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ABSTRACT.We investigate the major mathematical theories of space from a modal standpoint:
topology, affine geometry, metric geometry, and vector algebra. This allows us to see new fine-
structure in spatial patterns which suggests analogies across these mathematical theories in
terms of modal, temporal, and conditional logics. Throughout the modal walk through space,
expressive power is analyzed in terms of language design, bisimulations, and correspondence
phenomena. The result is both unification across the areas visited, and the uncovering of inter-
esting new questions.
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1. Logics of Space

The study of Space has been a driving force in the foundations of mathematics,
witness the history of formal proof, axiomatic theories, or the traditional geometric
construction problems. In the development of logic, studies of space have been a
much more marginal theme, with only scattered results. In particular, even though
there is a well-established area of ‘temporal logic’, relevant to knowledge represen-
tation, process analysis, and other useful purposes, there is no similar ‘spatial logic’.
Nevertheless, logical systems for spatial patterns are attracting growing attention these
days—partly under the influence of computer science and AI, where spatial represen-
tation and image structure are now major themes. This paper is an attempt at putting
this development in a broader perspective, showing in particular how modal structures
arise across a variety of analysis of space. We do not offer new results, and we do not
even pretend to give a complete survey.

Like Time, Space can be studied from many angles: mathematical, physical, lin-
guistic, psychological. The literature has two broad approaches. One takes Space as
something given, and studies its ontological structure: what are the primitive objects,
and their relations? There are no unique answers here. Affine geometry, metric geom-
etry, topology, linear algebra, each have their own take on spatial structures—and this
proliferation continues today, e.g. in ’mathematical morphology’ [MAT 67, SER 82].
Moreover, philosophers have added alternative theories to the mathematical main-
stream, such as ‘mereology’—and they are still exploring spatial patterns that have
not even been mathematized at all [CAS 99]. The role of ‘logic’ here is as in other
branches of mathematics. One designs logical languages for describing constellations
of objects and facts inside the relevant structures - say, a spatial pattern of regions—
and one designs systems for valid reasoning about these—the appropriate ‘geometry’.
This serves two purposes: (a) analysis of existing over-all theories in the area, and (b)
design of natural ‘fragments’ striking a balance between expressive power and com-
putational complexity. This fine-structure, in its modal guise, is the red thread in what
follows.

The other approach does not start from some independently existing notion of
Space, but rather from some existing human practice, e.g. a language with spatial
expressions (say locative prepositions) or a diagrammatic way of visualizing things.
One then determines minimal spatial structures that ‘fit’ in the sense of validating the
practice. E.g., the repertoire of spatial expressions in natural languages can be seen as
a record of how we normally position things in space—and a logical system can bring
this out in some crisp manner. In particular, a logical semantics for such a system
would provide ’spatial patterns’, which may or may not be like the structures arising
on the independent ontological study of space. This is not what we will do here, even
though it is certainly a legitimate perspective, and one which is close to important
current studies of spatial expressions, maps, and diagrams [HAM 95, KER 01].

Using a logic to study space buys into a typical modus operandi. This involves
language design and semantic expressiveness, structural simulations between models



that fit the language, general logical validities for the chosen type of structure, spe-
cial purpose axioms corresponding to special structures, complexity of various logical
tasks (model checking, similarity testing, satisfiability) and more methodologically,
translations between different systems addressing the same structures. In addition to
these general concerns, the field of Temporal Logic [BEN 83b, GAB 94] suggests fur-
ther themes for a study of Space, from the longer experience in studying Time. These
logical issues are not standard features in the usual mathematical theories of space,
and their added value must show in practice. Conversely, in doing so, one must see
what spatial content can be attached to abstract logical calculations. Even without ex-
ploring all these features in exhaustive detail, we do think the following survey shows
that all these promises can be made good in a modal perspective.

2. Topology

The coarsest mathematical view of Space is only concerned with insides, exteri-
ors, and boundaries of regions. Topology was developed in the early 20th century, as
an elegant generalization of recurrent features of those spatial structures that survive
elastic deformations. A topological space is any pair(X,O), whereO is a family of
subsets ofX containing the empty set andX itself, which is closed under finite inter-
sections and arbitrary unions. The structure-preserving notion of similarity between
topological spaces are continuous maps, known from Analysis in theirε − δ formu-
lation, whose definition needs nothing but open sets. The resulting theory is very
general: an apparent weakness which, as so often, is really a strength. Topological
structures arise in a much broader arena than space, including patterns of computation
and information. It was observed in the 1930s that the modal logicS4 describes a
small part of all this, viz. the basic algebra of interior and closure. This is the ‘topo-
logical semantics’ for modal logic, a phrase that makes the language primary, and the
spatial interpretation secondary. Here, our interest is the other way around. In this
first section, we review some relevant results, showing how modal logics can serve as
weaker or stronger topological theories of space.

2.1. The basic modal language of topology

Let us begin with the basic definitions of the topological interpretation of modal
logics on the languageS4, [TAR 38, MCK 44]. The language is composed, as usual,
of a countable set of proposition letters, boolean connectives¬, ∨, ∧, →, and modal
operators2, 3. A model is a topological space equipped with a valuation functionν :
P → P(X), whereP is the set of proposition letters. A structureM = 〈〈X,O〉, ν〉,
where〈X, 0〉 is a topological space, is called atopo-model. Here is the precise seman-
tic definition (in modern modal logic terms).

Definition 1 (basic topological semantics)Truth of modal formulas is defined in-
ductively at pointsx in a topological modelM :
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Figure 1. A formula ofS4 identifies a region in a topological space. (a) a spoon,p.
(b) the container part of the spoon,2p. (c) the boundary of the spoon,3p ∧ 3¬p.
(d) the container part of the spoon with its boundary,32p. (e) the handle of the
spoon,p ∧ ¬32p. In this case the handle does not contain the junction point handle-
container. (f) the joint point handle-container of the spoon,32p ∧3(p ∧ ¬32p): a
singleton in the topological space.

M,x |= p iff x ∈ ν(p) (with p ∈ P )
M,x |= ¬ϕ iff not M,x |= ϕ
M,x |= ϕ ∧ ψ iff M,x |= ϕ andM,x |= ψ
M,x |= 2ϕ iff ∃o ∈ O : x ∈ o ∧ ∀y ∈ o : M,y |= ϕ
M,x |= 3ϕ iff ∀o ∈ O : if x ∈ o, then∃y ∈ o : M,y |= ϕ

As usual we can economize by defining, e.g.,ϕ ∨ ψ) as¬(¬ϕ ∧ ¬ψ), and3ϕ as
¬2¬ϕ. We will do this whenever convenient.

Each formula of the language denotes a region of the topological space being modeled.
For instance, take the real planeIR2 with the standard topology. Consider a valuation
function sending a spoon shape region (and only that region) to the propositional letter
p, Figure 1.a. Then, the formula¬p denotes the region not occupied by the spoon, i.e.,
the background. The formula2p denotes the interior of the spoon regionp and so on,
as in Figure 1.

The topological interpretation brings a noticeable shift in perspective from the
usual possible worlds semantics. E.g.,locality now means that a formula is true at
M,x iff it is true at any open neighborhood ofx in M (viewed as a sub-model).
Thus,regionsare essential, and more generally, a modal approach provides a calculus
of regions de-emphasizing constellations of points. As such, it is close to ‘region
versus points’ movements in theories of time and space, [ALL 83, BEN 83b, ALL 85,
RAN 92].

To understand the expressive power of a modal language a suitable notion of
bisimulation is needed. The following definition reflects the semantic definition of
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Figure 2. Game rounds needed for distinguishing shapes.

the modal operators and can be seen as composed of two sub-moves: one in which
points are related and one in which containing opens are matched.

Definition 2 (topological bisimulation) A topological bisimulationbetween two
topological models〈X,O, ν〉, 〈X ′, O′, ν′〉 is a non-empty relation� ⊆ X × X ′

such that, ifx � x′, then:

(i) x ∈ ν(p)⇔ x′ ∈ ν′(p) (for any proposition letter p)

(ii) (forth): x ∈ o ∈ O⇒ ∃o′ ∈ O′ : x′ ∈ o′ and∀y′ ∈ o′ : ∃y ∈ o : y � y′

(iii) (back):x′ ∈ o′ ∈ O′ ⇒ ∃o ∈ O : x ∈ o and∀y ∈ o : ∃y′ ∈ o′ : y � y′

A bisimulation istotal if its domain isX and its rangeX ′. If only the atomic clause
(i) and the forth condition (ii) hold, we say that the second modelsimulatesthe first.

Topo-bisimulation indeed captures the adequate notion of ‘model equivalence’ forS4
topologically interpreted. Evidence for this comes from two results like the following,
cf. [AIE 02c].

Theorem 1 LetM = 〈X,O, ν〉, M ′ = 〈X ′, O′, ν′〉 be two models,x ∈ X, andx′ ∈
X ′ two bisimilar points. Then, for any modal formulaϕ, M,x |= ϕ iff M ′, x′ |= ϕ.
In words, modal formulas are invariant under bisimulations.

Theorem 2 LetM = 〈X,O, ν〉, M ′ = 〈X ′, O′, ν′〉 be two finite models,x ∈ X,
and x′ ∈ X ′ such that for everyϕ, M,x |= ϕ iff M ′, x′ |= ϕ. Then there exists
a bisimulation betweenM andM ′ connectingx and x′. In words, finite modally
equivalent models are bisimilar.

Topo-bisimulations are model theoretic tools for assessing expressivity of our lan-
guage with respect to spatial patterns. Nevertheless, when comparing e.g. two im-
age representations, it may still be too coarse. To refine the similarity matching, one
can define a topological model comparison gameTG(X,X ′, n) between two mod-
elsX,X ′ in the Ehrenfeucht-Fraïsséspirit. The idea of the game is that two players
challenge each other picking elements from the two models to compare. One player
wins if he can show the models to be different, the other wins if he can show the
models to be ‘similar’. Winning strategies for the similarity player ‘Duplicator’ in



infinite games yield topo-bisimulations. Furthermore, for finite-length games, games
and modal formulas are connected by the Adequacy Theorem:

Theorem 3 Duplicator has a winning strategy inTG(X,X ′,n, x,x′) iff x and x′

satisfy the same formulas of modal operator depth up ton in their respective models
X,X ′.

The formal definition of a game, discussion of plays and strategies (cf. Figure 2)
are in [AIE 02c], while the use of topo-games to compare models deriving from im-
age descriptions is illustrated in [AIE 02b]. The first paper also points out that topo-
bisimulations are coarse versions of more traditional topological mappings.

Theorem 4 Let 〈X,O, ν〉 and〈X ′, O′, ν〉 be two topological models. If〈X,O〉 and
〈X ′, O′〉 are homeomorphic, then there exist a non-trivial topo-bisimulation between
the topo-models.

A trivial bisimulation, i.e., one in which all points of a model are related to all points
of the other model, always exists. By non-trivial bisimulation in the previous theorem,
we mean one in which the points are related following the homeomorphic mapping.
See [AIE 02c] for a proof, as well as connections with other topological notions of
similarity, such as homotopy.

Now consider logical validity, and hence the general calculus for spatial reasoning
in this language. The logicS4 is defined by the KT4 axioms and the rules of Modus
Ponens and Necessitation. In the topological setting, the key principles are as follows,
with an informal explanation added:

2> (N) the whole spaceX is open
(2ϕ ∧2ψ) ↔ 2(ϕ ∧ ψ) (R) open sets are closed under finite intersections
2ϕ→ 22ϕ (4) idempotence of the interior operator
2ϕ→ ϕ (T) the interior of any set is contained in the set

Using this set of axioms, the rules of inference are modus ponens and monotonicity of
the modal box. The universally valid formulas topologically interpreted are precisely
the theorems ofS4. But [MCK 44] proved a much more striking result.

Theorem 5 S4is complete for any metric space without isolated points.

Thus, S4 is also the complete logic of any spaceIRn with the standard topology.
[MIN 98] proved completeness for the Cantor set in a particularly elegant manner.



p ..... ( ] ..... x .......... ( )( ] ..........
0

√
2 2 3 4 5

¬p ∧3p ..... x .......... ... .................. x .......... x .......................

32p ..... [ ] .................. [ ] ..........

Figure 3. A serial set ofIR and the defined sub-formulas by the axiomBD2.

By adding extra constraints it is possible to identify specific spatial structures of
interest. Take, for instance, the real lineIR with the standard topology and consider
the additional axioms:

2(2(p→ 2p) → p) → p (Grz)

(¬p ∧3p) → 32p (BD2)

¬(p ∧ q ∧ 3(p ∧ ¬q) ∧ 3(¬p ∧ q) ∧ 3(¬p ∧ ¬q)) (BW2)

These are complete with respect to theserial sets of the real line, being the finite
unions of convex intervals [AIE 01]. To give an impression of what is going on,
referring to Figure 3, consider the serial set denoted byp and the axiomBD2. The
axiom, which in Kripke semantics bounds the depth of the model to 2, in topological
semantic states that the points that are both in the complement¬p of a region and in
its closure3p, must be in the regular closed portion32p of the region itself.

Similarly, one can look at interesting bi-dimensional topological spaces. Here is
an axiom valid forIR2:

3(2p3 ∧3(2p2 ∧32p1 ∧ ¬p1) ∧ ¬p2) → p3 (BD3)

The axiom, which in Kripke semantics bounds the depth of the model to 3, expresses
a property of the ‘rectangular serial’ sets of the plane (again involving the boundary
points of sets, as in the mono-dimensional case ofBD2). These special structures are
investigated in [AIE 01] and [BEN 02]. The latter provides axiomatizations for logics
of this sort for real spaces of any dimension.

2.2. Extended modal languages

An extremely useful technique in modal logics gains expressive power without
losing decidability, by adding a modal operator. For instance, if one needs to express
notions connected to equality of states in Kripke semantics, one may add a difference
operatorDϕ which reads “there is a state different from the current one that satisfies
ϕ.” The same move makes sense for space. Topological relations not captured by the
basic modal language can be safely expressed by adding appropriate new modal opera-
tors. We have entered the realm of extended modal languages, see [RIJ 93, BEN 91b].



2.2.1. Universal reference and global properties

The basic languageS4 interpreted on topological spaces has a ‘local’ view of the
world. A global perspective comes from the addition of a universal modality that
expresses accessibility to any point [GOR 92]. Universal modalities were brought to
the spatial reasoning community in [BEN 95]. For this purpose, one adds:

M,x |= Eϕ iff ∃y ∈ X : M,y |= ϕ

M,x |= Uϕ iff ∀y ∈ X : M,y |= ϕ

More systematically the relevant new valid principles are those ofS5:

Eϕ↔ ¬U¬ϕ (Dual)
U(ϕ→ ψ) → (Uϕ→ Uψ) (K)
Uϕ→ ϕ (T)
Uϕ→ UUϕ (4)
ϕ→ UEϕ (B)

In addition, the following ‘connecting’ principle is part of the axioms:

3ϕ→ Eϕ

Using these principles, we notice thatS4u allows a normal form.

Proposition 6 Every formula ofS4u is equivalent to one without nested occurrences
ofE, U .

The definition of topo-bisimulation extends straightforwardly. It merely demands that
bisimulations betotal relations.

Theorem 7
– Extended modal formulas inS4u are invariant under total bisimulations.

– FiniteS4u-modally equivalent models are totally bisimilar.

In a topological setting, fragments of this language can also be relevant. E.g., a con-
tinuous map has only one of the zig-zag clauses of topo-bisimulations. Now, consider
‘existential’ modal formulas constructed using only atomic formulas and their nega-
tions,∧,∨,2, E andU .

Corollary 8 Let the simulation⇁ run fromM to M ′, with x ⇁ x′. Then, for any
existential modal formulaϕ, M,x |= ϕ only if M ′, x′ |= ϕ. In words, existential
modal formulas are preserved under simulations.

Here is an example, cf. [SHE 99, AIE 02c]. A topological space isconnectedif the
only two sets that are both open and closed are the empty set and whole space itself.
This property is expressible inS4u in the following way:

U(3p→ 2p) → Up ∨ U¬p (1)



RCC S4u Description

DC(A, B) ¬E(A ∧B) A is disconnected fromB

EC(A, B) E(3A ∧3B) ∧ ¬E(2A ∧ 2B) A andB are externally connected

P(A, B) U(A→ B) A is part ofB

EQ(A, B) U(A↔ B) A andB are equal

Figure 4. Expressing RCC relations viaS4u.

Alternatively, there do not exist two disjoint open sets whose union covers the whole
space. Again we can express this inS4u:

U(2p ∨2q) ∧ Ep ∧ Eq → E(p ∧ q) (2)

Now, here is a typical mathematical fact which gets a logical twist: connectedness
of topological spaces is preserved under continuous surjections. Why? Well, consider
a non connected spaceX ′ such thatϕ = U(2¬p ∨ 2p) ∧ Ep ∧ E¬p is true at some
point x. Let f be any continuous map fromX toX ′. Copyingp toX with f yields
a total simulation fromX ′ to X, which preserves the existential modal formulaϕ.
ThenX is not connected either. Eventually, this observation can be used assess the
preservation behavior of continuous maps much more generally.

By encoding a fragment of the Region Connection Calculus (RCC)[RAN 92] in
the languageS4u, Bennett showed the power of the language in expressing spatial
arrangement of regions. The relevant elementary relations between regions that one
can express are those of parthood and connectedness. The encoding is reported in
Figure 4, which is the basis for the appropriate calculus in computer science and AI.

2.2.2. UNTIL a boundary

Another source of inspiration for extension of the expressive power of the basic
language of topology comes from temporal formalisms. Consider the Since and Un-
til logic of [KAM 68]. If one abstracts from the temporal behavior and interprets the
modality in spaces with dimensionality greater than one, one gets an operator express-
ing something to be validup to a certain boundaryregion, a sort of fence surrounding
the current region. Here is a natural notion of spatial ‘Until’ in topological models:

M,x |= ϕUψ iff ∃A : O(A) ∧ x ∈ A ∧ ∀y ∈ A.ϕ(y)∧

∀z(z is on the boundary ofA→ ψ(z))



Defining the dual modalityϕUDψ as usual is¬(¬ϕU¬ψ) we get:

M,x |= ϕUDψ iff ∀A : O(A) ∧ x ∈ A→ (∃y ∈ A.ϕ(y)∨

∃z(z is on the boundary ofA ∧ ψ(z)))

Using the notation of the basic modal language, we recall the topological definition of
boundary of a setA:

boundary(A) = 3A ∧3¬A

A graphical representation of the Until operator is presented in Figure 5. Its expres-
sivity is richer than that of the basic modal language of space. E.g., one can express
global properties inside connected components:

Uϕ⊥ iff some open component around the current point is allϕ

In connected spaces, this is equivalent to the universal modalityU .

ϕ ϕ

ϕψ

ψ
ψ

ψ

ψ

ϕ ϕϕ

ϕ ϕ

ψ

ψ
ϕ

ϕ

Figure 5. The region involved inϕUψ.

Which temporal principles valid inIR survive the move to more than one dimen-
sion? We do not provide a full axiomatization, but rather look at how temporal axioms

t

p/\−q
−p/\q

t

tt

t
t

p
p

pp

p p

p

p
p

p

p

q

q

q

q q

t

t

tt

t
1

1 1

2

2
2

2

2

1
1

1

(a) (b)

Figure 6. Examples of Until models.



behave in space and which new ones may arise. Two useful equivalences for obtaining
normal forms in the one dimensional case are

tU(p ∨ q) ↔ (tUp) ∨ (tUq)

(p ∧ q)Ut↔ (pUt) ∧ (qUt)

In our spatial setting, the first equivalence fails: Figure 6.a refutes the implication→.
But the other direction remains a valid principle of monotonicity. As for the second
equivalence, its direction→ is a general monotonicity principle again. Conversely,
we even have a stronger valid law:

p1Uq ∧ p2Ut→ (p1 ∧ p2)U(q ∨ t)

In [AIE 02a] there is a more sustained analysis of the spatial content of theIR
complete Until logic of [BUR 84], with an auxiliary operator G:

Gp↔ pU⊥

Here is the set of axioms found in [BUR 84]:

G(p→ q) → ((rUp) → (rUq)) ∧ ((pUr) → (qUr)) (3)

p ∧ (rUq) → (rU(q ∧ (rSp))) (4)

(qUp) ↔ ((q ∧ (qUp))Up) ↔ qU(q ∧ (qUp)) (5)

((qUp) ∧ ¬(rUp)) → qU(p ∧ ¬r) (6)

((qUp) ∧ (sUr)) → (((q ∧ s)U(p ∧ r)) ∨ ((q ∧ s)U(p ∧ s)) ∨ ((q ∧ s)U(q ∧ r)))
(7)

Determining which Until laws survive from the real line to other spacesIRn is a good
illustration of the general issue of ‘transfer’ of temporal logic principles to spatial
settings. Finally, as for topo-bisimulations for this richer language, we would need
an extension of the proposals in [KUR 97] for dealing with the∃∀-complexity of the
truth condition for the spatial Until.

2.3. Standard logical analysis

The modal hierarchy of topological languages has a common root. All operators
given have truth conditions in a second-order language quantifying over both points
and sets of points. E.g.,2p says that∃A : O(A)∧x ∈ A∧∀y : y ∈ A→ P (y). This
language has the following vocabulary:

∀x quantification over points
∀A quantification over sets of points
x = y identity
x ∈ A membership of points in sets
O(A) predicate of openness of sets



All fundamental topological notions are definable in this formalism. Here are two
relevant observations.

Fact 1 Formulas of the second-order language without free predicate variables are
preserved under topological homeomorphisms.

The proof is a simple induction.

Fact 2 All topological separation axiomsTi (with 0 ≤ i ≤ 4) are expressible in the
second-order language.

For example, one can express theT2 axiom (defining the Hausdorff spaces) in the
following way:

∀x, y : (x 6= y → ∃A,B : O(A) ∧ O(B) ∧ ¬∃z(z ∈ A∧z ∈ B)∧x ∈ A∧y ∈ B)

Of course, this strong language has various much more tractable fragments, and
the goal in ‘modal topology’ is finding these. But the second-orderness in this analysis
maybe somewhat spurious. One can see this by a little ‘deconstruction’. The interior
modality2ϕ mixes elements of different sorts.2ϕ is true in a pointx if there exists
an open set containing the pointx itself and such that all points of the set satisfy
ϕ. An alternative take would separate points and open sets into two separate modal
quantifiers. The resulting modal logic was studied in [DAB 96] and in [GEO 93].
The main motivation for this was mainly an analysis of knowledge, but the authors
mention it as a potential tool for visual reasoning. In this system,2ϕ is defined as
〈s〉[p]ϕ, which isM,x, o |= ∃o′ ⊆ o ∈ O : x ∈ o′ ∧ ∀y ∈ o′ : M,y, o |= ϕ.

Disregarding these epistemic concerns, one can take a plain two-sorted approach,
just as in a general interpretation for the above second-order language [BEN 83c].

M,x |= 〈S〉ϕ iff ∃A : x ∈ A ∧M,A |= ϕ

M,A |= 〈p〉ϕ iff ∃x : x ∈ A ∧M,x |= ϕ

Here, models have two sorts of objects, namelypointsandsets, where the latter need
not exhaust the whole power set of the former. This allows for ordinary bisimulations,
suitably modified to link just the same sorts of objects across models. Still more
closely to the basic modal language, one can also think of the second sort asopensets
where the original topological2ϕ becomes〈A〉[p]ϕ, with A just ranging over open
sets.

Under this decomposition, the base logic of topological space is no longerS4. E.g.,
reflexivity 2ϕ→ ϕ becomes

〈A〉[p]ϕ→ ϕ

which expresses the fact that the accessibility relation between points and sets are
inverses. Likewise transitivity becomes

〈A〉[p]ϕ→ 〈A〉[p]〈A〉[p]ϕ,



which follows from

[p]ϕ→ [p]〈A〉[p]ϕ

which is simply a minimally valid consequence of conversion (ψ → [p]〈A〉ψ). The
minimal logic of points and arbitrary sets related by membership is just the basic tense
logic for a relation and its converse. Further properties of topologies, such as inter-
section closure and opens, become additional axioms on the propositional constant of
defining open sets. Their most perspicuous formulation requires an extended modal
language. For further details, we refer to [AIE 02a].

Either way, whether second-order or two-sorted first-order, there is a landscape
of possible modal languages for topological patterns whose nature is by no means
understood. For instance, one would like to understand what are natural well-chosen
languages for simulations, and also, what are thecomplexity jumpsbetween languages
and their logics in this spectrum.

2.4. Related literature

Two lines of research intersect in this section on modal logics of topology. One is
purely mathematical and logical, the other one more philosophical, with a later artifi-
cial intelligence twist. The former originated with the work of Tarski, later together
with McKinsey, on semantics of the modal logicS4[TAR 38, MCK 44]. This was the
first completeness proof for this logic, predating possible worlds semantics. But this
spatial interpretation became a side-track, except for [RAS 63].

The other line of research has even older origins. Philosophers, such as Whitehead,
were interested in formalizing fundamental notions like parthood, [WHI 29, LES 83].
This was the seed for what would later be calledmereotopology, the theory of part-
hood and connectedness for regions, where mathematical foundations were developed,
e.g., by [CLA 81] or by [ASH 95]. Mereotopology also captured the attention of the
artificial intelligence community. [RAN 92] developed an influential system of re-
gions based on connection and parthood: theregion connection calculus(RCC). The
decidable encoding for RCC inS4u found in [BEN 95], was the crucial point where
topological modal logic and the mereotopological road to spatial representation and
reasoning really crossed.

3. Affine Geometry

Extending the expressive power of a modal logic of space may go beyond mere
logical power. One can also enrichgeometrical powerby endowing spaces with more
structure. A first elementary example is the property of a point being in the convex
closure of a set. That is, there exists a segment containing the point, whose end-points
are in the set. The notion of convexity is very important in many fields related to
space (e.g., computational geometry [PRE 85]), but also in abstract cognitive settings



(e.g., conceptual spaces [GÄR 00]). Capturing convexity modally involves a standard
similarity type, that of frames of points with a ternary relation of betweenness:

M,x |= Cϕ iff ∃y, z : M,y |= ϕ ∧M, z |= ϕ ∧ x lies in betweeny andz (8)

This definition is slightly different from the usual notion of convex closure. It is aone-
step convexityoperator whose countable iteration yields the standard convex closure.
The difference between the two definitions is visible in Figure 15. On the left are three
points denoting a region. The standard convex closure operator gives the full triangle
depicted on the right. The one-step convexity, on the other hand, gives the frame of the
triangle and only when applied twice yields the full triangle. Another illustration of is
presented in Figure 7. One-step convexity exhibits a modal pattern for an existential
binary modality:

∃yz : β(yxz) ∧ ϕ(y) ∧ ϕ(z)

whereβ(yxz) is a ternary relation meaning that the pointx is between the pointsy
andz, Figure 15. From now on, we shall use the term convexity operator to refer to
the one-step convexity operator defined in (8).
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ϕ

ϕ

ϕ
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ϕ

Figure 7. The pointx is in the one-step convex closureϕ.

3.1. Basic Geometry

Geometrical modal logic starts from standard bits of mathematics, viz. affine ge-
ometry, [BLU 61]. For later reference, here are the affine base axioms in a language
with two sorts for points and lines, and an incidence relation as presented by Goldblatt
[GOL 87]:

A1 Any two distinct points lie on exactly one line.

A2 There exist at least three non-collinear points.

A3 Given a pointa and a lineL, there is exactly one lineM that passes througha
and is parallel toL.



There are also some properties that further classify affine planes. In particular, an
affine plane isPappianif every pair of its lines has the Pappus property:

A pair L,M of lines in an affine plane has the Pappus property if when-
evera, b, c is a triple of points onL, anda′, b′, c′ is a triple onM such
thatab′ is parallel toa′b andac′ is parallel toa′c, thenb′c is parallel to
bc′.

Affine spaces have a strong modal flavor, as shown by [BAL 97, BAL 98, VEN 99,
STE 00], where two roads are taken. One merges points and lines into one sort of pairs
〈point, line〉 equipped with two incidence relations. The other has two sorts for points
and lines, and a matching sorted modal operator.

But there are more expressive classical approaches to affine structure. In [TAR 59],
Tarski gave a full first-order axiomatization of elementary geometry in terms of a
ternary betweenness predicateβ(xyz), interpreted asY lies betweenx and z, and
quaternary equidistanceδ(xyzu), interpreted asx is as distant fromy asz is fromu.
We display it here as an ‘upper limit’, using Tarski’s original names for the axioms:

A1 ∀xy(β(xyx) → (x = y)), identity axiom for betweenness.

A2 ∀xyzu(β((xyu) ∧ β(yzu)) → β(xyz)), transitivity axiom for betweenness,

A3 ∀xyzu(β(xyz) ∧ β(xyu) ∧ (x 6= y) → β(xzu) ∨ β(xuz)) connectivity axiom
for betweenness,

A4 ∀xy(δ(xyyx)), reflexivity axiom for equidistance,

A5 ∀xyz(δ(xyzz) → (x = y)), identity axiom for equidistance,

A6 ∀xyzuvw(δ(xyzu)∧ δ(xyvw) → δ(zuvw)), transitivity axiom for equidistance,

A7 ∀txyzu∃v(β(xtu) ∧ β(yuz) → β(xvy) ∧ β(ztv)), Pasch’s axiom,

A8 ∀txyzu∃vw(β(xut)∧β(yuz)∧(x 6= u) → β(xzv)∧β(xyw)∧β(vtw)), Euclid’s
axiom,

A9 ∀xx′yy′zz′uu′(δ(xyx′y′) ∧ δ(yzy′z′) ∧ δ(xux′u′) ∧ δ(yuy′u′) ∧ β(xyz)∧
β(x′y′z′) ∧ (x 6= y) → δ(zuz′u′)), five-segment axiom,

A10 ∀xyuv∃z(β(xyz) ∧ δ(yzuv)), axiom of segment construction,

A11 ∃xyz(¬β(xyz) ∧ ¬β(yzx) ∧ ¬β(zxy), lower dimension axiom,

A12 ∀xyzuv(δ(xuxv)∧δ(yuyv)∧δ(zuzv)∧(u 6= v) → β(xyz)∨β(yzx)∨β(zxy),
upper dimension axiom,

A13 All sentences of the form∀vw . . . (∃z∀xy(ϕ∧ψ → β(zxy)) → ∃u∀xy(ϕ∧ψ →
β(xuy))), whereϕ stands for any formula in which the variablesx, v, w, . . . ,
but neithery nor z nor u, occur free, and similarly forψ, with x andy inter-
changed,elementary continuity axioms.



Why is this beautiful complete and decidable axiomatization not all one wants
to know? From a modal standpoint, there are two infelicities in this system. The
axioms are too powerful, and one wants to look at more tractable fragments. First,
the axiom system has high complexity. But also, the axioms mix betweenness and
equidistance—whereas one first wants to understand affine and metric structure sepa-
rately.

3.2. The general logic of betweenness

Our choice of primitives for affine space is again betweenness, whereβ(xyz)
means that pointy lies in betweenx andz, allowing y to be one of these endpoints.
Line structure is available by definingcollinearity in terms of betweenness:

xyz are collinear iffβ(xyz) ∨ β(yzx) ∨ β(zxy)

‘Geometrical extensions’ of this sort can even define ‘extended modalities’, i.e., ‘log-
ical extensions’ in our earlier terminology. Define first a binary betweenness modality
〈B〉:

M,x |= 〈B〉(ϕ,ψ) iff ∃y, z : β(yxz) ∧M,y |= ϕ ∧M, z |= ψ

Then, one can define theexistentialmodality “at some point:”

Eϕ iff 〈B〉(ϕ,>) (9)

This will work provided we require betweenness to satisfy:

∀x∀yβ(xxy).

Without this, the defined modality will just range over the connected component of
the current point of evaluation.

Natural specific structures on which to interpret our modal language include the
IRn for any n. But affine spaces really form a much more general class of struc-
tures. What are natural general frame conditions constraining these? As one does for
temporal logics, theuniversal first-order theoryof ordinary real space suggests good
candidates. Consider just the betweenness part of Tarski’s elementary geometry. Ax-
ioms A1-A3 for identity, transitivity, and linearity are all plausible as general affine
properties. They are not sufficient, though, as one also wants some obvious variants
of transitivity and linearity with points in other positions stated explicitly. A complete
first-order axiomatization of pure affine elementary geometry was given in [SZC 65].
With Tarski, the latter are theorems, but their proofs go through other axioms involv-
ing equidistance. Further universal first-order assertions that hold in real space would
expressdimensionalityof the space, which does not seem a plausible constraint in
general.

At the next level of syntactic complexity, one then finds existential axioms and
universal-existential ones, which require the space to have a certain richness in points.



x

u

y

z

v

t

Figure 8. Pasch’s property.
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Figure 9. Pappus property.

The latter express typical geometrical behavior, witnessPasch’s axiomA7 (see Fig-
ure 8) and the earlier Pappus property (see Figure 9):

∀xx′yy′zz′∃jkl((β(xyz) ∧ β(x′y′z′) ∧ β(xjy′) ∧ β(yjx′) ∧ β(xkz′)∧

β(zkx′) ∧ β(ylz′) ∧ β(zly′)) → β(jkl))

Moving to the opposite extreme of geometrical structure, consider the one-dimensional
real lineIR. Its universal first-order theory includes the strong dimension law

∀xyz, β(xyz) ∨ β(yxz) ∨ β(xzy) (10)

3.3. Modal languages of betweenness

Let us now turn to modal logic over affine spaces.

3.3.1. The basic language

Ternary betweenness models a binary betweenness modality〈B〉:

M,x |= 〈B〉(ϕ,ψ) iff ∃y, z : β(yxz) ∧M,y |= ϕ ∧M, z |= ψ

Notice that this is a more standard modal notion than the earlier topological modal-
ity: we are working on frames, and there are no two-step quantifiers hidden in the



semantics.〈B〉 is quite expressive. For instance, it defines one-step convex closure as
follows:

convex(ϕ) iff 〈B〉(ϕ,ϕ) (11)

Passing to points ‘in between’ two others yields the convex closure only after re-
peated applications of this operator, as shown in Figure 15. In a more elaborate set-up,
we could take a leaf from dynamic logic, and add an operation ofKleene iterationof
the betweenness predicate–much as ternary ‘composition’ is iterated in dynamic Ar-
row Logic (cf. Chapter 8 in [BEN 96]). Next, the existential modality has an obvious
dual universal version:[B]ϕ↔ ¬〈B〉¬ϕ¬ψ, which works out to

M,x |= [B](ϕ,ψ) iff ∀y, z : β(yxz) →M,y |= ϕ ∨M, z |= ψ

An implicational variant of this definition is also helpful sometimes:

M,x |= [B](¬ϕ,ψ) iff ∀y, z : β(yxz) ∧M,y |= ϕ→M, z |= ψ

One might think that there should be an independent conjunctive variant, saying
that both endpoints have their property. But this is already definable—another sign of
the strength of the language:

[B](ϕ,⊥) ∧ [B](⊥, ψ)

3.3.2. Versatile extensions

Betweenness is natural, but biased toward ’interior positions’ of a segment. But
given two pointsx andy, one can also consider all pointsz such thatx lies in between
y andz, or allw such thaty lies in betweenx andw. In this way, two points identify
a direction and a weak notion of orientation. There are two obvious further existential
modalities corresponding to this. Together with〈B〉, they form a ‘versatile’ triple
in the sense of [VEN 92]. Such triples are often easier to axiomatize together than
in isolation. As an illustration, consider the table of Figure 10, which we have been

above above left side

below

Figure 10. A table and the regions for versatile betweenness modalities.

setting in earlier sections. Using versatile modalities, the legs of the table and its top
identify important zones of visual scenes, which also have names in natural language,
such as everything ‘above the table’.



3.3.3. Affine transformations

Affine transformations are the invariant maps for affine geometry. Their modal
counterpart areaffine bisimulationswhich are mappings relating points verifying the
same proposition letters, and maintaining the betweenness relation. We only display
the definition for our original ‘interior’ betweenness—since the versatile extensions
are straightforward:

Definition 3 (affine bisimulation) Given two affine models〈X,O, β, ν〉, and
〈X ′, O′, β′, ν〉, an affine bisimulationis a non-empty relation� ⊆ X × X ′ such
that, ifx � x′:

(i) x andx′ satisfy the same propositional letters,

(ii) (forth condition):β(yxz) ⇒ ∃y′z′ : β′(y′x′z′) andy � y′ andz � z′

(iii) (back condition):β′(y′x′z′) ⇒ ∃yz : β(yxz) andy � y′ andz � z′

wherex, y, z ∈ X andx′, y′, z′ ∈ X ′.

In [GOL 87], isomorphisms are considered the only interesting maps across affine
models. But in fact, just as with topological bisimulations versus homeomorphisms
(Theorem 4), affine bisimulations are interesting coarser ways of comparing spatial
situations. In the true modal spirit, they only consider the behavior of points inside
their local line environments. Consider the two models consisting of 6 and 4 points,
respectively, on and inside two triangles, with some atomic properties indicated, Fig-
ure 11. The models are evidently not isomorphic, but there is an affine bisimulation.

p q r

r

q

q

p q r

q

Figure 11. Affine bisimilar models.

Simply relate the twor points on the left with the singler point on the right. Then re-
late the topq point on the left with the top one on the right, the remaining twoq points
on the left with the one on the right, and, finally, thep point on the left with the one
of the right. This affine bisimulation can be regarded as a sort of ‘modal contraction’
to a smallest bisimilar model. The models in Figure 12 are not bisimilar though. One
can check that no relation does the job—or, more simply, note that the modal formula
q ∧ 〈B〉(r, r) holds on theq point of the left model and nowhere on the right. Affine
bisimulations preserve truth of modal formulas in an obvious way, and hence they
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Figure 12. Affine bisimilar reduction.

are a coarser map than isomorphisms still giving meaningful geometrical invariances.
This is exactly as we found with topological bisimulations versus homeomorphisms.

Incidentally, notice that thereis a smaller bisimulation contraction for the left-
hand triangle. The reason is that not all its points are uniquely definable in our modal
language. Thep andq points are uniquely definable, but allr points on the bound-
ary satisfy the same modal statements. The contraction will look like the picture to
the right, but with the middle point ‘in between’ the right point and the right point
itself. (This is not a standard 2D ‘picture’, and duplicating points cannot always be
contracted if we insist on those.) This situation would change with a modality for
proper betweenness. Then the two middler points become uniquely distinguishable
as being properly in between different pairs of points. But the top and right-bottom
point remain indistinguishable, unless we add versatile operators. It is a nice exer-
cise to show that the triangle does have every point uniquely definable in the original
language when we change the atomic proposition in the top vertex and the one center
bottom toq and that in the middle of the right edge top. Consider the new valuation in
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q p
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Figure 13. An irreducible affine model.

Figure 13. In this case there doesnotexists a bisimilar contraction. Every point of the
triangle is distinguishable by a formula which is not true on any other point, see Fig-
ure 14. This suggests a theory of unique patterns, depending on how points are labeled
in geometrical pictures. Finally, the geometrical setting suggests eventwo notions of



Point Formula
1 ϕ1 = p ∧ 〈B〉(q, r)
2 ϕ2 = p ∧ ¬ϕ1

3 ϕ3 = q ∧ 〈B〉(ϕ1, ϕ2)
4 ϕ4 = r
5 ϕ5 = q ∧ 〈B〉(ϕ2, ϕ4)
6 ϕ6 = q ∧ ¬ϕ3 ∧ ¬ϕ5

Figure 14. Formulas true at points of the model in Figure 13.

contraction. Bisimulations as defined above give no guarantee that the contraction will
be aplanar figure again. If we impose the latter extra requirement, standard results
and algorithms change.

3.4. Modal logics of betweenness

The preceding language has a minimal logic as usual, which does not yet have
much geometrical content. Its key axioms are two distribution laws:

〈B〉(ϕ1 ∨ ϕ2, ψ) ↔ 〈B〉(ϕ1, ψ) ∨ 〈B〉(ϕ2, ψ)

〈B〉(ψ,ϕ1 ∨ ϕ2) ↔ 〈B〉(ψ,ϕ1) ∨ 〈B〉(ψ,ϕ2)

This minimal logic by itself has all the usual modal properties, decidability among
them. Other basic principles express basic universal relational conditions, such as
betweenness being symmetric in end-points, and all points lying ‘in between them-
selves’:

〈B〉(ϕ,ψ) → 〈B〉(ψ,ϕ)

ϕ→ 〈B〉(ϕ,ϕ)

These facts are simpleframe correspondencesin the usual modal sense. A slightly
more tricky example is the earlier-mentioned relational condition∀x∀yβ(xxy). This
is not definable as it stands, but the modal axiom

(ϕ ∧ 〈B〉(>, ψ)) → 〈B〉(ϕ,ψ)

corresponds to the related principle

∀x∀y∀z : β(zxy) → β(xxy)

More generally, special modal axioms may correspond to more complex properties of
geometric interest. Here is a clear example. Considerassociativityof the betweenness
modality:

〈B〉(ϕ, 〈B〉(ψ, ξ)) ↔ 〈B〉(〈B〉(ϕ,ψ), ξ)



Fact 3 Associativity corresponds to the Pasch Axiom.

Proof We spell out the simple correspondence argument, to show how easy matches
can be between modal axioms and geometrical laws. Consider the Pasch AxiomA7
in Tarski’s list (Figure 8). Suppose that

∀txyzu∃v(β(xtu) ∧ β(yuz) → β(xvy) ∧ β(ztv))

holds in a frame. Assume that a pointt satisfies〈B〉(ϕ, 〈B〉(ψ, ξ)). Then there
exist pointsx, u with β(xtu) such thatx |= ϕ, u |= 〈B〉(ψ, ξ), and hence also
points y, z with β(yuz) such thaty |= ψ and z |= ξ. Now by Pasch’s Axiom,
there must be a pointv with β(xvy) andβ(vtz). Now, v |= 〈B〉(ϕ,ψ) and hence
t |= 〈B〉(〈B〉(ϕ,ψ), ξ). The other direction is similar.

Conversely, assume thatβ(xtu) andβ(yuz). Define a valuation on the space by
settingν(p) = {x}, ν(q) = {y}, andν(r) = {z}. Thus,u |= 〈B〉(q, r) and

t |= 〈B〉(p, 〈B〉(q, r)).

By the validity of modal Associativity, then

t |= 〈B〉(〈B〉(p, q), r)

So there must be pointsv, w with β(vtw) such thatv |= 〈B〉(p, q) andw |= r. By the
definition ofν, the latter means that w=z, the former thatβ(xuy). So indeed,u is the
required point. QED

The preceding correspondence may becomputed automatically, as Associativity
has ‘Sahlqvist form’. Thus, more general substitution methods apply for finding geo-
metrical correspondents: cf. [BLA 01].

3.5. Special logics

For the affine modal logic of special models, additional considerations may apply.
One example is the real lineIR, which was also conspicuous in the topological setting.
This time, the task is easy, as one can take advantage of the binary ordering<, defining

M,x |= 〈B〉(ϕ,ψ) iff ∃y, z : M,y |= ϕ ∧M, z |= ψ ∧ z ≤ x ≤ y

Given this notion, we can use shorthand for the modalities of temporal logic: Future
and Past (here, both including the present).

Fϕ := 〈B〉(true, ϕ)

Pϕ := 〈B〉(ϕ, true)



Conversely, onIR, these two unary modalities suffice for defining〈B〉:

〈B〉(ϕ,ψ) ↔ Pϕ ∧ Fψ

Thus, a complete and decidable axiomatization for our〈B〉-language can be found
using the well-known tense logic of future and past onIR [SEG 70].

Special models also raise special issues. We have already seen the universal ax-
iom 10 defining one-dimensionality. What would be good versions for higher dimen-
sions? For some further information on this, we refer to [AIE 02a]. Also, we will
address this issue once more in our next section.

3.6. Logics of convexity

A binary modality for a ternary frame relation gives maximal flexibility. Never-
theless, given the geometrical importance of convexity per se, here is a unary modal
operator for one-step convex closure:

M,x |= Cϕ iff ∃y, z : M,y |= ϕ ∧M, z |= ϕ ∧ x ∈ y—z

This is a fragment of the preceding modal language:

Cϕ↔ 〈B〉(ϕ,ϕ).

The axiomatic behavior is different though. In particular, distributivity fails. Of the
axiom

C(ϕ ∨ ψ) ↔ Cϕ ∨ Cψ
only the right-to-leftmonotonicityimplication is valid. But the one-step convex clo-
sure of a set of two distinct points is their whole interval, while the union of their
separate one-step closures is just these points themselves.

Earlier on, we already noted that one-step convex closure needs finite iteration
to yield the usual convex closure of geometry. This could be brought out again in
a language with an additional modalityC∗, where the∗ denotes Kleene iteration.
This interesting spatial use of dynamic logic is not pursued here, for a reason to be
explained below. First, note that the non-idempotence ofC gives additional expressive
power by itself. In fact, it helps us distinguish dimensions! Here is how. The principle

CCϕ↔ Cϕ

holds onIR, but not onIR2. A counter-example onIR2 is shown in Figure 15. The
regionp is given by three non-collinear points.Cp is then the bare triangle: convex-
ity has added the edges. Applying convexity again,CCp defines a different region,
namely the whole triangle with its interior. One may be inclined to rush to the conclu-
sion that principles of the form

Cn+1ϕ↔ Cnϕ (12)

determine the dimensionality of the spacesIRn for all n. But here is a surprise.



Figure 15. In a two dimensional space, the sequential application of the convexity
operator to three non aligned points results in two different regions: a triangle (only
the sides and corners of it) and the filled triangle.

Theorem 9 The principleCCCϕ↔ CCϕ holds inIR3.

Proof Here is a sketch. It will help the reader to visualize the situation using the
tetrahedron example in Figure 17.

Cϕ consists of all points in between twoϕ-points.CCϕ consists of all points in
between the latter, and the implicationCCϕ→ Cϕ corresponds (in the literal modal
frame-theoretic sense) to the betweenness property that

(β(yxz) ∧ β(uyv) ∧ β(szt) →
∧
{β(ixj)| i, j ∈ {u, v, s, t}}

This is true in one dimension, though not in higher ones.

On the plane,Cϕ consists of the same points. But we can give another description
of CCϕ . If x lies in between twoCϕ-points, say on intervalsy—z andu—v ,
respectively, thenx lies in/on one of the trianglesyzu or yzv. Therefore,CCϕ-points
lie on triangles ofϕ-points. Now consider any pointr in CCCϕ, i.e., between points
s, t in/on suchCCϕ triangles. Intersecting the segments—t with the two triangle
boundaries, we get thatr lies in a four sided polygon ofϕ-points, and hence, bisecting,
r is already in/on a triangle ofϕ-points: i.e.,r is inCCϕ already.

In 3D, the description forCCϕ is different, because the two segments for theCϕ-
points need not lie in the same plane. The outcome is that these points lie in/on a
4-hedron ofϕ-points. Now consider a generic pointr in CCCϕ. It will lie in between
points in such 4-hedra. This situation is easier to picture: take the segment on which
it lies, and intersect that with the relevant faces of the 4-hedra. Then it is easy to see
that the pointr lies inside a 6-hedron whose vertexes areϕ-points. But then, cutting
this up a number of times now, there is again a 4-hedron ofϕ-points in/on which we
find r, hence, it is inCCϕ already. QED

In [AIE 02a], we prove the above by a matrix representation on the projective
plane. (We think that proof generalizes to higher dimensions.) As a corollary, for
real spaces, we can then define convex closure in our language after all, usingCC
combinations. Hence a full dynamic language, no matter how interesting per se, is not
strictly needed. But for the moment we just notice the following fact.



Figure 16. In a three dimensional space, the sequential application of the betweenness
operator to four non coplanar points results in two distinct regions: the wire-frame of
a tetrahedron and the filled tetrahedron.

Figure 17. Applying convexity from the wire-frame to the full tetrahedron.

Fact 4 Cn is a convex set inIRn.

Now there are dimension highlighters in our language after all. An old theorem
from almost a century ago [HEL 23] comes to the rescue:

Theorem 10 (Helly) If K1,K2, . . . ,Km are convex sets inn-dimensional Euclidean
spaceEn, in whichm > n + 1, and if for every choice ofn + 1 of the setsKi there
exists a point that belongs to all the chosen sets, then there exists a point that belongs
to all the setsK1,K2, . . . ,Km.

This theorem does have a modal version;

∧
f :{1,...,n+1}→{1,...,m}

E(
n+1∧
i=1

(Cnϕf(i)) → E(
m∧

i=1

Cnϕi)

whereE is the existential modality (defined in terms of betweenness in Equation 9),
Cn is convexity appliedn times (Fact 4), andf is a function from{1, . . . , n + 1} to
{1, . . . ,m}.

3.7. First-order affine geometry

The above modal language is again a fragment of a first-order one, under the stan-
dard translation. The relevant first-order language is not quite that of Tarski’s ele-



mentary geometry forIR2, as we also get unary predicate letters denoting regions. In
fact, one open question which we have not been able to resolve is this. A formula
ϕ(β, P,Q, ...) is valid, say in the real plane, if it holds for any interpretation of the
regionsP , Q, ... Thus, we would be looking at a universal fragment of amonadic
second-order logic:

What is the complete monadicΠ1
1 theory of the affine real plane?

We suspect it is recursively axiomatizable and decidable—perhaps using the Ehren-
feucht game methods of [DOE 87]. This is an extension of the affine part of Tarski’s
logic. But our previous discussion has also identified interestingfragments:

What is theuniversal first-ordertheory of the affine real plane?

As in our discussion of topology, the affine first-order language of regions is a
natural limit toward which modal affine languages can strive via various logical ex-
tensions. From a geometrical viewpoint, one might also hope that ‘layering’ the usual
language in this modal way will bring to light interesting new geometrical facts.

Another major feature of standard geometry is theequal status of points and
lines. This would suggest a reorganization of the modal logic to atwo-sortedone
stating properties of both points and segments, viewed as independent semantic ob-
jects. There are several ways of doing this. One would be atwo-dimensionalmodal
language in the spirit of [MAR 97], handling both points and pairs of points, with
various cross-sortal modalities. Another would treat both objects as primitives, and
then have cross-sortal modalities for “at an endpoint,” “at an intermediate point,” “at
some surrounding segment.” We think the latter is the best way to go eventually, as
it has the useful feature of replacing talk in terms of ternary relations, which are hard
to visualize, by binary ones, which are easier to represent. (This is of course the
key advantage of the geometer’s habit of working with points and lines.) Moreover,
the two-sorted move would be in line with other modal trends such asArrow Logic
[BEN 96, VEN 96], where transitions between points become semantical objects in
their own right. This gives more control over semantic structures and the complexity
of reasoning. It would also help reflect geometrical duality principles of the sort that
led from affine to projective geometry.

4. Metric geometry

There is more structure to geometry than just affine point-line patterns. Tarski’s
equidistance also capturesmetric information. There are various primitives for this.
Tarski used quaternary equidistance—while ternary equidistance would do just as well
(x, y and z lie at equal distances). Our choice in this Section is a different one,
stressing the comparative character of metric structure.



4.1. The geometry of relative nearness

Relative nearness was introduced in [BEN 83b] (see Figure 18):

N(x, y, z) iff y is closer tox thanz is, i.e.,d(x, y) < d(x, z)

whered(x, y) is any distance function.

This is meant very generally. The functiond can be a geometrical metric, or some

x

y
z

Figure 18. From pointx, y is closer than pointz.

more cognitive notion of visual closeness (van Benthem’s original interest; cf. also
Gärdenfors ‘Conceptual Spaces’), or some utility function with metric behavior. In
[RAN 01], Randell et al. develop the theory of comparative nearness for the purpose
of robot navigation, related to the earlier-mentioned calculus of regions RCC.

Relative nearness defines equidistance:

Eqd(x, y, z) : ¬N(x, y, z) ∧ ¬N(x, z, y)

Tarski’s quaternary equidistance is expressible in terms ofN as well. Details are
postponed until Section 4.3 on first-order metric geometry.

Affine betweenness is also definable in terms ofN , at least in real spacesIRn: cf.
Section 4.2. Finally, note that even identity of pointsx = y is expressible in terms of
N

x = y iff ¬N(x, x, y)

At the end of the XVIII century the mathematician Lorenzo Mascheroni proved in
his tractateThe Geometry of Compassesthat everything that can be done with compass
and ruler can be done with the compass alone. One can generate all of Mascheroni’s
constructions with the first-order logic ofN and thereby achieve geometry. Examples
are presented in [AIE 02a].

The further analysis of this structure can proceed along much the same lines as
the earlier one for affine geometry. In particular, as a source of basic constraints,



one is interested in theuniversal first-order theoryof relative nearness. Its complete
description is an open question right now, but here are some examples showing its
interest. First, comparative nearness induces a standard comparative ordering. Once
a pointx is fixed, the binary orderN(x, y, z) is irreflexive, transitive and almost-
connected:

∀x∀y∀z∀u : (N(x, y, z) ∧N(x, z, u)) → N(x, y, u)) (transitivity)

∀x∀y : ¬N(x, y, y) (irreflexivity)

∀x∀y∀z∀u : N(x, y, z) → (N(x, y, u) ∨N(x, u, z)) (almost-connectedness)

These are like the principles of comparative order in logical semantics for counterfac-
tuals [LEW 73]. But additional valid principles are more truly geometrical, relating
distances from different standpoints. These are the followingtriangle inequalities

∀x∀y∀z∀u : N(x, y, z) ∧N(z, x, y) → N(y, x, z)

∀x∀y∀z∀u : ¬N(x, y, z) ∧ ¬N(z, x, y) → ¬N(y, x, z)

These seem pretty universal constraints on comparative nearness in general. Further
universal first-order properties ofN reflect the two-dimensionality of the plane. Just
inscribe 6 equilateral triangles in a circle, and see that

on a circle with radiusr, the largest polygon that can be inscribed of
points at distancer has6 vertexes.

This upper bound can be expressed in universal first-order form, because we can
express equidistance in terms ofN . Other principles of this form concern the arrange-
ment of points on circles:

on a circleC, any point has at most two points at each of its ‘equidistance
levels’ onC

and

circles with different centers intersect in at most two points.

To obtain the complete universal first-order theory of comparative nearness in the
Euclidean planeIR2, one would have to guarantee a planar embedding. Do our gen-
eral axioms, including the triangle inequalities, suffice for axiomatizing the complete
universal theory ofall Euclidean spacesIRn?

4.2. Modal logic of nearness

The ternary relation of comparative nearness lends itself to modal description, just
like ternary betweenness. We will just briefly sketch the resulting logic, which is like
our affine system in its broad outline. But the intuitive meaning ofN also adds some
new issues of its own.



4.2.1. Modal languages of nearness

First, one sets

M,x |= 〈N〉φ, ψ iff ∃y, z : M,y |= ψ ∧M, z |= ϕ ∧N(x, y, z)

The universal dual is also interesting in its spatial behavior:
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Figure 19. Interpreting a modal operator of nearness and its dual.

M,x |= [N ]φ, ψ iff ∀y, z : N(x, y, z) ∧M,y |= ¬φ→M, z |= ψ

Dropping the negation, one gets an interchangeable version with the following intu-
itive content:

if any point y around the current pointx satisfiesϕ, then all pointsz
further out must satisfyψ.

Moreover, there are obviousversatileversions of these modal operators, which
look at the same situation in a different way. For instance, using one of these in its
universal version, we can also express the appealing statement that

if any point y around the current pointx satisfiesϕ, then all pointsz
closer tox must satisfyψ.

See Figure 20 for an illustration. Finally, note that this language defines an exis-
tential modality (assuming the mild condition that∀y : N(x, x, y) ∨ x = y):

Eϕ iff ϕ ∨ 〈N〉(>, ϕ)

Without the condition, this modality will only range over connected components.

4.2.2. Modal logics of nearness

Modal logics of nearness again start with universally valid principles, with distri-
bution as the prime example:

〈N〉(ϕ ∨ ψ, ξ) ↔ 〈N〉(ϕ, ξ) ∨ 〈N〉(ψ, ξ)

〈N〉(ϕ,ψ ∨ ξ) ↔ 〈N〉(ϕ,ψ) ∨ 〈N〉(ϕ, ξ)
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Figure 20. Versatile interpretations of the dual of a modal operator of nearness.

Universal constraints of earlier kinds return as special axioms. Here is an example:

〈N〉(ϕ,ψ) ∧ ¬〈N〉(ϕ,ϕ) ∧ ¬〈N〉(ψ,ψ) ∧ 〈N〉(ψ, ξ) → 〈N〉(ϕ, ξ) (transitivity)

In the above definition the two clauses¬〈N〉(ϕ,ϕ) and¬〈N〉(ψ,ψ) are necessary
to ensure thatϕ andψ can be true only at a fixed distance from the current point.
Omitting them results in an invalid principle, as it may very well be the case that
〈N〉(ϕ,ψ) ∧ 〈N〉(ψ, ξ) ∧ ¬〈N〉(ξ, ϕ) if ϕ is true at points at different distances from
the current one. Another example of a universal constraint is almost-connectedness:

〈N〉(ϕ,ψ) ∧ ¬〈N〉(ϕ,ϕ) ∧ ¬〈N〉(ψ,ψ) ∧ Eξ → 〈N〉(ϕ, ξ) ∨ 〈N〉(ξ, ψ)
(almost-connectedness)

Irreflexivity seems harder to define (as usual in modal logics), but see below.

Special logics of nearness arise by looking at special structures, or at least, im-
posing more particular constraints. These can again be computed by correspondence
techniques. In a similar way, one can modally express thetriangle inequalities. But
in fact, there is a more general observation to be made here. Note that our language
can define thatϕ holds in a unique point:

E!ϕ iff E(ϕ ∧ ¬〈N〉(ϕ,ϕ))

Now observe the following.

Proposition 11 Every universal first-order property ofN is modally definable.

Proof Every such property is of the form

∀x1 . . .∀xk : BC(N(xi, xj , xk))

whereBC stands for any boolean combination of nearness atoms. Now take proposi-
tion lettersp1, . . . pk and write

E! p1 ∧ · · · ∧ E !pk → BC(N#(xi, xj , xk))



whereN#(xi, xj , xk)) is defined asE(pi ∧ 〈N〉(pj , pk)). It is evident that this is a
modal frame correspondent. QED

The technique in this proof is well-known from extended modal logics with nominals
or difference modalities, which are complete for defining universal frame conditions.
This also explains the definition of the triangle inequalities. Moreover,irreflexivity
(whose first-order definition is∀x∀y¬N(x, y, y)) is definable after all by

E! p1 ∧ E !p2 → ¬E(p1 ∧ 〈N〉(p2, p2))

4.2.3. Modal extensions

Useful modal extensions of the base language are partly as in the affine case. But
there is also a novelty. In describing spatial patterns, one may often want to say
something like this:

for everyϕ-point aroundx, there existssome closerψ-point.

Now this is not definable in our language, which uses uniformEE orAA quanti-
fier combinations. Mixing universal and existential quantifiers is more like temporal
‘Until’ languages. Speaking generally, we want a new operator:

M,x |= 〈N∃∀〉(ϕ,ψ) iff ∀y(M,y |= ϕ→ ∃z(N(z, y, x) ∧M, z |= ψ))

The general logic of this additional modality over a ternary relation is a bit more
complex with respect to distribution and monotonicity behavior—but it can be axiom-
atized completely, at least minimally, over all abstract models.

Indeed, this universal-existential pattern is reminiscent of other modal logics natu-
rally involving ternary frame relations. One example istemporal logicof SINCE and
UNTIL, which involves moving to some point around the current point in time, and
then saying something about all points in between. One existential-universal variant
of the preceding modality would indeed be a kind of spatial UNTIL, stating that some
point on a circle around the current point satisfiesϕ, while all points in the interior
satisfyψ. This is almost a metric analogue of the topological UNTIL operator in
Section 2.2.2, but the latter should have the whole circle boundary satisfyϕ, which
requires one more universal modality over equidistant points.

Another intriguing analogy is with a typical modal logic over comparative near-
ness, viz.conditional logic. The latter is mostly known in connection with counter-
factuals and default reasoning [LEW 73, NUT 83, VEL 85]. In general conditional
logic, one crucial binary modality reads

ϕ⇒ ψ iff every closestϕ-world isψ

This satisfies the usual Lewis axioms for conditional semantics in terms of ‘nested
spheres’ (cf. [BEN 83a]):



ϕ⇒ ψ → ϕ⇒ ψ ∨ ξ
ϕ⇒ ψ ∧ ϕ⇒ ξ → ϕ⇒ ψ ∧ ξ
ϕ⇒ ψ ∧ ϕ⇒ ξ → ϕ ∧ ψ ⇒ ξ
ϕ⇒ ψ ∧ ξ ⇒ ψ → ϕ ∨ ξ ⇒ ψ
((ϕ ∨ ψ) ⇒ ϕ) ∨ (¬((ϕ ∨ ψ) ⇒ ξ)) ∨ (ψ ⇒ ξ)

The interesting open question here concern modal-conditional reflections of the ad-
ditional geometrical content of theN(x, y, z) relation. Lewis’ complete system still
concerns just ordering properties of comparisons from some fixed vantage point. This
shows in the fact that there are no significant axioms foriterated conditionalswhich
require shifts in vantage point. What is the conditional logic content of the triangle
inequalities?

4.3. First-order theory of nearness

As for the complete first-order theory of relative nearness, we have no special
results to offer, except for the promised proof of an earlier claim.

Fact 5 The single primitive of comparative nearness defines the two primitives of
Tarski’s Elementary Geometry in first order logic.

Proof The following defines betweenness (see Figure 21):

β(yxz) iff ¬∃x′ : N(y, x′, x) ∧N(z, x′, x)

y x’ z

x

Figure 21. Defining betweenness via nearness.

This allows us to define parallel segments in the usual way, as having no intersec-
tion points on their generated lines.

xx′||yy′ ↔¬∃c : β(xx′c) ∧ β(yy′c)∧

¬∃c′ : β(c′xx′) ∧ β(cyy′)∧

¬∃c′′ : β(xcx′) ∧ β(ycy′)

Then, one defines equal segment length by

δ(x, y, z, u) iff ∃y′ : xu||yy′ ∧ xy||uy′ ∧ ¬N(u, z, y′) ∧ ¬N(u, y′z)



Intuitively, one moves one segment on the other matching end-points and preserving
length via parallel lines. Then state that the other end-points are at the same distance
from the joined point. See the depiction in Figure 22. We leave suitable formulations
for higher-dimensional real spaces to the reader. QED

u
y’

xy

z

Figure 22. Equidistance in terms of nearness.

Apart from this, much of our earlier discussion concerning affine first-order geom-
etry applies. Incidentally, no claim is made here for the originality of this approach
per se. There are many systems of logical geometry which have similar richness. A
case in point is the axiomatization of constructive geometry in [PLA 95].

5. Linear algebra

Our final example of modal structures inside a spatial theory is different in spirit
from either topology or standard geometry. Connections betweenlinear algebraand
spatial representation are well-known from a major qualitative visual theory, viz.
mathematical morphology. Our treatment follows the lines of [BEN ]. (A different
connection between mathematical morphology and modal logic is found in [BLO 00],
which also includes a fuzzy version.) The flavor of this brand of spatial reasoning is
different from what we had before—but similar modal themes emerge all the same.

Mathematical morphology, developed in the 60s by Matheron and Serra, [MAT 67,
SER 82], underlies modern image processing. where it has a wide variety of applica-
tions. Compared with classical signal processing approaches it is more efficient in
image preprocessing, enhancing object structure, and segmenting objects from the
background. The modern mathematics behind this involves lattice theory: [HEI 94].
Logicians may want to think of ‘linear algebras’ [GIR 87], an abstract version of vec-
tor spaces:

Definition 4 (linear algebra) 〈X,u,t,⊥,(, ?, 0̌, 1̌〉 is a linear algebraif



(i) 〈X,u,t,⊥, 〉 is a lattice with bottom⊥;

(ii) 〈X, ?, 1̌〉 is a monoid with uniť1;

(iii) if x ≤ x′, y ≤ y′, thenx ? y ≤ x′ ? y′ andx′ ( y ≤ x ( y′;

(iv) x ? y ≤ z iff x ≤ y ( z;

(v) x = (x ( 0̌) ( 0̌ for all x.

In line with our spatial emphasis of this paper, we will stick with concrete vector
spacesIRn in what follows. Images are regions consisting of sets of vectors. Math-
ematical morphology provides four basic ways of combining, or simplifying images,
viz. dilation, erosion, openingandclosing. These are illustrated pictorially in Fig-
ure 23. Intuitively, dilation adds regions together—while, e.g., erosion is a way of
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Figure 23. (a) RegionsA andB, elements of the vector spaceIN2; (b) dilatingA by
B; (c) erodingA byB; (d) closingA byB; (e) openingA byB.

removing ‘measuring idiosyncrasies’ from a regionA by using regionB as a kind of
boundary smoothener. (IfB is a circle, one can think of it as rolling tightly along the
inside ofA’s boundary, leaving only a smoother interior version ofA.) More formally,
dilation, orMinkowski addition⊕ is vector sum:

A⊕B = {a+ b|a ∈ A, b ∈ B} dilation

This is naturally accompanied by

A	B = {a|a+ b ∈ A,∀b ∈ B} erosion

Openings and closing are combinations of dilation and erosions:



the structuralopeningof A byB (A	B)⊕B
the structuralclosingof A byB (A⊕B)	B

In addition, mathematical morphology also employs the usual Boolean operations
on regions: intersection, union, and complement. This is our third mathematization
of real numbersIRn in various dimensions, this time focusing on their vector struc-
ture. Evidently, the above operations are only a small sub-calculus, chosen for its
computational utility and expressive perspicuity.

5.1. Mathematical morphology and linear logic

The first connection that we note lies even below the level of standard modal lan-
guages. The Minkowski operations behave a bit like the operations ofpropositional
logic. Dilation is like a logical conjunction⊕, and erosion like an implication−→, as
seems clear from their definitions (’combining anA and aB’, and ‘if you give me a
B, I will give anA’). The two were related by the followingresiduation law:

A •B ⊆ C iff A ⊆ B −→ C

which is also typical for conjunction and implication (cf. also clause (iv) in Defini-
tion 4). Thus,−→ is a sort of inverse to⊕.

5.1.1. Resource logics

There already exists a logical calculus for these operations, invented under themul-
tiplicative linear logicname in theoretical computer science [TRO 92], and indepen-
dently as theLambek calculus with permutationin logical linguistics, cf. [KUR 95].
The calculus derives ‘sequents’ of the formA1, . . . , Ak ⇒ B where each expression
A,B in the current setting stands for a region, and the intended interpretation—in our
case—says that

the sum of theA’s is included in the region denoted byB.

Here are the derivation rules, starting from basic axiomsA⇒ A:

X ⇒ A Y ⇒ B

X,Y ⇒ A •B
X,A,B ⇒ C

X,A •B ⇒ C
(product rules)

A,X ⇒ B

X ⇒ A −→ B

X ⇒ A B, Y ⇒ C

X,A −→ B, Y ⇒ C
(arrow rules)

X ⇒ A

π[X] ⇒ A
permutation

X ⇒ A A, Y ⇒ B

X,Y ⇒ B
cut (structural rules)



Derivable sequents typically include:

A,A −→ B ⇒ B (‘function application’)

A −→ B,B −→ C ⇒ A −→ C (‘function composition’)

Here is an example of a derivation, just for the flavor of the system:

A⇒ A B ⇒ B

A,A −→ B ⇒ B C ⇒ C

A,A −→ B,B −→ C ⇒ C

A −→ B,B −→ C ⇒ A −→ C

Another key example are the two ‘Currying’ laws, whose proof uses the• rules:

(A •B) −→ C ⇒ (A −→ (B −→ C))

(A −→ (B −→ C)) ⇒ (A •B) −→ C

This calculus is best understood in terms ofresources. Think of each premise in an
argument as a resource which you can use just once when ‘drawing’ the conclusion.
In standard logical inference, the premises form a set: you can duplicate the same
item, or contract different occurrence of it without any change in valid conclusions.
This time, however, the premises form abag, or multi-set, of occurrences: validating
only ‘resource-conscious’ versions of the standard logical laws. E.g., ‘Modus Ponens’
A,A −→ B ⇒ B is valid, but its variantA,A,A −→ B ⇒ B is not: having one
unused resource left. A correct provable sequent using the latter resources is rather:

A,A,A −→ B ⇒ A •B

Or consider the classically valid sequentA, (A −→ (A −→ B)) ⇒ B. Here the
above calculus only provesA, (A −→ (A −→ B)) ⇒ A −→ B, and you must
supply one more resourceA to derive

A,A, (A −→ (A −→ B)) ⇒ B.

The related categorial grammar interpretation for this same calculus reads the
product• as syntactic juxtaposition of linguistic expressions, and an implicationA −→
B as a function category takingA-type expressions toB-type expressions. The same
occurrence-based character will hold: repeating the same word is not the same as
having it once.

The major combinatorial properties of this calculusLL are known, including proof-
theoretic cut elimination theorems, anddecidabilityof derivability in NP time. More-
over, there are several formal semantics underpinning this calculus (algebraic, game-
theoretic,category-theoretic, possible worlds-style [BEN 91a]). Still, no totally satis-
fying modeling has emerged so far.



5.1.2. Linear logic as mathematical morphology

Here is where the present setting becomes intriguing: mathematical morphology
provides a new model for linear logic!

Fact 6 Every spaceIRn with the Minkowski operations is a model for allLL -provable
sequents.

This soundness theorem shows that every sequent one derives inLL must be a
valid principle of mathematical morphology. One can see this for the above examples,
or other ones, such as the idempotence of morphological opening(A	B)⊕B:

(((A	B)⊕B)	B)⊕B = ((A	B)⊕B)

In LL , the opening is(A −→ B) • A, and the idempotence law is literally derivable
using the above rules:

(A −→ B) •A⇒ (A −→ ((A −→ B) •A)) •A

(A −→ ((A −→ B) •A) •A) ⇒ (A −→ B) •A)

The list might even include new principles not considered in that community. The
converse seems an open completeness question of independent interest:

Is multiplicative linear logic complete w.r.t the class of allIRn’s?
Or even w.r.t. two-dimensional Euclidean space?

Further, mathematical morphology laws ‘mix’ pure Minkowski operations⊕,−→
with standard Boolean ones. E.g. they include the fact thatA −→ (B ∩ C) is the
same as(A ∪ B) −→ C = (A −→ C) ∩ (B −→ C). This requires adding Boolean
operations toLL :

X,A⇒ B

X,A ∩ C ⇒ B

X,A,⇒ B

X,C ∩A⇒ B

X ⇒ A X ⇒ B

X ⇒ A ∩B

X ⇒ A

X ⇒ A ∪B
X ⇒ A

X ⇒ B ∪A
X,A⇒ B X,C ⇒ B

X,A ∪ C ⇒ B

Note the difference between the two conjunctions. Product• and intersection have
some similarities, but the rules are different. E.g.,A −→ (B • C) does not derive
(A −→ B) • (A −→ C), or vice versa. Conversely, dot product satisfied the ‘Curry
laws’, but(A∩B) −→ C is certainly not derivably equivalent to(A −→ (B −→ C)).
All these observations tally with known facts in mathematical morphology. Indeed,
the extended calculus is still sound—while its completeness remains an open question.

The Boolean operations look a bit like the ‘additives’ of linear logic, but they also
recall ordinary modal logic, which is where we are going now.



5.2. Richer languages

Evidently, the basic players in an algebra of regions in a vector space are the vec-
tors themselves. For instance, Figure 23.a represents the regionA as a set of 13 vectors
departing from the origin. Vectors come with some natural operations, such as binary
addition, or unary inverse—witness the usual definition of a vector space. A vectorv
in our particular spaces may be viewed as an ordered pair of points(o, e), with o the
origin ande the end point. Pictorially, this is an arrow fromo to e. Now this provides
our point of entry into modal logic.

5.2.1. Arrow logic

Arrow logic is a form of modal logic where the objects are transitions or arrows,
structured by various relations. In particular, there is a binary modality forcompo-
sition of arrows, and a unary one forconverse. The motivation for this comes from
dynamic logics, treating transitions as objects in their own right, and from relational
algebra, making pairs of points separate objects. This allows for greater expressive
power than the usual systems, while also lowering complexity of the core logics (see
[BLA 01, BEN 96] for overviews). Consider in particular the pair-interpretation, with
arrows being pairs of points(ao, ae). Here are the fundamental semantic relations:

composition C(ao, ae)(bo, be)(co, ce) iff ao = bo, ae = ce, andbe = co,

inverse R(ao, ae)(bo, be) iff ao = be, andae = bo,

identity I(ao, ae) iff ao = ae.

An abstract model is then defined as any set of arrows as primitive objects, with
three relations as above, and a valuation function sending each proposition letterp to
the set of the arrows where propertyp holds.

Definition 5 (arrow model) An arrow modelis a tupleM = 〈W,C,R, I, ν〉 such
thatC ⊆W ×W ×W ,R ⊆W ×W , I ⊆W , andν : W → P .

Such models have a wide variety of interpretations, ranging from concrete models in
linguistic syntax to abstract ones in category theory [VEN 96]—but of relevance to us
is the obvious connection with vector spaces. Think ofCxyz asx = y + z, Rxy as
x = −y andIx asx = 0. To make this even clearer, we use a modal arrow language
with proposition letters, the identity element0, monadic operators¬,−, and a dyadic
operator⊕. The truth definition reads:



M,x |= p iff a ∈ ν(p)
M,x |= 0 iff Ix
M, x |= −ϕ iff ∃y : Rxy andM,y |= ϕ
M,x |= ¬ϕ iff not M,x |= ϕ
M,x |= ϕ ∨ ψ iff M,x |= ϕ orM,x |= ψ
M,x |= A⊕B iff ∃y∃z : Cxyz ∧M,y |= A ∧M, z |= B
M,x |= A	B iff ∀y∀z : Cyxz ∧M, z |= A→M,y |= B

This system can be studied like any modal logic. For the basic results in the area, we
refer to the above-mentioned publications.

5.2.2. Arrow logic as linear algebra

Most modal topics make immediate sense in linear algebra or mathematical mor-
phology. E.g., the above models support a natural notion ofbisimulation:

Definition 6 (arrow bisimulation) LetM,M ′ be two arrow models. A relation�⊆
W ×W ′ is anarrow bisimulationiff, for all x, x′ such thatx � x′:

base x ∈ ν(p) iff x′ ∈ ν′(p),

C-forth Cxyz only if there arey′z′ ∈W ′ such thatC ′x′y′z′, y � y′ andz � z′,

C-back C ′x′y′z′ only if there areyz ∈W such thatCxyz, y � y′ andz � z′,

R-forth Rxy only if there arey′ ∈W ′ such thatR′x′y′ andy � y′,

R-back R′x′y′ only if there arey ∈W such thatRxy andy � y′,

I-harmony Ix iff I ′x′.

Arrow bisimulation is a coarser comparison of vector spaces than the usual linear
transformations. It preserves all modal statements in the above modal arrow language,
and hence provide a lower level of visual analysis in linear algebra similar to what we
have found earlier for topology, or geometry.

Next, logics for valid reasoning also transfer immediately. Here is a display of the
basic system of arrow logic:

(ϕ ∨ ψ)⊕ ξ ↔ (ϕ ∨ φ)⊕ ξ (13)

ϕ⊕ (ψ ∨ ξ) ↔ (ϕ⊕ φ) ∨ (ϕ⊕ ξ) (14)

−(ϕ ∨ ψ) ↔ −ϕ ∨ −ψ (15)

ϕ ∧ (ψ ⊕ ξ) → ψ ⊕ (ξ ∧ (−ψ ⊕ ϕ)) (16)



These principles either represent or imply obvious vector laws. Here are some conse-
quences of (15), (16):

−(¬A) ↔ ¬(−A)

−(A+B) ↔ −B +−A

A+ ¬(−A+ ¬B) → B

The latter ‘triangle inequality’ is the earlier rule of Modus Ponens in disguise. On
top of this, special arrow logics have been axiomatized with a number of additional
frame conditions. In particular, the vector space interpretation makes composition
commutativeandassociative, which leads to further axioms:

A⊕B ↔ B ⊕A commutativity
A⊕ (B ⊕ C) ↔ (A⊕B)⊕ C associativity

These additional principles make the calculus simpler in some ways than basic arrow
logic. The key fact about composition is now the vector law

a = b+ c iff c = a− b

which derives the triangle inequality. And there are also expressive gains. E.g., the
modal language becomes automatically ‘versatile’ in our earlier sense.

Again the soundness of the given arrow logic for vector algebra is clear, and we
can freely derive old and new laws of vector algebra. But the central open question
about arrow logic and mathematical morphology is again a converse:

What is the completeaxiomatizationof arrow logic over the standard
vector spacesIRn?

In particular, are there differences of dimensionality that show up in different arrow
principles across these spaces?

Continuing with earlier topics,extendingthe basic modal language of arrows also
makes sense. E.g., in general arrow logic there may be many identity arrows, while
in vector space there is only one identity element0. To express this uniqueness, we
need to move to some form of modaldifference logic(cf. Section 2.2). Also, in
mathematical morphology, one finds a device for stating laws that are not valid in
general, but only when we interpret some variables as standing for single vectors. An
example is:

(X)t − Y = (X − Y )t (MM-form)

B → (A+ t) ⇔ (B → A) + t (LL-form)

From right to left, this isLL derivable as the general law(S −→ X) • Y ⇒ S −→
(X • Y ). The converse of this is notLL derivable, but it only works whenY is a



singleton{t}. In the latter case, we have the special principleS ⇔ (S + {t}) − {t},
which we have to ‘inject’ into an otherwise fineLL derivation to get the desired result.
This trick is exactly the same as using so-callednominalsin extended modal logics,
cf. [ARE 00], which are special proposition letters denoting just a single point. Other
natural language extensions include an infinitary version of the addition modality⊕,
allowing us to close sets tolinear subspaces.

Thus, the two fields are related, not just in their general structure, but also in their
modus operandi, including tricks for boosting expressiveness. Of course, one hopes
that thealgorithmiccontent of arrow logics also makes sense under this connection,
including its philosophy of ‘taming complexity’. This brings us to our final topic:

5.2.3. A worry about complexity

Issues of decidability and complexity have been largely ignored in this paper. But
one part of the ‘modal program’ is the balance between moderate expressive power
and low complexity for various tasks: model checking, model comparison, and logical
inference. In particular, arrow logics were originally designed to make the spectacular
jump from undecidability in standard relational algebra to decidability. What happens
to arrow logics in mathematical morphology? Even though the logic of the standard
models appears to be effectively axiomatizable, i.e., recursively enumerable,unde-
cidability is lurking! One bad omen is the validity of associativity, a danger sign in
the arrow philosophy (cf. van Benthem 1996). But more precisely, [AIE 02a] shows
how to effectively encode an undecidabletiling problem[HAR 83] into the complete
arrow logic of the two-dimensional Euclidean plane, showing that we may have gone
overboard in our desire to express the truth about vectors. Thus, the Balance remains
a continuing concern.

6. Concluding Remarks

Our walk through space has shown modal structures wherever one looks. There
are natural fine-structured modal versions of topology, affine and metric geometry,
and linear algebra. These can be studied by general modal techniques—though much
of the interest comes from paying attention to special spatial features. The benefits of
this may be uniformity and greater sensitivity to expressive and computational fine-
structure in theories of space. But it will also be clear that, in these new waters, we
have just charted little islands of knowledge in an ocean of ignorance. Even without
stating a huge list of open problems of expressiveness, complexity and complete ax-
iomatization, reading this paper will make it clear that there is any amount of logical
work to be done!
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