dordrecht, 1973.

Bonevac, D. (1985). Quantity and quantification. Noûs, 19, 229–247.

Bonnay, D. (2008). Logicality and invariance. Bulletin of Symbolic Logic, 14:1, 29–68.

Bonnay, D. and Westerst̊ahl, D. (2010). Logical consequence inside out. In M. Aloni
and K. Schulz, editors, Amsterdam Colloquium 2009 , pages 193–202. LNAI 6042,
Springer, Heidelberg.

Carnap, R. (1937). The Logical Syntax of Language. Kegan, Paul, Trench Trubner &
Cie, London. Rev. ed. translation of Logische Syntax der Sprache, Wien, Springer,
1934.

Dunn, M. and Belnap, N. (1968). The substitution interpretation of the quantifiers.
Noûs, 4, 177–185.

Feferman, S. (2010). Set-theoretical invariance criteria for logicality. Notre Dame
Journal of Formal Logic, to appear.

Fox, D. and Hackl, M. (2006). The universal density of measurement. Linguistics and
Philosophy , 59:5, 537–586.

Gajewski, J. (2002). L-analyticity and natural language. Manuscript.

Gómez-Torrente, M. (1996). Tarski on logical consequence. Notre Dame Journal of
Formal Logic, 37:1, 125–151.

MacFarlane, J. (2009). Logical constants. In E. N. Zalta, editor, The Stanford Ency-
clopedia of Philosophy . Fall 2009 edition.

Peters, S. and Westerst̊ahl, D. (2006). Quantifiers in Language and Logic. Oxford
University Press, Oxford.

Tarski, A. (1936). On the concept of logical consequence. In Logic, Semantics, Meta-
mathematics, pages 409–420. Hackett Publishing, Indianapolis, 1983.

Tarski, A. (1986). What are logical notions? History and Philosophy of Logic, 7,
145–154.

van Benthem, J. (2003). Is there still logic in Bolzano’s key? In E. Morscher, editor,
Bernard Bolzanos Leistungen in Logik, Mathematik und Physik Bd. 16 , pages 11–34.
Academia Verlag, Sankt Augustin.

Westerst̊ahl, D. (2010). From constants to consequence, and back. Synthese, forth-
coming in a special issue on the Philosophy of Logical Consequence and Inference.

39

