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Abstract

The complexity of any logical modeling reflects both the intrinsic structure of a topic described and
the weight of the formal tools. Some of this weight seems inherent in even the most basic logical
systems. Notably, standard predicate logic is undecidable. In this paper, we investigate ‘lighter’
versions of this general purpose tool, by modally ‘deconstructing’ the usual semantics, and locating
implicit choice points in its set up. The first part sets out the interest of this program and the
modal techniques employed, while the second part provides technical elaborations demonstrating its
viability.
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1 The modal core of predicate logic

The well-known standard semantics for predicate logic has the following key clause:
M, a | Jz¢ iff for some d € M| : M, of = ¢.

Tarsk’s main innovation here was the use of assignments, which are essential in de-
composing quantified statements, which leave free variables in their matrix. But much
less than this is needed to give a compositional semantics for first-order quantification.
The abstract core pattern which would make the latter work is this:

M, a = Ja¢ iff Jor some 3 : Ryaf3 and M, 3 |= ¢.

Here, ‘assignments’ «, 3 become abstract states, and the concrete relation o =, 3
(which holds between « and «%) has become just any binary update relation R,.
Evidently, this abstract pattern involves standard poly-modal models, of the form

M = (S, {R)2}revans ])

where S is a set of ‘states’, R, a binary relation for each variable z, and I a ‘valuation’
or ‘interpretation function’ giving a truth value to each atomic formula Px, Rxy,...
in each state «. In particular, existential quantifiers 3x become unary existential
modalities (z). This modal state semantics for predicate logic has an independent
dynamic appeal: first-order evaluation is an informational process which changes
computational states. The first-order language then becomes a dynamic logic, with a
special choice of atoms and without explicit compound programs.

From this modal point of view, conversely, ‘standard semantics’ arises by insisting
on three additional mathematical choices, not enforced by the new core semantics.
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(1) States are identified with variable assignments, (2) ‘update’ must be the specific
relation =;, and (3) all assignments in the function space DYA® must be available to
evaluation. The former are issues of implementation, the latter is a strong existence
assumption. (Actually, standard predicate logic can get by with only locally finite
assignments — but even that is a strong existence requirement.) Henceforth, we shall
regard these further ‘set-theoretic’ choices as negotiable. This view lends further sup-
port to the abstract modal approach. E.g., it is often felt that the usual set-theoretic
tricks making predicates sets of tuples should be orthogonal to the nature of logical va-
lidity. Finally, as an alternative to even assumptions (1), (2), Hollenberg & Vermeulen
1994 present a dynamic semantics for predicate logic manipulating states involving
variable stacks whose update relations R, differ considerably from the standard one.

The universal validities produced by a general modal semantics are well-known.
One obtains a minimal poly-modal logic, whose principles consist of

e all classical Boolean propositional laws

e Modal Distribution: Vz (¢ — ¢) = (V& ¢ = Va o)
e Modal Necessitation: if - ¢, then - V& ¢

e a definition of 3z ¢ as =Vz —¢.

A completeness theorem with respect to the above abstract models may be proved
via the standard modal Henkin construction with maximally consistent sets for the
states in S, and the relations R, defined via:

AR, A5 iff forall p € Ag: Jxd € Ay,

This logic can be analyzed in a standard modal fashion (cf. Andréka, van Benthem &
Németi 1995 for a modern treatment), yielding usual meta-properties such as Craig
Interpolation or Los-Tarski Preservation. Moreover, it is decidable by standard modal
techniques (filtration, semantic tableaus). One can now usefully pursue standard
first-order model theory in tandem with its modal counterpart. For instance, con-
sider modal bisimulations for these models, relating states having the same atomic
behaviour, with zigzag conditions for the relations R,. Specialize these to standard
Tarski models. The result is a notion of partial isomorphism between models, related
but not equal to the standard one. (Essentially this analogy was observed in Fernando
1992.) Further analogies are elaborated in van Benthem 1991, 1995, De Rijke 1993.
The modal perspective suggests a whole landscape below standard predicate logic,
with a ‘minimal modal logic’ at the base, and ascending up to ‘standard semantics’ via
successive frame constraints. This seems the proper habitat of ‘dynamic semantics’
as currently explored in the logico-linguistic literature. In particular, this landscape
contains decidable sublogics of predicate logic, sharing its desirable meta-properties.
(The minimal modal base itself is an example.) Thus, the ‘undecidability of predicate
logic’ largely reflects mathematical accidents of its Tarskian modeling, in particular,
encoding set-theoretic facts about function spaces DV*"— rather than the core logic
of quantification and variable assignment. We shall explore the resulting view of
first-order semantics, drawing upon the work of many authors. In particular, we find
that, as with other ‘fine-structure landscapes’ underneath standard logic (e.g., the
categorial or substructural hierarchy: van Benthem 1991, Dosen & Schroeder-Heister
1993), there is a rich family of natural calculi in our original language, but also one
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of richer languages reflecting the broader more sensitive semantics. In particular,
abstract core models support distinctions between various forms of quantification
(‘monadic’ and ‘polyadic’) that get collapsed in standard predicate logic.

2 Dependency models

In addition to our two choices so far, there are further natural inhabitants of the
landscape between standard logic and its minimal modal core. For instance, one
may retain the general implementation of Tarski semantics (the above (1), (2)), while
giving up its existence assumption (3). The result is a ‘half-way house’ where S is some
family of assignments in the usual sense (not necessarily the full function space DVA"),
and the R, are the standard relations =,. For instance, with two variables {z,y}, a
domain with objects {1,2} supports 2* assignment sets. One is the standard model
with all four maps from variables to objects. Another has just the two assignments
{a, B} with a(z) = 1, a(y) = 2 and S(z) = 2, B(y) = 1. First-order evaluation
will then be over generalized Tarskian models (M, V) having a range V of ‘available
assignments’ as an extra parameter. An existential quantifier Jx¢ says that some
z-modification of the current state exists inside V satisfying ¢.

‘Assignment gaps’ turn out reflect an interesting phenomenon. Intuitively, one often
wants to model ‘dependencies’ between variables: i.e., a situation where changes
in value for one variable  may induce, or at least be correlated with, changes in
denotation for another variable y. Examples include natural reasoning (Fine 1985),
probabilistic logic (van Lambalgen 1991) and plural anaphoric discourse (van den
Berg 1995). This phenomenon cannot be modeled in standard Tarskian semantics,
where we can change values for variables completely independently: Starting from
any state o, one can move to any «f. But in a model with assignment gaps, the only
way to change values for z, starting from some assignment «, may be by incurring
a change in y too. An example is the above two-assignment model, where any shift
in value for z produces a corresponding one for y. Thus, standard models rather
become those ‘degenerate cases’ where all dependencies between variables have been
suppressed. This shows clearly in the standard validity of the quantifier exchange
principle 3z3dy¢ < Jydze¢, which will become typically invalid on our generalized
models. For instance, Alechina (1995) proposes a semantics where (stated in our
current framework) the key evaluation clause becomes

M,a |z ¢ iff for some 8 : Ry yaf and M, 8 |E ¢

where y is some sequence of ‘relevant context variables’ — which might consist, e.g.,
of the free variables in Jz¢. In this case, even Modal Distribution will fail. Along a
different path, van den Berg 1995 makes assignment sets themselves into new states
encoding dependencies, which can be modified in the dynamic process of evaluation.

3  What do first-order axioms say?

The above three semantic levels have further fine-structure. This may be brought out
in two ways. First, one can study natural mathematical constraints on modal frames
or generalized assignment models, reflecting various aspects of ‘dependence’. But
also, one can analyze possible validities expressible in our first-order language. The
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latter strategy involves modal frame correspondences. A modal formula ¢ expresses
a relational constraint C' on abstract state frames if:

C holds of (9, {Ry }revar) iff
(S, {Rys}recvar, I), @ = ¢ for all states o and interpretation functions I.

Let us see, over the minimal modal logic, what is expressed by the laws of predicate
logic. Usually, all first-order validities are together in one big bag. But in our modal
semantics, they come to express different requirements on states and accessibility,
with a computational slant. For a concrete illustration, we use modal correspondence
to ‘deconstruct’ the axioms in the well-known text book Enderton 1972. (But any
text book axiomatization would do, with a different cut of the cake.) Enderton‘s
list has all universal closures of Boolean propositional laws, plus the three quantifier
axioms

(1) Vo (¢—=v) > (Vo ¢— Ve
(2) ¢—oVrg provided that x do not occur free in ¢
(3) Vi ¢ —[t/z]¢ provided that t be free for x in ¢

The system has one inference rule, Modus Ponens. From a modal perspective, the
propositional part is base valid (both axioms and rule). The first quantifier axiom is
the base valid Modal Distribution. Moreover, universal closure of axioms is a tech-
nique which amounts to postulating a rule of Necessitation for universal quantifiers.
Indeed, the first part of the Enderton axiomatization by itself is a complete calcu-
lus for the minimal modal logic! It is tempting to see the Hand of Providence at
work here. Now, let us analyze the other quantifier axioms. We start with the least
conspicuous one. From our present perspective, it is immensely powerful.

The axiom ¢ — VYV ¢

We analyze this principle inductively, in a modified formulation with atoms and their
negations, A, V,3,V. Our argument will be heuristic, determining the effect of various
instances of this principle independently. The first instance is the atomic pair:

(2.1) Py —>VYz Py - Py = VYo =Py

These principles say that truth values for atoms without the variable # are unaffected
by R,—transitions. For assignments, with predicate interpretation as usual, this is
equivalent to the condition that R, imply =,. In our abstract semantics, however,
(2.1) does not naturally translate into a frame correspondence. It rather suggests a
restriction on the range of our abstract interpretation functions I. These must satisfy a
Heredity Principle stating that if I(«, Py), then I(3, Py) for all states § with Ryaf3.
(Restrictions on valuations are known from Kripke semantics for intuitionistic logic.)
Pure frame conditions do emerge with compound cases of axiom (2).

(2.2) Boolean cases ¢1 A ¢z, 1V ¢2

There is no new information to be extracted here. Suppose, inductively, that we
already know that - ¢ — Ve ¢1 and F ¢3 — Vo ¢2. Then, in the base logic, we
have automatically (using Distribution) that F (¢1 A ¢2) — Va (@1 A ¢2). The case
for disjunction is entirely analogous. The real impact is in the quantified cases.

(2.3) 3y ¢, Yy ¢

Here we must distinguish two subcases.
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(2.3.1) the quantified variable y is x itself.

Then we have, without any assumptions, that
Jz¢p — Ve z ¢ Ve ¢ > Vo Vo ¢

Here we recognize two modal Sh-axioms for {x), namely

()¢ = [z x)o (2] — [2][z]¢
Their frame content is well-known.

Fact 3.1 eVz ¢ — Vo Vo expresses that R, is transitive
e dr ¢ - Vzdzx ¢ expresses that R, is euclidean

If we add the simplest instance of Enderton’s axiom (3), viz. V& ¢ — ¢ (expressing
reflexivity of the R,), we get full S5, where all R, must be equivalence relations.
(This modal character of first-order deduction is very clear in Chapter 1.2 of Henkin-
Monk-Tarski 1985, which has much standard Sh-deduction in an algebraic guise.)
Henceforth, we assume the Sh-principles, which hold in all generalized assignment
models. (Without at least S4, the following analysis becomes somewhat messier.)
Thus, consider the remaining case where genuine interactions take place between
updates for different variables.

(2.3.2) the variables x,y are distinct

Inductively, we may assume that - ¢ — Vz ¢, and then we need
Jy ¢ —>Ve Iy Yy ¢ — Vo Vy ¢

Modulo 54, these two inference rules express two well-known quantifier shifts:

Claim 3.2 e The rule ‘if - ¢ - Va ¢, thent Ty ¢ — Vo Ty &’
is equivalent with the aziom Jy Vo ¢ — Vx Ty ¢
o The rule ‘if H ¢ = Vo ¢, thentVy ¢ - Vo Vy ¢’
is equivalent with the axiom Yy Vo ¢ — Ve Yy ¢

Proor. (First case) ‘Axiom to rule’. If - ¢ — V& ¢, then in the minimal modal logic,
F 3y ¢ — Jy Vo ¢ — whence by our axiom, - Jy ¢ — Vo Jy ¢. ‘Rule to axiom’. (We
use S4.) Start from the axiom F V& ¢ — Vo Vo ¢, and apply the rule. This gives
Fdy Ve ¢ — Vo Jy Ve ¢. Again, S4 has - Vo ¢ — ¢. In the minimal modal logic,
this gives - Vo Jy Vo ¢ — Vo Jy ¢. Together: F Jy Vo ¢ — Vz Jy ¢. [ |

As for modal correspondence, both these quantifier shifts may be analyzed ad-hoc,
or via a more sophisticated modal technique. Note that they are are Sahlquist Forms
to which a well-known algorithm applies computing their first-order frame equivalents:

Fact 3.3 e dydr ¢ — dx dy ¢ expresses Path Reversal:
VaBy ((Reaf A RyBy) — 36 (Byad A Bydy))
e dyVoe ¢ > Ve Jy ¢ expresses Confluence:
Vafy ((ByaB A Ryay) — 38 (Re 58 A Ryyd))
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In S5-models, Path Reversal and Confluence are semantically equivalent. And
indeed, Henkin-Monk-Tarski 1985 has an algebraic proof of this fact. Our general
conclusion so far is that first-order predicate-logical axioms express modal Sahlqvist
forms, to which standard modal correspondence and completeness techniques may be
applied. (Further illustrations may be found in Venema 1992, de Rijke 1993, Marx
1994.)

One may also use general facts about predicate logic to suggest natural constraints
on dependency models. E.g., the Finiteness Lemma says that evaluation of formulas
only depends on values for their free variables. This is no longer true in generalized
assignment models, where free variables may carry implicit dependencies. But one can
study Finiteness as an interesting condition per se. Such conditions may be on models
rather than frames. Westerstahl 1995 redoes the above correspondence analysis on
modal frames with heredity restrictions on admissible valuations. Next, we must
analyze Enderton‘s last quantifier axiom, stating that “Va ¢ — [t/x]@, provided that
t be free for © in ¢” . In the spirit of our analysis so far, it is natural to view the
substitution operator [t/z] as a semantic update instruction in its own right. It will
denote ‘controlled value assignment’ & := ¢, which is the natural semantic companion
to our ‘random assignment’ for the existential quantifier Jx.

4 Quantifiers and substitutions

There is a folklore idea in dynamic logic that syntactic substitutions [¢/2] work se-
mantically as program instructions z := ¢. Goldblatt 1987 uses the latter notation to
avoid syntactic complexities in Harel’s quantified dynamic logic. Another instance of
this duality shows up with the well-known Substitution Lemma for predicate logic:

M? a ': [t/l‘]¢ it M7 aialue(l\/{,a,t) ': ¢

This expresses a procedural equivalence between ‘call by name’ and ‘call by value’.
Finally, random assignment [[dz]] naturally invites its specific counterpart [[t/z]]. The
modal treatment of substitutions is quite like that for the earlier quantifiers.

Abstract assignment frames

We enrich the previous models by adding abstract relations A ,, whose concrete
interpretation in standard models is as follows:

ady 8 it B(x) (y) and
B(z) (z) for all z distinct from .

Henceforth, for convenience, we only consider substitutions of variables for variables.
The truth definition treats the substitution operator [y/«] literally as a modality
(again, the Hand of Providence fixed this box notation long ago):

M, a | [y/z)é iff forall B with Ay yaB:M,BE ¢.

The outcome is similar to that for existential quantifiers. There is a universally valid
minimal logic, on top of which further principles express special constraints on the
relations via frame correspondences. (All principles involved have Sahlgvist forms.)
Interestingly, the usual syntactic ‘definition’ of substitution acquires semantic import:

=«
=«
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Semantic analysis of substitution

Atomic Cases [y/x]Px < Py
[y/x]Pz << Pz (z distinct from )

The outcome is as before. On abstract frames, these principles express heredity
constraints on admissible valuations. On concrete assignment frames, however, they
express that the relations A, , are to behave as in the above concrete clauses.

Boolean Cases [y/a)(6A¥) ¢ [y/a]é ALyl
[y/x]—¢ o Sly/ely
The first of these is universally valid in the minimal modal logic. The second is a
well-known modal axiom, whose two halves together express that the relation A,y is
to be a function. For convenience, we make this assumption henceforth.

Quantified Cases [y/z]3x ¢ <« T ¢
Wialde 6 & Vo
[y/x]3z ¢ & Tz [y/zlé (= distinct from x,y)
[y/xVz ¢ & Vzly/zlé (z distinct from z,y)

These express simple interactions between compositions of the abstract relations A,
and R;, which can be spelt out mechanically. The remaining quantified cases are
[2/x]3z ¢ and [z/x]Vz ¢. Here we allow only substitutions which are *valid’ in our
intended semantics. Nothing holds in general when there are free occurrences of x in
the matrix ¢. But otherwise, we want to have the two equivalences

[z/x]3z ¢ & Tz ¢ [z/x]Vz ¢ & Vz ¢
More generally, here, we want a principle like the earlier quantifier axiom (2):
[z/x]d < ¢ whenever x does not occur freely in ¢.

The direction from right to left here uses the quantifier axiom (2) in combination with
axiom (3) (whose remaining force is gauged below). For, if # does not occur freely
in ¢, then Va ¢ follows, which again implies [y/#]¢ (since y is free for z in ¢). From
left to right, we argue as follows. If # does not occur freely in ¢, then we already
have - ¢ — V& ¢. In the minimal modal logic then  [z/z]¢ — [z/x]Vx ¢. Now, by
an earlier principle, we have [z/z]V2z ¢ — V& ¢. Then, with one S4-axiom, we have
[z/x]V2 ¢ — ¢. Together, this yields what we need. Complete calculi for first-order
substitutions occur in Németi 1985, Thompson 1981, and Venema 1993.
Finally, we return to the analysis of the initial quantifier axiom (3), which read:

VYo ¢ — [y/z]¢ provided that y be free for x in ¢.
Its business now becomes merely to relate the two modalities [#] and [y/«] :
Az y is contained in R,

The proviso is taken care of by the earlier principles for ‘cautious substitution’. This
completes our semantic analysis of a complete axiomatic system for predicate logic.
Its consists of all accumulated principles on expanded abstract assignment frames
(S,{Ro}tvevans {Aey}e,yevan); Plus some constraints on admissible valuations. Of
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course, this is just one pass through predicate logic, via Enderton’s particular ax-
iomatic presentation. One could also analyze different presentations (compare the
natural deduction analysis in Meyer Viol 1995). E.g., Henkin-Monk-Tarski 1985 has:

if F¢ o ¢,]then F32 ¢ & Jz ¢ (from minimal modal logic)

de L& L (ditto)
Jx (pATz ) & Te ATy (well-known S5-principle)
¢ —dx ¢ (T-axiom)

What comes out in general is the idea that the usual ‘predicate-logical validities’ form
a very diverse bunch, which can be layered in many ways, for different purposes.

5 Landscape of deductive strength

Let us summarize the main line so far. First-order predicate logic may be viewed
as a dynamic logic for variable assignment, whose atomic processes shift values in
registers z, y, z, ... This view-point opens up a hierarchy of fine-structure underneath
standard predicate logic. The latter system becomes the mere (undecidable) theory of
a particular mathematical class of ‘rich assignment models’ in this perspective. What
we get in this way is a broad semantic landscape (as also found in Modal Logic or
Arrow Logic, cf. van Benthem 1991), with a minimal modal system at the bottom,
where various intermediate systems arise by imposing some, though not all of the
usual requirements on assignments and their R, (and A, ,) structure:

/

standard predicate logic

TERRA INCOGNITA

minimal ‘modal’ predicate logic

What are natural landmarks in this area? We would like to find logics (1) that are
reasonably expressive, (2) that share the important meta-properties of predicate logic
(such as Interpolation, Effective Axiomatizability, perhaps even ‘Gentzenizability’)
and (3) that might even improve on this, by being decidable. The minimal predicate
logic satisfies these three demands — but can we ascend in the above landscape and
get more powerful logics with the same behaviour? Fortunately, this area is not
totally unexplored. The existing body of research in Cylindric Algebra has already
identified some very interesting intermediate systems (cf., e.g., Henkin-Monk-Tarski
1985, Andréka 1991, Németi 1985, Venema 1994, Marx 1994). Németi 1993 contains
a number of interesting calculi, including the so-called ‘non-commutative’ version of
cylindric algebra (first proposed in Thompson 1981), which becomes decidable by
giving up the quantifier interchange axioms for 3= Jy and Vz Vy. All this is much
like the well-known lattice of modal logics (Bull & Segerberg 1984, Blok 1979).
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One attractive candidate in this landscape is the system CRS (Németi 1993).
It may be described as the set of all predicate-logical validities that hold in those
abstract state frames for quantification and substitution which satisfy all universal
frame conditions true in standard assignment models. These obey all general logical
properties of assignments, but they do not make any existential assumptions about
the supply of available assignments. The former conditions seem more truly ‘logical’,
whereas the latter would be more ‘mathematical’ or *set-theoretic’ in character. (This
distinction between universal and existential principles in logical modelling has been
defended more generally: e.g., for modelling temporal logic in van Benthem 1983.)
For instance, in the above correspondences, universal Sh-type conditions emerged, but
also existential ones for quantifier interchange principles. Later on, we shall analyze
the purely universal kind in more detail, by a representation method turning abstract
state frames into assignment frames. Indeed, CRS may also be described as the
logic of all generalized assignment models (M, V), introduced in Section 2. Two
important known facts about CRS are that it is decidable (Németi) and non-finitely
axiomatizable (Andréka). Moreover, our representation method will show that it has
a first-order definition by means of universal Horn clauses, from which one can derive
Craig Interpolation (Marx 1994). But on top of CRS, one may continue, and add
axioms up to the cliffs of complexity.

This landscape of dynamic predicate logic can be investigated model-theoretically
using standard modal techniques (van Benthem 1985, Goldblatt 1987, Venema 1992
and De Rijke 1993). In particular, as observed before, basic modal notions such as
‘bisimulation’ between abstract models generalize model-theoretic counterparts over
standard assignment models. There can still be some interesting discrepancies here.
E.g., bisimulation relates complete variable assignments, whereas its model-theoretic
counterpart of ‘partial isomorphism’ relates finite sequences of objects. This reflects
another meta-property of standard first-order logic: no variable has a special identity.
In the present abstract semantics, this is no longer the preferred option. With pos-
sible dependencies present, variables do gain ‘individuality’ (cf. van Lambalgen 1991,
Meyer Viol 1994). Other relevant modal themes include axiomatization techniques
and decision methods across this whole landscape (cf. Marx 1994, Mikulas 1995).

Remark 5.1 (Two first-order languages) Do not confuse two uses of ‘first-order
languages’ here! One lives at an object level, as the ‘dynamic modal language’ of
assignment change. Another is used at a meta-level, as our ‘working language’ for
stating frame conditions. In particular, one can be a modal minimalist at the object
level, and a standard logician at the meta-level.

The general picture here is like in Arrow Logic (van Benthem 1991, 1995, Venema
1994, Marx & Plos 1994), with the same semantic thrust. Eventually, we do not
just want to re-analyze predicate logic, but rather explore the expressive capacity of
this new semantics (and the logics supported by it) because of its intrinsic intuitive
appeal.

6 Rethinking the language

The modal analogy suggests, in particular, that first-order predicate logic reflects only
part of the expressive resources of abstract state models. In fact, there is an obvious



268 Modal Foundations for Predicate Logic

first-order (meta-)language over these models, whose variables run over states (once
again: please do not confuse this with our central modal first-order object language!).
This is the language into which one ‘translates’ poly-modal logic in the usual sense
(van Benthem 1983), which contains many assertions without a modal counterpart.
One example is an unrestricted existential quantifier da over states. By contrast,
modal object quantifiers Az induce restricted state quantifiers, which are of the form
38 (RyaBA. (The ‘modal fragment’ of the full first-order state language is precisely
determined by such quantifier patterns, which induce invariance for bisimulations.
Up-to-date technical details are found in Andréka, Németi & van Benthem 1995.)
’Random assignment jumps‘ seem a natural meaning for isolated quantifier symbols
I not tagged by any variable. Likewise, one might consider global predicates of states,
not reducible to assertions about their object values at some finite set of variables.
All this is just one instance of a broad theme mentioned at the beginning. A more
general semantics below standard predicate logic usually suggests new notions, that
were invisible in the ‘classical system’. We list a few directions for such extensions.

Stronger modalities

Add modal operators, such as the “universal modality”, or more complex ones about
internal structure of state transitions (“since”, “until”).

Dynamic operators

Add program constructions, starting from individual variables as atomic programs.
E.g., the Path Principles suggest addition of both sequential composition and con-
junctive intersection. Propositional dynamic logic with these two operations is still
decidable: and hence so is our minimal base logic.

Polyadic quantifiers

A most interesting extension in expressive power is that to polyadic quantifiers. In
standard predicate logic, a tuple notation 3 zye¢ is just shorthand for either JzxeJye
or Jy e Jx e ¢. But here, it becomes a notion sui generis. On generalized assignment
models, Jxy e ¢ says that there exists some assignment agreeing with the current one
up to {z,y} values where ¢ holds. The corresponding transitions encode a form of
concurrency vis-a-vis the single transition relations R, and R,. This is not reducible
to either iterated version, which require the existence of ‘intermediate states’. More
generally, abstract state models admit natural definitions of quantifiers Jz;...xx ¢
stating the existence of some Ry, . .)—accessible state where ¢ holds. In standard
logic, this assertion is equivalent to any of its linearized versions Iz;...3z; ¢. But
with possible ‘gaps’ in our models, it is not so reducible. Polyadic quantification has
linguistic interest (cf. Keenan & Westerstahl 1994), and it comes into its own here.
Thus, in formalizing natural reasoning, one may now treat sequences of variables as
either ‘dependent’ or ‘independent’. Moreover, adding the latter expressive resource
leaves the basic predicate logic CRS decidable (cf. Mikulas 1995). There is a more
general issue, of course, as to how adding vocabulary affects meta-properties of a
logic in our landscape. Adding too much expressive power might reinstate standard
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first-order logic. (Marx 1995, Mikulas 1995 provide some case studies manipulating
expressive power of vocabulary in ‘Arrow Logic’.) Polyadic language extensions also
make sense in the presence of explicit substitutions. For instance, the latter needs
both sequential composition and ‘concurrent conjunction’ (to deal with irreducibly
polyadic multiple substitutions of the form [ty /@1, ..., tx/2k]).

Our style of analysis extends to other semantic parameters. E.g., not just assign-
ments can change in Tarski semantics, but also interpretation functions (van Benthem
& Cepparello 1994, Cepparello 1995). A modest, but natural extension arises as fol-
lows.

Partial-state frames

One new modeling proposed in dynamic semantics (Beaver 1994, van den Berg 1991,
Vermeulen 1994) employs partial assignments. These account for the intuitive differ-
ence between ‘re-assignment’ R, changing an old value for z, and ‘new assignment’
RI, giving x a value for the first time. These actions have corresponding first-order
quantifiers 3z and 3tz, respectively. In partial-state frames, R, will remain tran-
sitive and Euclidean, but not reflexive ( x-values are not always defined). We only
have the weaker principle 3z T'A ¢ — Jx ¢. By contrast, R} is asymmetric, and it
satisfies, e.g., Va3 (RtaB — =3y R} 3v). The connection between the two variable
update relations is the valid quantifier principle 3z T <+ =3tz 1. A central new
notion in these generalized frames is extension of partial states. It will have a natural
corresponding existential modality:

Makg¢ if 38 Da:MAES

Using it, one can also define substitutes for 3tz ¢ such as O3z ¢. 1t would be of
interest to axiomatize the complete modal logic of standard partial assignment frames.

7 Applications and repercussions

The present perspective suggests a number of applications. In particular, how much
of standard predicate logic is involved in natural language, common sense reasoning,
or mathematical proof? E.g., can the present decidable subcalculi of predicate logic
supply a ‘natural logic’ here? (Cf. Sanchez Valencia 1991, whose key principles of
monotonicity and conservativity are derivable in weak calculi in our landscape.) Also,
are there useful decidable systems of arithmetic or other parts of mathematics using
these ideas? E.g., what is the theory of the natural numbers with all possible families
of variable assignments? Perhaps, the usual predicate-logical base for applied theories
is too strong for its purpose (cf. van Benthem 1993A). Other practical aspects concern
the ‘distance’ between standard and generalized models for the first-order language.
It is known that CRS has the Finite Model Property (cf. Andréka, van Benthem
& Németi 1994). Thus, well-known formulas whose standard satisfaction enforces
infinity must have finite generalized models. Do the latter have any practical uses?
The thrust of our modal program can also be extended. It does not just apply to the
dynamics of changing variable assignments, but also to updating information states.
Abstract models can carry further structure, such as ‘composition’ of states, which
supports new dynamic connectives (van Benthem 1991, Kurtonina 1994). Similar
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issues to those discussed here will arise then, now affecting also the propositional
base of first-order predicate logic — which remained inviolate in our analysis so far.
By way of conclusion, here is what we take to be the philosophical importance of this
work. If our abstract models are indeed the natural semantics for first-order predicate
logic, rather than a technical device, many received views of the field are challenged.
In standard text books, ‘predicate-logical validity’ is one unique notion, specified
definitively by Tarski, and justified by Godel’s Completeness Theorem. Moreover, it
is complex, being undecidable by Church’s Theorem: Leibniz’s ideal of a ‘Calculus
Ratiocinator’ just will not work. On the present view, however, ‘standard predicate
logic’ has arisen historically from several semantic decisions that could have gone
differently. The genuine logical core of first-order predicate reasoning may well be
decidable — and the real interest lies not in one unique ‘completeness theorem’, but in
the combined model-theoretic and proof-theoretic analysis of a rich family of options.

The remainder of this paper is a more technical exploration of the above framework
(especially, CRS) with techniques from modal logic. These give a feel for how it really
‘works’. Tssues covered include (i) representation of abstract modal state frames in
terms of concrete (generalized) Tarskian assignment models, (ii) decidability of logics
over such generalized semantics via filtration and unraveling, (iii) weak and strong
interpolation properties for weak predicate logics, (iv) extended languages for substi-
tutions, (v) effective translations between varieties of dependency semantics, and (vi)
‘generalized generalized semantics’ employing updates on assignment sets.

8 Representation

A systematic semantic view analyzes what it takes to represent any abstract modal
frame as a family of assignments with the standard variable update relation =,. The
following proposal is very simple, and probably equivalent to some algebraic method.
How can abstract states become assignments? The obvious idea is to create ‘objects’
(a, ) for each state a and variable z, and then set

o (2) = (a, z).

This stipulation will indeed turn states into assignments, and represent abstract state
frames as assignments frames with arbitrary abstract update relations R;. (Thus,
the latter option is not really different from the most general one.) But if the latter
relations are to become the standard updates =;, then some refinement is necessary.

Representing state frames

For a start, we assume all universal properties of standard assignment frames. What
is needed on the way will eventually be collected in the statement of our results. Let
Z denote some sequence of variables. Extend the notion of accessibility as follows:

Ry a=4
aBRzey = Iy:aRzyAyR,p
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We use sequences here rather than sets, because we do not assume the existential
quantifier interchange principles suppressing the ordering. Now define

(a,2) ~ (B, y) if r=y & 3IZ:x¢ 7 & aRzf3

It is easy to check that ~ is an equivalence relation, using the symmetry of the
update relations R,. This observation allows us to use equivalence classes for values:

a*(z) := (o, 2)™.
Now, let us analyze what it takes to prove the following key equivalence:

Adequacy of Representation
aR. B iff o =, 5"

The direction from left to right is immediate. Let y be any variable distinct from z.
Set Z = {x). Then, since aR;j3, by the above definition, (a,y) ~ (8,y), and hence
o*(y) = #*(y). From right to left, suppose that a* =, 8*. By definition, this means
that Vy # 237 : y € Z ANaRz3. What we want from this bunch of facts is aR;j.
Here is a special case. With only two variables, the latter information applied to
the variable y says that «, 8 are related via some finite sequence (possibly empty) of
R,-steps. Using only reflexivity and transitivity, then, we get the desired conclusion.
Thus, we have found (as more often in the algebraic literature) that the two-variable
fragment of predicate logic is particularly simple:

Proposition 8.1 With only two variables, an abstract state frame is representable as
an assignment frame iff its relations R, are equivalence relations.

The general situation is more complex. E.g.; with three variables, we may have:

Y
z z
J, z
\ 6/ Zy = <x, z>
Zz = <y7 l‘>
In the standard assignment model, this implies that «, 3 agree on both y and z,
whence the arrows for y and z must be identity transitions, and we have aR,(.

More generally, all Path Principles of the following form are valid under the standard
Tarskian interpretation (notice that there are infinitely many of these):

0%

B

e IfaRyz B3, ...,aRz B, and the only variable occurring in all of Z1, ..., Zy is x, then
aR,(3.
e If no variable occurs in all connecting sequents, then a = 3.

Proposition 8.2 An abstract frame is representable as an assignment frame iff its
relations R, are equivalence relations satisfying all Path Principles.
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Proor. Continue the above argument. Suppose that Yy # 237 : y € Z A aRzp.
Let y be any specific variable distinct from z, and select a connecting path Z,. For
any of the (finitely many!) variables u occurring on this path distinct from z, select
some connecting path Z, on which u fails to occur. Then & is the only variable in
the intersection, and the path principle for 7, and the Z,’s will say that aR,3. [ |

Three points may clarify this. (1) Transitivity for relations R, follows from the
Path Principles. (2) Reflexivity is needed when the intersection of all occurrence
sets of variables on the paths is empty. (3) One should take care. For instance, the
principles do not say that the two R,-transitions displayed must be identical ones:

N

/
SN

Next, the second Path Principle also implies that our representation is one-to-one.
Fact 8.3 In the above case, the map from states a to assignments o is injective.

PRrROOF. (We need at least two variables #,y.) Suppose that a* = 3*. Then we have,
in particular, that o* =, 8* and o™ =, 8*. By the above observation, this implies
that o R, 0 and aR,3. But then, by the second Path Principle, a = 3. [ |

Analyzing this simple representation from a logical point of view — especially, the
crucial family of Path Principles — we see the following;:

e The class of representable abstract frames is definable by a set of first-order sen-
tences which are all universal Horn.

e This definition employs infinitely many frame conditions.

The former property has pleasant consequences, including Interpolation for predicate-
logical validity over this frame class (by general results in modal logic; Section 10).
The second property hints at a certain complexity (cf. the non-finite axiomatizability
result by Andréka). Finally, it is easy to see that few Path Principles correspond to
a modal formula in the predicate-logical language. This completes our analysis of

CRS.

Remark 8.4 (Sets instead of sequences) In the full standard case, with the two
quantifier exchange azioms, it suffices to define a relation aRx 3, where X is a set of
variables, postulating some connecting sequence of transitions indexed by variables in
X. The Path Principles then reduce to

if aRxp and aRy 3, then aRxny .
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Representing state models

Our representation extends to models M that interpret structured atomic formulas.
These are abstract frames (S, { Ry }zevar) Plus an interpretation function I interpret-
ing atoms over states (a ‘modal valuation’), needed to interpret the predicate-logical
object language. Define the following standard interpretation function over the rep-
resented frame (with one binary predicate letter @, for convenience):

Q) = {llw2)”(e,y9)7) [ (o, Quy)}
We need to show the following assertion of adequacy:
Claim 8.5 M,a = ¢ iff M™ a* = ¢, for all predicate-logical ¢.
Unfortunately, we do not quite succeed. The following is as far as we get.

Proo¥r. [Attempt] The assertion is automatic for Booleans, and it holds for quanti-
fiers by the above proof. The atomic case presents a difficulty, though. From left
to right, its assertion is trivial. If M,« = Quy, then I(a, Qzy) holds, and hence
I*(Q) holds of (o, )™, (e, )™ (i.e., a*(2),a*(y)) by definition. From right to left,
however, we encounter an obstacle. Let I*(Q) hold in M* of o*(x), a™*(y), that is,
of (o, 2)~, (e, y)~. Thus, there exists v with (a,2) ~ (v,2), (o,y) ~ (v,y) such
that I(y, Qzy). By the definition of ~, then, there exist two finite sequences Z, (not
containing x) and Z, (not containing y) with aRz, v, Rz, v. Now, what we need
to show is that I(a, Qzy). Here, evidently, the earlier atomic invariance principles
Py — Vo Py and =Py — Vx =Py should help. But these are not strong enough. We
need a more complex path principle stating that Qzy — [Z, N Z,]Qxy. This is beyond
our modal predicate-logical language, however — as it involves what is essentially a
further operation of ‘program intersection’. [ |

One way of overcoming this difficulty uses an extension of our representation to
a richer predicate-logical language. Two options are presented in digressions below.
Westersthl 1995 presents the most elegant solution so far, combining our previous
representation with ideas from Section 9 below. One can extend these representa-
tion arguments to abstract frames with transition relations A, , reflecting the earlier
substitution. We forego this extension here (Section 11 has some relevant details).

Option 1 Pointwise Equality of States
The following useful relation turns up implicitly in the above arguments:

aR®3 iff «a(z) = B(x)

This suggests the use of enriched state models (S, { By }revar, {R” }zevar, ). The new
relations R” are easier to handle than the old R,, being equivalence relations. They
can be used to define the latter, via the following equivalence:

aR,.3 < /\ aRY(3
y#e

With this definition, all Path Principles are simply derivable. Representation becomes
much easier, with objects as equivalence classes for the new relations R”. But there
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are draw-backs. The above equivalence is infinitary for general first-order languages.
Also, the existential modality {{x}} for the new relations, though interesting, is less
natural from a predicate-logical point of view. For ¢ = ¢(z,y),{{x))¢ becomes like
an existential closure Jy¢(z,y) (“for some values of all other parameters”).

Option 2 Polyadic Quantifiers
Another natural extension of our framework (cf. Section 6) uses indifference relations
between states involving finite sets of variables X:

aRxp iff a(y) = B(y) for all variables y outside of X

The corresponding ‘polyadic’ first-order quantifiers 3X ¢ are no longer equivalent
to sequential forms Jxy ...3x; ¢. In this case, we can use the old representation,
setting («, ) ~ (4, #) iff there exists some finite set ¥ not containing # with a Ry j.
Moreover, the earlier Path Principles may be replaced by the following ones:

o aRxpB and aRy S imply aRxny 3
e «aRxp and SRy~ imply aRxyuy?y

A typical law of the corresponding polyadic predicate logic is ¢ — VX ¢ (provided
that no free variable of ¢ occur in 7).

9 Decidability

This section presents a new proof for decidability and finite model property of CRS
(without substitutions) — using modal filtration and unwinding, plus representation.

Filtration of generalized assignment models

Consider generalized models (M, V) for predicate logic, where V is the range of
‘available assignments’. Here are two relevant extra constraints. ‘Atomic Locality’
says that assignments «, 5 € V which agree on all free variables FV(¢) of an atomic
formula ¢ must give ¢ the same truth value. ‘Locality’ says the same for all formulas.
In what follows, we fix some formula ¢ with variables VAR, (free or bound) and
subformulas SUB,. Everything will be restricted to such finite syntax sets. First, we
define a multi-S5 finite filtration over generalized assignment models.

Definition 9.1 For o,3 € V, set a ~ B if a, 3 give the same truth values to all
formulas in SUBy. The ¢—filtration of (M, V) is the Kripke model FILT,(M, V) =
(S, {Rys}recvar, V) obtained as follows. State Universe: S consists of all ~—equivalence
classes «™ . Accessibility: a™ R, 3~ holds if a, 8 give the same truth value to all rele-
vant formulas 3z ¥ and to all relevant atomic formulas not containing . Valuation:
V(a™, ) =1 for relevant atoms o iff v is true at « in (M, V).

Lemma 9.2 (Filtration lemma) For all relevant formulas ¢ and all assignments
a’

(M,V),al=v¢ iff FILT,(M,V),a™ E .

Proor. Induction on . Atoms: by definition. Booleans: use routine. Existentials.
By the truth definition in generalized models, (M, V), = Jz¢ implies that there
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exists some § € V with a« =, 8 & (M,V),8 | ¢. Hence (by the inductive hy-
pothesis) FILT4(M, V), 8~ = ¢ , and also o™ R,8™~ (mapping assignments to their
equivalence classes is a homomorphism). Therefore, FILT4(M, V),a™ = 3z . Con-
versely, FILT,(M, V), ~= 3 ¢ implies the existence of 5~ such that o™ R,8~
and FILT,(M, V), 3~ |= ¢. Then, by the inductive hypothesis, (M, V), 5 = ¢ — and
so (M, V), |= 3z ¢ , whence (M, V), a |= 3 ¢ by definition of the relations R,. ll

Filtration also works for generalized models with Locality (for all relevant formulas),
to yield a finite model with that property. One makes two equivalence classes R,—
accessible when they agree on all formulas in which variable z does not occur free.

Unwinding Kripke models

The above (filtrated) Kripke models are abstract. They may lack some key properties
of generalized assignment models. Notably, the earlier ‘Path Principles’ may fail.
(E.g., there may be two different links R,, R, between two distinct states.) We can
improve this behaviour by path unravelling, to get a basis for concrete representation.

Definition 9.3 The unwinding UNW(M ) of a rooted Kripke model (M, s) consists of
all finite sequences (8,21, ..., Sk—1, Ti—1, Si) where all s; are worlds in M, and always
si Ry, 8i41. The relations Ry, are the reflexive symmetric transitive closures of the
relations consisting of all pairs (X, X" {(z,w)) with last(X) R,w in M. Finally, the
valuation V' for sequences X is copied from that for last(X ) in M.

Lemma 9.4 (Unwinding lemma) For all formulas ¢, and all sequences X,
UNWM), X Ev¢ iff M,last(X) E 9.
ProoF. The function sending X to last(X) is a bisimulation. [ |

The only non-routine fact here is that the map ‘last’ is a homomorphism with
respect to the relations R, in the unwinding. (This part of the argument will work as
long as our frame conditions are universal Horn.) Now, one further observation may
be made.

Corollary 9.5 Formulas satisfiable in finite Kripke models are also satisfiable in finite
unwound Kripke models.

Proo¥F. This is the multi-S5 version of the well-known modal Finite Depth Lemma.
Evaluating a formula from the root involves only finitely many alternations in depth
across different relations R, — as may be seen through normal forms for multi-S5. W

This ‘cut-off” at the modal depth of ¢ preserves Atomic Locality (in its abstract
Kripke version, as a constraint on the valuation V) — though not necessarily full
Locality. Finally, we note that unwound Kripke models do satisfy all Path Principles.

Representing unwound Kripke models

Unwound multi-S5 models can be represented as generalized assignment models.
(This is a more concrete version of the representation in Section 8.) The idea is
easily explained. Take an arbitrary assignment (x;,d;)(1 < i < k) of different objects
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to the relevant variables at the root. Then, follow longer sequences X upward. If
an assignment ass(X) has already been defined, then choose a supply of new objects,
and change values at z only for steps from X to X"(z, w). This is well-defined.

Definition 9.6 The object representation OBJ(M ) of an unwound Kripke model M
has just been described. Its admissible assignments are those produced in the process.
Its interpretation function 1(Q) for predicates Q collects all tuples d contributed by
those ass(X ) where some atom Qz was true in M at X.

Lemma 9.7 (Representation lemma) For all formulas v, and all sequences X,
M, X 4 iff OBJM),ass(X) = .

ProoF. The map from X to ass(X) is a bisimulation. Atomic clause. If M, X | Qz,
then OBJ(M), ass(X) | Qz, by the definition of I(Q). Next, if OBJ(M), ass(X)E=
Qz, then by that same definition, M, Y | Qz for some sequence ¥ whose ass(Y)
agrees with ass(X) on all variables z € z. Hence, by construction, X, Y are equal
or connected by a chain of relations R, with u outside of z. Atomic Locality, i.e.,
the truth of all formulas @z — Vu Qz in M, then yields M, X | Qz. (Unicity of
the relevant atoms is guaranteed by our ‘free’ assignment of objects.) Zigzag clauses.
Inspection of the above construction shows that, if X R, Y, then ass(X) =, ass(Y) -
and also vice versa. From left to right, this is easy. From righ to left, suppose that
not XR.Y. Then, in the most general case, they must lie in some tree situation

X

\Y

where on the minimal connecting path shown, some value has changed for a variable u
distinct from z. As our representation chooses different objects all the time, upwards
and sideways in branches, this difference will still show up in the pair ass(X), ass(Y):
which therefore lacks the relationship =,.

We can now apply these results to obtain
Theorem 9.8 Validity in generalized assignment semantics is decidable.

ProoF. Combining the previous facts, a formula ¢ is satisfiable in a generalized as-
signment model iff it has a finite abstract Kripke model satisfying Atomic Locality
whose size is bounded by 2/5UB¢l, The latter property is decidable. [ |

Theorem 9.9 Generalized assignment semantics has the Finite Model Property.
Proo¥F. By the above Cut-Off Property, finite generalized models will suffice. [ |

In Andréka, van Benthem & Németi 1995, this reasoning is also applied to obtain
decidability for large ’bounded fragments’ of predicate logic over standard models.
That paper investigates connections in the following heuristic equation:

full predicate language : generalized dependency semantics
= bounded quantifier fragments : standard semantics.
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10 Interpolation

We show how a typical meta-property of predicate logic fares in our modal landscape.
Modal interpolation theorems come in different forms. The usual version of Craig
Interpolation concerns just shared proposition letters (Weak Interpolation):

If ¢ = 4, then there exists some modal formula « over the shared propositional

vocabulary of ¢, ¢ (including T') such that ¢ = « = .

Strong Interpolation requires, in addition, that the interpolant o contain only modal
operators that are shared between ¢ and . Both versions hold for the basic poly-
modal logic. Here is a proof sketch (cf. Andréka, van Benthem & Németi 1995).

PRrROOF. [Weak Interpolation]
Consider shared proposition letters only. Let consgy(¢) be the set of valid modal
consequences of ¢ in the language over the shared proposition letters. We show that

consyy (@) | ¥

Then the interpolant comes from consyy (¢) by Compactness. So, let M,z be any
model for the language Ly satisfying consgy(¢). By a standard model-theoretic ar-
gument, we find a model N, y for the language L, with the same modal theory as
M, z in the shared language Ly where ¢ holds. Now, move from these models to
w-saturated elementary extensions M1,z and N1, 4. The states z, y still share the
same Lgy—theory in the latter models — and moreover, this sharing relation = is an
Lgy—bisimulation between such states. Now, consider the following model MN. Its
states are pairs (u,v) with « in the domain of M™ and v in the domain of N* such
that « = v. Tts relations R; are the usual ones in a direct product: R;(u,v)(w,v’)
iff R;uu’ and R;vv’. Here, the two obvious projections are Ly- and Lg—p-morphisms
from MN onto the generated submodels of MT and Nt by x and y, respectively. For
proposition letters in the common language L4y, we can define an unambiguous val-
uation on these pairs (since the bisimulation = left these invariant). For proposition
letters in Ly — Ly and Ly — Lg we obtain suitable interpretations, too, by copying
along the projections. The result is a model for the full language Ly U Ly, which
has an Ly—bisimulation with M™, 2 and an L4—bisimulation with N*,y. Then we
can argue as follows. ¢ holds in N,y (by construction) and therefore in Nty (by
Lg—elementary extension), MN, (x,y) (by Ls—bisimulation). Since ¢ | ¢ (here is
where we use our key assumption), ¢» must be true in MN, {x, y), and hence also in
M*,z (Ly—bisimulation) and N, z (Ly—elementary submodel). [ |

This proof goes through for any modal logic whose characteristic frame class is
defined by universal Horn conditions, since these are preserved under submodels and
direct products of frames. The essential model MN in the above argument is a
submodel of a direct product. (It is a categorial ‘pull-back’: cf. Marx 1995 for further
category-theoretic background.) Note that this situation cannot be too common, since
Interpolation is known to be scarce for modal logics (Maksimova 1979).

PROOF. [Strong Interpolation]
To prove this stronger property, the above bisimulation = can be merely assumed to
satisfy zigzag clauses with respect to accessibility relations R; whose modalities (¢}
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occur in both ¢ and ¢. But since we need full Ly— and Ls-bisimulations connecting
MN and M*, z and N, y, respectively, we have to modify the product model. Here
is a sketch. In particular, the new model needs enough successors to verify the zigzag
clauses for all accessibility relations of modalities in Ly—Ly and Ly—Lg. For this
purpose, one adds disjoint copies of both M1 and NT, making the obvious links
(u, v)R;iv' if vR;v' towards the Mt copy, for all modalities (i) in Ls—Ly — and similarly
for Ly—Ly towards the copy of N*. For this extended frame, the obvious projections
to MT,NT are again bisimulations of the right kind, whence the final argument goes
through as before. This method can be made to prove Strong Interpolation for the
minimal poly-modal logic.

With additional frame conditions, however, even universal Horn clause ones, mat-
ters may be much more complicated. For instance, the modal logic with axiom
(1)¢ = (2)¢ has weak interpolation, but it evidently lacks the strong version. With
simple Horn clause conditions, the above proof may work. In particular, for modal
multi-S5, where all R; are equivalence relations, the preceding construction works
with two extra stipulations. In the original product part, one must add all links
(u, v)R;(v',v") with vR;v' for all (i) in Ly—Ly and Ly—L, — while all earlier links
between that part and the two copies of M, NV are to be made symmetric. The re-
sulting model is fit for multi—S5, and the above projections are suitable p-morphisms
automatically.

(Added in print. Maarten Marx has recently obtained significant generalization of
these observations.) | |

We sum up our results in the following
Theorem 10.1 Minimal Predicate Logic and CRS have Strong Interpolation.

ProoF. Minimal predicate logic is just our minimal poly-modal logic. For CRS, one
further, perhaps surprising, observation is needed (cf. Németi 1991, Thm 8).

Fact 10.2 The complete modal logic of CRS is nothing but multi-S5.

PrROOF. In one direction, all Sb-laws are clearly validated by the Path Principles. But
also conversely, any model for multi-S5 can be unravelled to one which satisfies all
Path Principles for free. This requires careful unraveling by sequences to make sure
that worlds share loops for all relations R;, while apart from that, all proper successor
steps are to be unique for each such relation. More precisely, the new worlds become
finite sequences of worlds (..., w, i, v, ...}, whose immediate successor steps select some
R;—successor v of w, marking this transition uniquely. Over these sequences, the new
relation R; is defined as the reflexive, symmetric transitive closure of the set of all
tuples (X, (X, ,y}). It follows that two sequences X,Y can only be related via some
finite sequence of transitions (using possibly different indices) iff ¥ can be reached
from X by first dropping successive X-tails, and then adding new tails. (There is a
unique shortest link of this kind. Longer connections may arise by making excursions
en route.) This observation implies the Path Principles for CRS. If there exists a
route between X and Y in which a relation R; is missing, then the minimal connecting
path does not involve R;. Repeating this for any given finite family of linkings, a pure
minimal connection must exist for the remaining modality.

By this Fact, Strong Interpolation for CRS follows from that for multi-Sb. [ |
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This argument resembles the representation of Section 9. Over models, it axiom-
atizes CRS as multi-Sh plus Atomic Locality. It also shows that virtually no Path
Principle has a modal definitions over state frames. The axiomatic description and
meta-theory of CRS becomes more complicated with accessibility relations for sub-
stitutions, and other vocabulary for a full predicate-logical language (cf. Németi 1991,
1993, Mikulas 1995). Standard predicate logic lacks Strong Interpolation. The valid
consequence Jx Pz = Jy Py has no interpolant in shared variables. For details on
interpolation properties for standard predicate logic, its finite variable fragments, and
cylindric-algebraic approximations, cf. Sain 1990, Marx 1995. This negative outcome
is compatible with the above positive result. Under translation of modal formulas
into a first-order state language, the previous result is like standard Interpolation,
but with respect to the accessibility relations for the shared modalities.

11 Substitutions revisited

This section lists some supplementary observations on substitutions and assignments.

Valid principles in a ’pure substitution calculus’
These include the following, assuming that the relations A, , are total functions:

TI=Y U=V S U= o=y TI= Y= & Ti=v
TI=YUI=T S TI=Y U=y =z < id

Extending the earlier representation method for abstract state frames

For representing abstract frames (S, {Aqs,y }e,yevarn); O can use either fixed points «
with A; yao, or the earlier method of equivalence relations:

(ayz)~(B,2) + Jy #xIz:ad,.p
(a,x) ~ (Ba y) : aAy,xﬁ

and take the reflexive symmetric transitive closure. Again, Path Principles arise in
the analysis of the key equivalence

When this representation is combined with the earlier one, over modal state frames
(S, {BRo}tvevans {Aeyte,yevan), adjustments are needed for the other equivalence:

aR.3 iff o =, 5

These involve several earlier modal interaction principles between substitutions and
quantifiers. The functions A; , are not very complex. For instance, in CRS, an ’ex-
istential principle’ like [y/2]3z ¢ ¢ Iz [y/x]¢ (modulo distinctness) can be treated
quasi-universally (cf. Marx 1994). On standard models, the principles of (1) contract
finite sequences of substitutions to normal forms for standard simultaneous substitu-
tions x := u (with all z; distinct, and no w; occurring among the ;).
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Enriching the language

Again, these models suggest introducing richer languages. Notably, the relations A, ,
are not symmetric, and hence it makes sense to also look backward along them. This
requires a ‘temporal logic’ with two directions for substitution:

M,a = Fyp¢ iff 36: 0,8 & M,B=¢  Future
M,a = P9 iff 38: 84, 0 & M,B=¢  Past

As an illustration, take the Hoare-style assignment axiom for program correctness:

{[t/x]o}e :=t{o}
In our temporal logic, this is the basic conversion axiom (H: “has always been”):
¢ — HyyoFyyod
One can also express standard identity statements using backward modalities:
r=y< PyT.
The backward substitution modality combines identity and ordinary quantification:

Pyod(x,y) & 2=y & 3z ¢(2,y)

With this additional expressive power, it would be of interest, even in standard pred-
icate logic, to axiomatize a version of this back-and-forth substitution calculus. The
substitution calculus may also be extended to deal with multiple substitutions, as was
suggested for polyadic quantifiers in Sections 6, 8. The same points apply.

12 Translations

Modal languages may be translated into first-order ones over standard state models.
This reflects a broad perspective on dependency semantics relating different models
and languages. Indeed, there are two main approaches towards 'taming’ classical
first-order logic, localizing a decidable ’core’. One uses standard semantics over non-
standard ’bounded’ language fragments, the other non-standard generalized semantics
over the standard first-order language. The former approach is more ’syntactical’ in
nature, the latter more ’semantical’. (Eventually, as so often in logic, this distinction
is relative. For instance, one can also translate ’semantic’ modal discourse about the
above modal first-order models into a restricted syntactic fragment of a two-sorted
first-order logic, with direct reference to both ’individuals’ and ’states’. But also con-
versely,... etcetera.) There is a mathematical duality lurking in the background here,
largely unexplored — which we illustrate by some simple observations from Andréka,
van Benthem & Németi 1995, which involve one—sorted translations.

From bounded fragments to generalized models

Consider any k—variable language L{z1,...,z;}. Let R be a new k—ary predicate. We
define a translation ¢r, from k-variable formulas to bounded first-order ones:
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Global Relativization
try(¢) arises from ¢ by relativizating all its quantifiers to the atom Raq...zp

Next, we define a corresponding operation on models. Let M be any generalized
assignment model for L{zy, ..., z;} (as yet without the new predicate symbol R).

Restricted Standard Models

The standard model M,.,, is M, viewed as a standard model, and expanded
with the following interpretation for the new predicate: R(dy,...,d) iff the
assignment z; := d; (1 < ¢ < k) is available in M.

The purpose of this construction shows in the following fact.

Proposition 12.1 For all available assignments a in M, and all formulas ¢,

M,a ¢ iff M..,atry(e)

As a consequence, one can effectively reduce universal validity over all generalized
assignment models (i.e., in CRS) to standard validity for bounded formulas.

Corollary 12.2 |Fcrs ¢ iff  Fuoanaara REpep = trg(o)

There is more to this analysis. Special classes of generalized assignment models
arise by imposing constraints on admissible assignments. The first-order theory of
such classes, too, will be decidable, as long as their additional conditions can be stated
into suitably bounded first-order forms. In particular, this applies to so-called ’locally
square’ generalized assignment models, in which every permutation or identification of
valuse in an admissible assignment yields another admissible assignment. (These are
needed for the full substitution version of CRS.) So far, we know less about converse
translations, running from bounded fragments to generalized semantics.

Translations help in comparing different models for dependency. Recall the analysis
of generalized quantifiers in Section 2. The latter arises from first-order logic through
a ’local translation’ tr; like the ’global translation’ try, but with a delicate difference.
At subformulas 32,1, one only relativizes to an atom R, where x enumerates all free
variables of the local context . This difference explains all deviant behaviour. E.g.,
try makes Modal Distribution a valid bounded principle, whereas tr; does not:

Yy (V& (Az — Bay) — (32 Az — 3o Buay))
try Ryy = Vy (Rzy — (Vo (Rzy — (Az — Bry))
— (Jz (Rxy A Az) = Jz (Rxy A Bry)))
tr; Yy (Ry = (Vo (Rry — (Ax — Bry)) — (3 (Rz A Az) — Tz (Raey A Bay)))

13 Higher dependency models

Generalized assignment semantics can be taken further, for richer languages. We
discuss a logical system inspired by the account of plurality in van den Berg 1995.

From singular to plural states

The semantic literature on collectives and plurals uses assignments mapping variables
to sets of objects. Thus, states move up, from type (v — e) to type (v — (e = 1)).
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But in a next step, one can identify states with sets of standard assignments, in the
type ((v — e) = t). This allows for finer discrimination, with possible dependencies
between values for individual variables (needed to account for linguistic anaphora).
In set-theoretic terms, from a repeated power (2°°M)YAR we go to 20°°M™™) Gen-
erally speaking, the latter will be much larger in size — which reflects our greater
freedom for encoding dependencies between objects assigned. Thus, the above gen-
eralized assignment models re-emerge from a quite different angle. There are some
natural connections between the two state domains. The following map sends plural
assignments A to sets S(A) of individual assignments:

S(A) = {f | for all z, f(z) is in A(z)}
Another map sends sets S of individual assignments to plural assignments A(S):
A(S) = Az - {f(x) | all fin S}.

The map S delivers special ‘full’ sets of assignments. It is 1-1, unlike the map A.
The difference between the two levels depends on the formal language interpreted
over them. With a standard first-order predicate logic for plurality, nothing changes.
This is the import of the Equivalence Theorem in van den Berg 1995, for a language
having new operators for ‘individualization’ §; - ¢ and ‘participation’ = - ¢. E.g.,

M, S |= d, - & iff for some set S' which consists of all functions in S set to one
specific individual value d for x, M, S" |= ¢

Richer logics of dependency

‘Generalized assignment models’ interpret first-order languages in a traditional for-
mat:

M, S,a | = ¢ (singular state o verifies ¢ in ‘plural context’ S)

But we can also interpret in the following format:
M, S ¢ (plurdl state S itself verifies formula ¢)

where formulas ¢ may involve new logical operators, exploiting the richer structure
of collective states. We have at least two kinds of existential quantification now,
reflecting two natural transition relations over states:

J.oux - ¢ is true at S iff ¢ is true at some S’ with § =* §’,
i.e., 5,5 have the same assignments up to values for the variable =

Fipax - ¢ is true at 5 iff ¢ is true at some S’ with S =, 57,
i.e., S, 5’ have the same assignments but all z-values in S’ are set to one object.

The resulting modal logic encodes a theory of interaction between individual and
collective quantification. It can be explored via modal frame correspondences, with
axioms reflecting structural properties of and connections between the above two
types of accessibility relation, say, R., % and R4, ¢ (for all variables ).
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Example 13.1 (Plural frame correspondences) e AllR.,, , are equivalence re-
lations. Hence, each quantifier 3.« satisfies 55.

o The R4, are not equivalence relations. They are transitive, but not reflexive or
symmetric. Thus, we have A 42 - Jna® - ¢ — Finax - ¢, but not, e.g., ¢ — Jqx - &
(as ¢ might be true as a collective assertion, but not for any individual value of
x) or 3.2 - Viaz - ¢ = ¢. Even so, Ri,.. satisfies further S5-like properties like:

Finat - ¢ = Jipae - Jigax - @
Tina® - Vinal - @Vinax - @

o There are also interactions between R, . and Ry, .. Fach R, is contained in
R..nz, whence 3.0 - ¢ — .z - ¢ (truth for an individual is a boundary case
of collective truth). The converse fails, of course. Next, R... o followed by Ria
reduces to an R, step, and vice versa:

Jeon® - o - ¢ & Jinax - @
Jpaz - e - ¢ & Jux - @
The same is true with universal quantifiers: the last occurrence always counts.

e Interactions between relations with different variable index occur, too. First, it is

easy to see that we have the following Permutation Principles:

deon® - Jeony - @ < Jeony - Jean® - @

Jina® - Jina¥ + @ & Fina¥ - Jina - @

deon® - Fina¥ + @ < Finay - Jean® - @
We also get Church-Rosser independence properties, reflecting semantic confluence
for all different Riaz, Rinay, Reone, Beony. This gives us principles like

deon® - Vina¥ @ = Vinay - Jean® - ¢

Tina®  Vina¥ + @ = Vina¥ * Jina® - @

The above highlights a more general issue. Sets of assignments S encode several
kinds of ‘dependence’ between variables. There may not be one single intuition.
‘Dependence’” may mean functional dependence (if two assignments in S agree on x,
they also agree on y), but also other kinds of ‘correlation” among value ranges. E.g.,
let S[z|y := d] be the set of z—values for all assignments in S whose y-value equals
d. Then, one may require that not all values S[|y := d] are the same, as d runs over
the domain of individual objects. Different dependence relations may have different
mathematical properties, and suggest different logical formalisms.

Appendix: Some sources

The proposal made in this paper is not new. It brings out a common pattern behind a number of
interesting relevant developments in the recent literature.

Dynamic logic Our modal semantics reflects standard dynamic logic (Pratt 1976, Harel 1984) — also
in details like ’substitutions as assignments’. In particular, it reflects current dynamic accounts of
anaphora in natural language, such as 'dynamic predicate logic’ (Groenendijk & Stokhof 1991, Ver-
meulen 1994), which change variable assignments, viewing an existential quantifier 3z as a ‘random
assignment’ to z. So far, dynamic predicate logic has employed standard set-theoretic semantics, and
hence it inherits the latter’s undecidability. But that is merely a conservative feature of its original
presentation. A more abstract state view is already discernible in Janssen 1983, when dealing with
Montague-style semantics for programming languages.

Probabilistic logic The core semantics is also close to that for probabilistic quantifiers proposed in
van Lambalgen 1991, with an ’independence relation’ restricting the choice of new individuals when
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evaluating first-order formulas. Alechina & van Benthem 1993 put this into a more general form with
'structured domains’, without probabilistic concerns — but with some technical complications (due
to their use of sequences of individuals, rather than assignments, as the states). Alechina 1995 is a
sustained study of dependency models, comparing state-based and object-based views of dependence.

Algebraic logic  Technically, our proposals involve the generalized semantics for predicate logic pro-
posed by Andréka & Németi, on the basis of their earlier work in cylindric algebra (see their beautiful
lectures at the conference “Logic at Work”; Marx & Pdlos 1995). What we consider here are essen-
tially ‘atom structures’ in cylindric algebra, viewed from a modal perspective. This perspective has
been developed in depth and applied quite extensively in the dissertation Venema 1992 on multi-
modal logic, whose ‘cylindric modal algebra’ is our technical paradigm here (cf. Marx & Venema
1995).

What we have to add to all this is a more radical intrinsic motivation, as well as the thesis that it
is the landscape of new options itself that is of intrinsic value. It needs to be developed — rather than
just serve to provide side-lights on an unchallenged orthodoxy. In the course of this story, we also
found a number of new technical results, showing the viability and interest of this kind of semantic
analysis.
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