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1 From Special Properties to General Phenomena

Generalized quantifiers live in the special type  ((e, t), ((e, t), t))  of linguistic determiners,
being binary relations between properties of individuals according to their standard theory.
Much of their behaviour has been studied in this special domain, including possible
inferential 'syllogistic patterns' like Transitivity and Symmetry, as well as various
'denotational constraints' like Conservativity and Monotonicity. Standard expositions of the
results achieved in this manner may be found in van Benthem 1986 or Westerståhl 1989.
But quantification does not take place in isolation:  generalized quantifiers function within
wider languages, whether natural or artificial, which come with a full universe of all types
that can be constructed over, at least, basic types  e  ('individuals') and  t  ('truth values').
Thus, the question arises how such inferential behaviour or such denotational constraints
fare within this more general typed environment. For instance, inference is really a general
process across an entire language, and the question becomes how quantifiers contribute
systematically to this broader 'natural logic' (cf. Sánchez Valencia 1990). Thus, a move is
made from specific conditions in one type to general phenomena across all types. As
another illustration, the specific constraint of Conservativity for quantifiers by themselves
becomes one local instance of a global phenomenon of what might be called 'domain
restriction' across arbitrary types of linguistic expression. This general cross-categorial role
is not confined to quantifiers:  it also occurs with Boolean particles in natural language, as
has been demonstrated and investigated at length in Keenan&Faltz 1985. Indeed, many
denotational constraints for quantifiers involve some form of interaction with Boolean
operators. The purpose of this Note is to investigate a few logical aspects of these general
issues, showing that they give rise to some non-trivial questions concerning the range of our
GQ-techniques in a wider setting.

2 Generalized Quantifiers in Lambda Calculus

A most convenient technical formalism for achieving type-theoretic generality in the
description of natural or formal languages is that of the Typed Lambda Calculus. The latter
system provides the 'logical glue' for constructing linguistic meanings from those for
component expressions. This composition may be achieved in the Montagovian style, be it
that recent research has come to insist on proper regard for denotational 'fine-structure',
using various fragments of the full lambda calculus machinery to achieve 'expressive fine-
tuning'. In principle, one could even ascend to a full Type Theory, manipulating explicit
identities (cf. Gallin 1975), but this seems unnecessary in practice. Therefore, the technical
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question becomes how properties of quantifiers occurring in larger expressions interact with
a lambda calculus machinery, in order to contribute to the inferential or denotational
behaviour of the whole. Several examples of what happens here may be found in van
Benthem 1991 (chapters 10, 11), which shows how a categorial analysis of linguistic
expressions, with grammatical derivations corresponding to typed lambda terms via the
Curry-Howard isomorphism ('formulas-as-types'), automatically imports much special
quantificational behaviour into the meaning of general expressions. Here are two key cases.

Example. From Conservativity to General Domain Restriction.
Conservativity for single quantifiers has the form

Q  A B iff Q  A (B´A) ,
which restricts the argument of the predicate  B  to  A-objects. Combining this with the
mechanism of categorial derivation, appropriate argument restrictions may be computed for
binary predicates in transitive sentences having multiple quantifiers:

Q1 A  TV  Q2 B iff Q1 A  (TV´(AxB))  Q2 B.
But the procedure also covers, say, adverbial or prepositional phrases. Here is a categorial
derivation of the types for the verb phrase  "walk to every city" , whose common noun
"city"  restricts the individual argument of the preposition  "to" :

"to"
"walk" e1                                             (e, ((e, t), (e, t)))   MP
(e, t)                                         ((e, t), (e, t))   MP

e2                                 (e, t)  MP "every"    "city"
   t     COND, withdrawing 1   ((e, t), ((e, t), t))               (e, t)
(e, t)   restrict to CITY                                                                 ((e, t), t)  MP

        t     COND, withdrawing 2

     (e, t)        
Its corresponding lambda term may be computed in Curry-Howard style as follows:

xe                                             TO(e, ((e, t), (e, t)))
WALK(e, t)                              TO(x)

ye                                 TO(x)(WALK)
  TO(x)(WALK)(y)    
lxe   •    TO(x)(WALK)(y)                                   EVERY CITY((e, t), t)

            EVERY CITY((e, t), t)(lxe   •    TO(x)(WALK)(y))                         
       lye• (EVERY CITY((e, t), t)(lxe• TO(x)(WALK)(y))) .                                         

Here, by ordinary Conservativity, the last three lines may replace their part   
lxe• TO(x)(WALK)(y)   by   lxe• (TO(x)(WALK)(y) Ÿ CITY(x)) .       
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Along the lines of this 'restriction marking', a systematic calculus of argument restriction
may be developed, showing how common nouns serve to restrict argument positions for
individuals in event-type 'frames of predication' set up by verbal expressions. 

Example. From Monotonicity to General Replacement.
Generalized quantifiers may display monotonicity in both their arguments, witness the case
of  ALL  which is 'left downward' and 'right upward':

A'ÓA Q  A B BÓB' imply Q  A' B' .
But again, monotonicity also makes sense for general expressions. For instance, the above
prepositional phrase  "walk to every city"  is upward in  "walk" , and downward in  "city" .
Again, this may be computed directly from the above categorial analysis, either by means of
'monotonicity marking' on the grammatical derivation tree, or directly on its corresponding
lambda term. The idea is that lexical items can have special monotonicity behaviour, which
may be encoded in their types, and then gets passed on through categorial combination
according to certain rules:

"to"
"walk" e1                                             (e, ((e, t)+ , (e, t)))+   MP
(e, t)+                           ((e, t)+ , (e, t))+   MP

e2                                 (e, t) + MP       "every"   "city"
   t +  COND, withdrawing 1 ((e, t)   –   , ((e, t)   +   , t))+  (e, t)–    

(e, t)+               _          ______                                         ((e, t)+ , t)  MP
        t  +  COND, withdrawing 2

     (e, t)
Here, monotonicity behaviour at the surface gets explained by calculating strings of  +  or  –
markers down to the root. E.g., "walk"  has an unbroken string   + + + + +  which explains
explains  its positive occurrence, whereas  "city"  has   – + +  . Essentially the same result
may also be computed on the associated lambda term

lye• (EVERY CITY((e, t), t)(lxe• TO(x)(WALK)(y))) ,
using monotonicity behaviour of its parameters for their arguments together with two
general 'rules of passage':   in function applications, the function head is always positive,
while in lambda abstractions, the body is always positive.    

Thus, annotated categorial derivations, or adorned lambda terms, are a convenient
medium for transferring the properties of quantifiers to a general linguistic environment.
Again, there is often further fine-structure here, in the form of restrictions on the kind of
lambda term that is actually needed. For instance, the main calculus for categorial



5

combination in the literature is not the full Lambda Calculus, but rather something like its
'linear fragment' having only those terms in which each lambda operator binds exactly one
free occurrence of its index variable. This is the semantic counterpart of the well-known
'Lambek Calculus' in the proof theory of Categorial Grammar. The complete picture is
therefore rather one of a landscape of fragments of the full lambda machinery. Nevertheless,
the latter system still provides a reasonable limit to semantic combination, and hence, some
natural logical questions emerge about the power of this mechanism.

3 First-Order Predicate Logic as a Point of Departure

Quantificational patterns of inference or denotational constraints already arise in the core
system of first-order predicate logic. The latter may be viewed as a small fragment of our
full typed system, and some natural logical questions arising in the above are most easily
demonstrated starting from this base. First, from a general categorial point of view, first-
order predicate logic has variables of types  e  (individuals) as well as  (e, t)  (one-place
predicates),  (e, (e, t))  (two-place predicates), etcetera. Then, it also has a number of special
constants, namely Booleans  ¬  (type  (t, t) ) and  Ÿ , ⁄  (type  (t, (t, t)) ) as well as
quantifiers  " , $  in type  ((e, t), t) . All further combinatorics is supplied by general lambda
calculus, witness a formula like

"x (Ax ⁄ $y (By Ÿ Rxy))
which amounts to       

" (lx• ⁄ (A(x)) ($ (ly• Ÿ (B(y)) (R(x)(y)) )) .
Thus, predicate-logical formulas become terms of the truth value type  t .  1  Moreover,
statements of logical consequence from a sequence of premises  f1, ..., fn  to a conclusion
y  may be rendered by the validity of the associated Boolean identity  f1 Ÿ ... Ÿ fn Ÿ y  =
f1 Ÿ ... Ÿ fn :  'adding the conclusion has no effect after processing of the premises'.  2   
Henceforth, we shall assume that the individual type  e  refers to some arbitrary non-empty
base domain, whereas the type  t  refers to the standard domain of two truth values.  3

Now, for a start, inferential behaviour in first-order logic is completely described by
some well-known principles concerning these logical constants, combining basically the
axioms of Boolean Algebra with some suitable quantifier postulates. Moreover, by Gödel's
Completeness Theorem, the resulting set of proof-theoretic principles is 'complete', in that it
derives all valid inferences. But of course, we can now do 'predicate logic' even within more
complex terms of the lambda calculus, for instance, replacing equivalents at appropriate
spots inside possibly higher-order syntactic environments. Thus, our first obvious question
now becomes this:
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Are the usual first-order principles, together with the standard rules of the typed       
lambda calculus, sufficient for deriving all valid inferences in the above logical        
constants for general typed lambda terms?

We shall make this somewhat more precise in Section 4 below, but the intent will be clear.
Next, the earlier denotational constraints also occur naturally inside first-order logic.

For instance, Conservativity rests essentially on the following simple equivalence (see
Sánchez Valencia 1990 for its historical origin with C. S. Peirce):

Ax Ÿ ( ...  ... ) …¥   Ax Ÿ ( ...  AxŸ  ... ) , 
provided that  x  be free for substitution in this context.   

In a sense, this is an inferential principle too, but at a higher level of generality than the
postulates found in the above-mentioned axiomatizations of first-order logic, as it operates
on more complex linguistic patterns. Another important example which already figures in
predicate logic (again with a Peircean ancestry) is Monotonicity. A predicate-logical
sentence  f(P)  is semantically monotone in the predicate  P  if its truth remains unaffected
in any model by merely enlarging the extension of the predicate interpreting  P . There is a
number of interesting variants of this notion, restricting attention to specific occurrences of
P , or to specific models for  f , but the present one will do here. On the syntactic side,
positive occurrence of a predicate  P  in a formula is defined as occurrence under an even
number of negations. What is easy to see now is that a formula having only positive
occurrences of a predicate  P  is monotone in it. In other words, the syntactic test of positive
occurrence is 'sound' for semantic monotonicity. The converse is a much less obvious
statement of 'completeness', being known as

'Lyndon's Theorem':
If a first-order sentence is monotone in the predicate  P , then it is
logically equivalent to one all of whose occurrences of  P  are positive.

And again, we have an obvious question:

Is there a similar 'preservation theorem' for monotonicity, supplying a complete       
syntactic format for this phenomenon in our general typed lambda calculus ?   

                                                                                                      
In more practical terms, this amounts to the following concern. The above computations on
categorial derivations gave us a means of spotting syntactically 'positive' positions, reflecting
inferentially sensitive locations in a linguistic expression. But can we be sure that this
mechanism in our natural logic really detects all such positions?
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4 Axiomatizing Inference

The pure lambda calculus is a universal theory of function application and abstraction. Its
typed variant arises when these functions are thought of as coming in hierarchical layers.
Henceforth, we shall be thinking of 'standard models', consisting of function hierarchies
over base domains including a non-empty set  De  of individual objects and a truth value
domain  Dt . Universal validity of identities  M=N  between terms of the typed lambda
calculus may be explained semantically as their truth, under all variable assignments, in such
structures. One fundamental result in the field is

'Friedman's Theorem':
Universal validity on standard models is axiomatized precisely
by the Extensional Typed Lambda Calculus  lt , including the usual
axioms for identity, lambda conversion and extensionality of functions.

This result does not extend from universal validity to the case of consequence from
premises, and hence there is no easy way of adapting it to obtain complete axiomatizations
for a lambda calculus with additional constants, such as the above  ¬ , Ÿ , $  with their usual
theory. Nevertheless, it turns out possible to obtain an axiomatization for the logical
constants of predicate logic in a full typed lambda calculus, using the following analysis in
van Benthem 1991 (chapter 2).

The idea is to first introduce a new calculus  lt
*  of 'sequents'   D•a = b , with  D

any finite set of identities. 'Semantic validity'  for these sequents says that  " in all standard
models, any assignment verifying all identities in  D  also verifies  a = b " . The resulting
valid principles are obvious generalizations of those for  lt . For instance, 'Replacement of

Identicals' returns in the axioms
a = b•g(a) = g(b) a = b•a(g) = b(g)

as well as the inference rule
if  D•a = b   (where  x  does not occur free in  D ) , then  D•lx• a = lx• b .

Moreover, Extensionality assumes the following form:
if  D•a(x) = b(x)   (where  x  does not occur in  D, a, b ) , then  D•a = b .

Finally, the usual structural rules hold for these sequents, such as Reflexivity, Monotonicity
and Cut. A general completeness theorem for sequent-based lambda calculus may be proven
at this stage, by modifying the usual arguments concerning term models. Its details are
omitted here.

Next, an enriched calculus lt
*B arises by adding all Boolean axioms as identities,

together with the following rule of Bivalence
if   D,  st = 1•a = b   and   D,  st = 0•a = b , then   D•a = b . 
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Moreover, for technical reasons, identity predicates  =(e, (e, t))  are to be added for each
ground domain  e :  requiring also principles of Individual Identity

(ae =(e, (e, t)) be) = 1 • ae = be ae = be • (ae =(e, (e, t)) be) = 1 .   4

The system  lt
*B  is obviously sound for its intended semantic interpretation, over standard

models with  Dt = {0,1} . Indeed, a stronger result holds:

Proposition.     An identity  Ÿ•a = b  is provable in  lt
*B   if and only if

it is valid in all standard models having ground domain  Dt = {0,1} .

Proof.      The main steps in demonstrating the Proposition are as follows. Starting from a
non-derivable sequent  Ÿ•a = b , one constructs some consistent set  D  which does not
derive  a = b , but which progressively decides all terms of the truth value type  t  (here is
where the Bivalence Rule is crucial) and which makes sure that non-identical functions shall
differ on at least one tuple of fresh arguments (this depends on Extensionality plus the new
ground identity predicates). Then, a canonical term model may be constructed verifying  D
while keeping  a, b   distinct, whose domain  Dt  has just the two truth values  0, 1 . Now,
the Friedman construction for a 'partial surjective homomorphism' from the standard model
over the same ground domains still works, and it even maps the 'real' Boolean operators to
their counterparts in the term model. Thus, the counterexample to      a = b   in the term
model may be transferred to one in a standard model. 

The crucial feature of Booleans underlying the preceding outcome is their 'first-
orderness' in the hierarchy of types. And in fact, a similar analysis may be given for all of
first-order predicate logic with a lambda calculus superstructure, in which the Booleans are
supplemented with one more constant, namely the binary existential quantifier some  in the
earlier determiner type, interpreted as set overlap. Then, our final axiomatization is reached:

Proposition.    The valid identities on standard models are axiomatized by  lt
*B  

together with the following quantifier principles:
• some  ab  =  some  ba Symmetry

some  ab  =  some  a(bŸa) Conservativity
some  ab  ≤  some  a(b⁄g) Monotonicity
some  00   =  0 Non-Triviality

• some  ab = 0  • a(x)Ÿb(x) = 0 , for all variables  x
if   D  • a(u)Ÿb(u) = 0 , with  u  not occurring in  D, a, b ,
then   D  • some  ab = 0 .
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Proof.    We merely mention the crucial step in the proof for this result, which is otherwise
similar to the one sketched before. The additional task this time is to make sure that the
Friedman homomorphism  h  will map genuine set-theoretic overlap to the interpretation of
the some  functor in the term model. What is needed for this purpose is the introduction of
'witnesses' in the earlier construction of the set  D   describing the term model for all
statements of the form  some  ab  accepted at some stage. That this will work is ensured by
the two final rules stated above.  5  The final check after the construction of  h  from the
standard model to the term model runs as follows. If two sets  X, Y  of individuals are
mapped onto term equivalence classes  a~ , b~ , and the former share some element  t~ ,
then we have  a(t) = 1, b(t) = 1 derivable from  D ,  and hence  some  ab = 1 as well   
(some  ab = 0  would derive that  a(t)Ÿb(t) = 0 ) :  i.e., [[some]](a)(b)  holds. Conversely,
if the latter relation holds, then its witness will give a non-empty intersection for  X, Y . 



This result does not exhaust all questions of interest concerning general deduction
in the lambda calculus. In particular, the analysis should be extended to cover non-standard
quantifiers, such as "most" . Also, from a categorial viewpoint, various further operators are
involved in first-order inference as it occurs in natural language that deserve separate
investigation. One case are argument reducers of predicates, such as the reflexivizer "self" in
type  ((e, (e, t)), (e, t)) . This is the only logical 'Boolean homomorphism' in its type (cf. van
Benthem 1986), which means, amongst others, that it commutes with negations and
conjunctions. Would this suffice to characterize its inferential behaviour in the setting of a
full lambda calculus?

5 Characterizing General Monotonicity

Our next concern is the earlier monotonicity. In a full lambda calculus, this phenomenon
may be defined using a natural notion of  'Boolean inclusion'  Óa  in all types  a :

Óe  is  =e Ót  is  ≤t
in functional types  (a, b) ,  fÓ(a, b)g    iff    f(x)Ób g(x)  for all  x  in  Da .

Now, a term  tb  with a free variable  xa  may be called  'monotone'  in  x  if its denotation
[[t]]  under any variable assignment depends monotonely on the object assigned to the
variable  x . Briefly,  

' uÓav   only if   [[t]]xu  Ób [[t]]xv ' .
This generalizes the earlier case of predicate-logical formulas with individual predicates.
Evidently, this 'upward' notion has a 'downward' dual too, reversing the relationship.    On
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the syntactic side, there is also a natural notion of  'positive occurrence' for variables in
lambda terms:

x  occurs positively in  x  itself, but in no other single variable  y
a positive occurrence of  x  in  M  is also one in an application  M(N)
a positive occurrence of  x  in  M  is also one in an abstraction  ly• M .

This allows only one positive position, namely as the 'head variable' of a term. But in the
presence of monotone parameters, such as the earlier constants  ¬ , Ÿ , $ , the situation
changes. One now adds 'negative occurrences' as well, stating the obvious rules for
argument positions of Boolean operators or quantifiers (upward monotone parameters
preserve polarity in their arguments, downward monotone ones reverse it). Again, it is easy
to prove 'soundness':

If a variable  x  has only positive occurrences in a term of a lambda calculus with 
first-order logical constants as parameters, then that term is monotone in  x .

As for a converse preservation theorem, the situation is subtle, and we only have some
partial results so far.

What should be noted in any case is the following exception. The above inclusion
relation reduces to identity on all 'non-Boolean types' whose final atomic type is  e  instead
of  t . Accordingly, each term is trivially monotone with respect to all its variables of non-
Boolean type. Thus, in this case, no syntactic restrictions can be justified at all  –  and
attention must be restricted to Boolean types, if anything of interest is to be discovered.

First-Order Predicate Logic
On the above view, even predicate-logical formulas have further positions where they might
be monotone. For instance, the formula  ¬p  is monotone in the connective occurrence  ¬ ,
as may be seen quite easily. Here, one refers to replacements in the ordering  Ó(t, t)  of
unary Boolean operators, which is a diamond

lx•1
lx•x lx•¬x

lx•0
Likewise, formulas may even be monotone with respect to certain occurrences of quantifiers
in them, allowing substitution by 'more inclusive' quantifiers. What this requires, of course,
is a more abstract view of predicate-logical formulas than the usual one, where propositional
operators or quantifiers may now become subject to varying interpretation, so that the usual
distinction between variable 'assignments' and more permanent 'interpretation functions'
becomes fluid. By itself, such a change need not affect essential properties of the logic. For
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instance, a fundamental result like the Compactness Theorem still holds with 'Boolean
variables'.  6  Here is a relevant observation.

Proposition. A predicate-logical formula is monotone with respect to a certain Boolean     
operator symbol   if and only if   it is equivalent to some formula having only           
positive occurrences of that symbol.

Proof. The argument rests on a simple trick, that will recur a number of times in what
follows. If a formula  f  is semantically monotone in the Boolean operator  F  (which we
take to be unary, for convenience), then we have the following schematic equivalence:

f       ¥ $F'Ó(t, t)F: [F'/F]f .
Now, the latter formula may be defined explicitly via the disjunction of all four possible
cases for  F' :

lx•1Ó(t, t) F Ÿ [lx•1/F]f lx•xÓ(t, t) F Ÿ [lx•x/F]f
lx•¬xÓ(t, t) F Ÿ [lx•¬x/F]f lx•0Ó(t, t) F Ÿ [lx•0/F]f 

Here, the substituted forms for  f  on the right no longer contain occurrences of  F  at all.
Moreover, the left-hand inclusions can be written entirely in positive terms for  F, namely
(respectively)

F(0)ŸF(1) F(1) F(0) 1 .      7           



But already for the case of quantifier symbols, the situation is less clear, and we
merely have an open

Question. Does semantic monotonicity of a first-order formula  f  with respect to some
quantifier symbol  Q  imply definability of  f  in a form which has only positive 
occurrences of  Q  in the above sense  (that is, only directly under an even number 
of negations and an arbitrary number of monotone first-order operators such as  
Ÿ , " , $ , but not under itself) ?

First-Order Predicate Logic with Generalized Quantifiers
The preceding case really leads to a common kind of extension of first-order predicate logic,
namely with additional generalized quantifiers interpreted via families of sets. (This
restriction to unary quantifiers is merely for the sake of convenience.) Thus, the syntax now
also allows operators of the form  Qx• f(x) . One obvious question in this case is if the
earlier Lyndon Theorem goes through for formulas with respect to occurrences of
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individual predicates. For extension by upward monotone quantifiers  Q , this was shown
by Makovsky & Tulipani: cf. the elaborate analysis in Doets 1991. For the case of arbitrary
generalized quantifiers  Q , even this simple question still seems open.

Lambek Calculus and the Linear Lambda Fragment
Now, let us pass to a general typed system. We start with a modest engine of categorial
combination, namely the Lambek Calculus with its corresponding 'linear lambda terms'. Van
Benthem 1991 (chapter 11) has the following result for the pure version of this system
(without Boolean parameters):

Proposition. A linear term is monotone with respect to some variable of Boolean type   if 
and only if   it is equivalent to some term having that variable in head position.

Proof. The idea of the proof is as follows. First , one reduces the relevant term t  to its
lambda normal form. Suppose that its occurrence of  x  still is not positive. Then, two
variable assignments may be created progressively, differing at their  x-values but otherwise
the same, starting with two properly included Boolean values at the occurrence of  x ,  and
working outward across its successive 'contexts' in the term  –  whose effect is as follows:

At each stage of the construction, some context in our term is under inspection,       
which is to receive two different values under the two assignments. If this context    
has a non-Boolean 'individual type', its 'leading variable' may be evaluated via       
extended assignments so as to make the whole context yield two distinct values in   
the appropriate individual type domain. If its leading variable has a 'Boolean type', 
then one reverses the Boolean inclusion once (working inside out), after which the  
resulting non-inclusion may be maintained across wider Boolean contexts                
encountered on the outward journey.

The single occurrence property of linear terms is crucial in maintaining the desired
properties. At the end, the term will have non-included values for included values of  x :
quod non. 

Now, this proof may be extended to cover the case of linear terms with Boolean
parameters as well, by showing how to pass negations and conjunction in the above
procedure.

Proposition. The preceding result also holds for linear terms with Boolean parameters, 
be it that the equivalent term may fail to contain the relevant variable at all.
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Proof.      The non-trivial direction runs as follows. The earlier reduction to lambda normal
form may be performed first without using Boolean identities. (The latter might interfere in
this process, witness the possible multiplication of redexes in a Boolean equation like       M
= Ÿ(M)(M) . )  Afterwards, Boolean reductions may be made with impunity, as algebraic
identities on terms of the non-functional type  t  do not introduce new redexes. Now,
suppose that  x  still has an occurrence in the final form, which is not positive. Then, the
procedure from the preceding proof still works, with this twist that Boolean (non-)
inclusions must now be switched when passing negations. The only sensitive new case in
maintaining the desired behaviour under the two assignments arises when a conjunctive
context of the form   Ÿ (M)(N)  is to be passed, with  x  occurring, say, in the conjunct  M .
Then it should be possible, by modifying the two assignments, to make  N  at least true:
otherwise, the value becomes  0  in both cases, and the intended difference gets lost. But if
N  were unsatisfiable,  Ÿ (M)(N)  would reduce to  0  by Boolean equivalence, and our
original term would be equivalent to one without any occurrence of  x  after all.       

Nevertheless, this result does not seem fully satisfactory, since Boolean conjunction
in natural language seems to occur mainly in a 'coordinative' mode which results in lambda
terms allowing multiple binding across conjuncts at the same level ("twists and shouts"
naturally means  lxe•  Ÿ (TWIST(xe)) (SHOUT(xe)) ) .  8  Therefore, we shall consider the
full system of types and lambda terms after all.

Full Lambda Calculus
In the ordinary lambda calculus, apparent counter-examples exist to a preservation theorem
for monotonicity, even at a simple Boolean level (cf. van Benthem 1991 (chapter 11)):

Example. Non-Positive Monotonicity.
The term   x(t, t) (x(t, t) (yt))   is semantically monotone in both its free variables, without
having any definition by means of a pure term in which either of these variables occurs only
positively. Nevertheless, there is a positive definition when Boolean parameters are allowed.
Indeed, the following terms will both do (as may be checked by brute  force):

((x(t, t)(1) ⁄ x(t, t)(0)) Ÿ y)  ⁄  ((x(t, t)(1) Ÿ x(t, t)(0)) Ÿ ¬y)
(yt Ÿ x(t, t)(x(t, t)(1)) ⁄ x(t, t)(x(t, t)(0)) .



The preceding Example points at a more general result.
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Proposition. For terms in a lambda calculus having only pure Boolean types  (that is,       
involving  t  alone) , semantic monotonicity implies positive definability.

Proof. An earlier trick may again be applied here. Suppose that a term  tb  is semantically
monotone in its variable  xa . Then it is definable in the following schematic form:

£ AŒDa  ('AÓx' Ÿ [A/x]t) .
More precisely, an appropriate disjunction is to be taken here in the Boolean domain of
type  b . Now, this schema can be turned into a genuine definition, with  x  occurring only
positively, because of the following facts:
(1) the enumeration of  Da  can be made completely via closed terms of the Boolean       

lambda calculus. The reason is the Functional Completeness result in van Benthem  
1991 (chapter 11) which shows that each pure Boolean object is explicitly definable 
in a lambda calculus having  0 , 1 , ¬ , Ÿ  added . In these closed terms, the            
variable  x  does not occur at all.

(2) inclusions between lambda terms of the form  'AÓx'  are definable in a form which    
has only positive occurrences of  x , again using a complete enumeration:
•     A, x  both of type  t : ¬A ⁄ x
•     otherwise, use a conjunction of assertions  'A(U)Ótx(U)'  running over
      all possible tuples of arguments  U  that take  A, x  to objects in type  t .

Of course, available positive definitions may turn out much simpler in specific cases.  9      


The general case with individual types present seems much more difficult. In
particular, the above kind of argument does not generalize, as it exploits the essential
finiteness of the Boolean universe.  10  For the moment, we merely have a conjecture to
offer concerning the pure lambda calculus with arbitrary types, but without special
parameters. It is easy to see that the above pattern of analysis may be extended from
Boolean inclusion to the case of arbitrary binary relations on ground domains lifted to more
complex types componentwise.

Example. Natural Numbers.
Consider the binary relation  <  on  De = N . For functions, we have, e.g., that  y1 =  lx•x  <
y2 = lx•x+1 . Moreover, a lambda term like  lz(e, e)• y(e, e)(z(e, e)(xe))  will be 'monotone'
with respect to  <  in an obvious sense.        
Conjecture. General monotonicity with respect to arbitrary binary relations over the          

relevant ground domain for some typed variable implies positive definability.
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Example, Continued. Non-Positivity.
Non-positive cases will typically not be semantically monotone with respect to variables
occurring in irreducible argument positions. The term   y(e, e) (z((e, e), e) (ye))   does not
respect the above binary relation  <  , as may be seen by taking functions   y1 =  lx•x  <   y2

= lx•x+1 , and any functional  z  having  z(y1) = 1, z(y2) = 0.    

Theory of Types
Finally, it should be noted that the above question collapses in a full Theory of Types,
allowing arbitrary identities in terms, or equivalently, 'higher-order' quantification over
objects in arbitrary types.  11  In this system, we have the following reduction, again
exemplifying an earlier trick:

A term  t  is semantically monotone in the variable  xa   if and only if   
t  is definable by means of the formula   lU• $v ([v/x]t(U) Ÿ 'vÓx') ,
where  'U'  is some tuple of variables reducing  t  to ground level.
(Note that Boolean inclusion is explicitly definable in this type theory.)   12

Nevertheless, certain more interesting versions of preservation results might be found even
here, by placing restrictions on the complexity of proposed definitions, and looking for
special cases where these might be available.

For a possible illustration, we return to the earlier open question of preservation for
monotone quantifier occurrences in a first-order language with an added quantifier  Q . The
above trick would involve existential quantification over variables of the second-order type
type  ((e, t), t) : but one can do better. An adaptation of a standard proof of monotonic
preservation, based on elementary chains (cf. Chang & Keisler 1990), shows this   13

Proposition. A formula  f  is semantically monotone in the quantifier  Q   if and only if    
it is definable by means of some formula in which  Q  occurs only positively,           
allowing also existential quantification over predicates.

A simple formula in such an extended second-order formalism is 'non-emptiness':
$P(e, t)• Q(P) , which is essentially outside of the original first-order language with  Q . The
earlier open question concerning this case then amounts to asking whether these existential
quantifiers are really unavoidable when defining suitably simple  Q-monotone formulas
f(Q) .
6 Notes
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1 This lambda calculus with constants for Boolean operators and first-order quantifiers 

should not be confused with another possible 'generalization' of first-order logic, having 

identities between lambda terms for its atomic statements, with Boolean operations over 
these, as well as quantifiers  $xa  running over type domains  Da . This would amount to

the earlier higher-order Type Theory. Note that quantifiers of the latter kind are not 

confined to any single category: they are 'transcategorial operators' just like the lambda 

abstractor itself.
2 In a common notation with Boolean inclusion, this would read as:  'f1 Ÿ ... Ÿ fn ≤ y  ' .  

3 Actually, from the type-theoretic point of view, having arbitrary base domains of 'truth 

values', with appropriate operations over these, would be quite admissible too.

4 This calculus has been chosen for its meta-logical convenience, not for its practical 

utility. For instance, proving the Boolean 'conjunction rule' from two conclusions to 
their conjunction already requires a trick: " Suppose that    D• at = 1,  D• bt = 1 . 

By Boolean Algebra and Substitution of Identicals,  at = 1,  bt = 1 • at Ÿ 1 = 1 •

 (at Ÿ bt) = 1 . Hence, by Cut and Contraction,  D• (at Ÿ bt) = 1 . "

5 The principles preceding them are merely some useful derived facts, allowing one to 

represent the binary quantifier  some  as a unary one in the usual manner.

6 The reason is that, since only finitely many possibilities exists for interpreting a Boolean

operator, the usual ultraproduct proof for Compactness will still go through:  one unique 

interpretation will be enforced in the ultrafilter.

7 Here is an illustration. The formula  ¬(pŸ¬Fq)  is monotone in  F . By the recipe given, 

it must be equivalent, after some Boolean simplification, to the disjunction of  

F(0)ŸF(1),  F(1)Ÿ¬(pŸ¬q),  F(0)Ÿ¬(pŸq),  ¬p . And the latter may be reduced again to 

the obvious equivalent  ¬p⁄Fq .

8 There are many further subtleties to the process of 'argument management' in natural 

language, where, e.g., identifications must be lexicalized to a large extent. See the various

discussions on this topic in van Benthem 1991, as well as the treatment of Boolean 

coordination in Sánchez Valencia 1990.

9 By way of example, the procedure may be applied to the earlier form  xxy . What we get 

then for the case of  y , is the disjunction of  '0Óy'Ÿxx0, '1Óy'Ÿxx1 , which is indeed 

equivalent to the earlier form  (xx1Ÿy) ⁄ xx0 . For the case of  x , the result obtained 

reduces to that obtained via the earlier procedure for predicate logic, namely to something 

like  (x1Ÿx0) ⁄ (x1Ÿy) ⁄ (x0Ÿy) , which is again equivalent to the one found 'by hand'.

10 It will still work, of course, for purely Boolean objects even in a an {e, t}-type 

environment, witness the earlier case of truth-functional operators in predicate logic.
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11 As was noted before, in a sense, the latter syncategorematic treatment of quantifiers is an 

alternative type-theoretic 'generalization' of first-order predicate logic, choosing the 

variable polymorphic type  ((x, t), t)  for unary generalized quantifiers.

12 This observation is related to the well-known 'trivialization' of Lyndon or Beth-type 

theorems in second-order logic.

13 The argument essentially treats the system as a two-sorted first-order one, with quantifiers

standing for unary properties over individuals of the second 'predicate sort'.
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