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1 Finding the Computational Core

The current interest in logic and information flow has found its technical expression

in various systems of what may be called 'dynamic logic' in some broad sense.

But unfortunately, existing dynamic logics based on binary transition relations

between computational states have high complexity (cf. Harel 1984). Therefore, it is

worthwhile rethinking the choice of a relatively simple dynamic base system forming

the 'computational core' that we need, without getting entangled in the complexity

engendered by the additional 'mathematics of ordered pairs'. To some extent, this

program is realized by various algebraic theories of programs and actions. But the

conventional wisdom enshrined in these approaches may be biased: for instance, in its

insistence that Boolean negation or complement is the main source of complexity.

This may be seen by developing an alternative, namely a modal logic of 'arrows',

which takes transitions seriously as dynamic objects in their own right (cf. van

Benthem 1991,  Venema 1992). The main technical contribution of this Note is the

presentation of a system of Arrow Logic with both first-order relational operations

and infinitary Kleene iteration, which may be a good candidate for the computational

core calculus. In particular, we prove completeness for its minimal version, and

establish various connections with propositional dynamic logic and categorial logics.

There is a more general program behind the above proposal. For instance, one can do

the same kind of 'arrow analysis' for many other systems in the computational

literature, such as the 'dynamic modal logic' in De Rijke's contribution to this volume.

Moreover, issues of apparent undecidability and higher-order complexity abound in

the semantics of programming. For instance, in Hoare Logic, infinitary control

structures create high complexity: is this inevitable, or can the situation be mitigated

by redesign? Likewise, in Knowledge Representation, higher-order data structures

(such as 'branches' in trees) can generate complexity, witness the field of 'branching

temporal logic', which may be avoided by suitable re-analysis in many-sorted first-

order theories. Thus, the general issue raised in this Note is the following:

What is genuine 'computation' and what is 'extraneous mathematics'

in the logical analysis of programming and its semantics?
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If we can isolate the former component, many different technical results in the current

literature might be separable into different computational content plus a repetition of

essentially the same mathematical overhead. We do not offer any general solution to

this question here, but we do advocate some general awareness of the phenomenon.

2 Arrow Logic in a Nutshell

The intuition behind Arrow Logic is as follows. Binary relations may be thought of as

denoting sets of arrows. Some key examples are 'arcs' in graphs, or 'transitions' for

dynamic procedures in Computer Science, but one can also think of 'preferences' in

the case of ranking relations (as found in current theories of reasoning in Artificial

Intelligence, or social choice and economics). These arrows may have internal

structure, whence they need not be identified with ordered pairs <source, target>:

several arrows may share the same input-output pair, but also certain pairs may not be

instantiated by an arrow. This motivates the following definitions (what follows here

is a brief sketch: we refer to the references in the text for further technical details):

Arrow Frames    are tuples  (A, C3, R2, I1)  with

A a set of objects ('arrows') carrying three predicates:

C3 x,yz x  is a 'composition' of  y  and  z

R2 x,y y  is a 'reversal' of  x

I1 x x  is an 'identity' arrow

Arrow Models  M add a propositional valuation  V  here, and one can then interpret

an appropriate modal propositional language expressing properties of (sets of) arrows

using two modalities reflecting the basic 'ordering operations' of relational algebra:

M, x |=  p iff x �  V(p)

M, x |= ¬
�

iff not  M, x |= 
�

M, x |= 
�

&� iff M, x |= 
�

and M, x |= �
M, x |= 

�
•� iff there exist  y, z with  C x, yz  and  M, y |= 

� �
M, z |= �

M, x |= 
�

v iff there exists  y  with  R x, y  and  M, y |= 
�

M, x |= Id iff I x

The minimal modal logic of this system is an obvious counterpart of its mono-modal

predecessor, whose key principles are axioms of Modal Distribution:

(
�

1 � � 2) • ��� (
�

1• � ) � � � 2•� )�
 • (� 1 � � 2) � (

�
• � 1) � � � •� 2)

(
�

1 � � 2)v � �
1

v � � 2v

A completeness theorem is provable here along standard lines, using Henkin models.

(This minimal logic includes all the usual laws of Boolean Algebra.)
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Next, one can add further axiomatic principles (taking cues from relational algebra)

and analyze what constraint these impose on arrow frames via the usual semantic

correspondences. In particular, we have that

(1) ¬( � )v 	  (¬ � )v iff 
 x � y R x, y

(2) (¬ � )v 	 ¬( � )v iff 
 xyz: (R x, y & R x, z)  	  y=z

Together, these make the binary relation  R  into a unary function  r  of 'reversal'.

Then the 'double conversion' axiom makes the function  r  idempotent:

(3) ( � )vv  �
�   iff 
 x r(r(x)) = x .

Let us assume this much henceforth in our arrow frames. Next, the following

principles of Relational Algebra regulate the interaction of reversal and composition:

(4) ( � • � )v 	 � v• � v iff 
 xyz:  C x, yz 	  C r(x), r(z)r(y)

(5) �  • ¬( � v• � ) 	  ¬ � iff 
 xyz:  C x, yz 	  C z, r(y)x

Together (2), (4), (5) imply the further interchange law  
 xyz:  C x, yz 	  C y, xr(z) .

Moreover, there is actually a more elegant form of axiom (5) without negation:

� & � � • � �   	 � • � � & � � v• � � � �
Finally, the propositional constant  Id  will be involved in correspondences like

(6) Id 	  Idv iff 
 x:  I x 	  I r(x)

(7) Id•�  	 � iff 
 xyz: (I y & C x, yz) 	  x=z .

Obviously, there are many further choices here, and 'Arrow Logic' really stands for a

family of modal logics, whose selection may depend on intended applications.

Nevertheless, what might be the most natural 'computational core' in this field?

Our recommendation would be as follows:

Universal Frame Constraints

Take only those principles concerning composition, converse and identity  

on arrow frames which lack existential import: i.e., their corresponding 

constraints can be formulated by purely universal first-order sentences.

One potential exception to this proposal is Associativity for composition:

(8a) ( � • � )• � 	 � •(� •� � iff  
 xyzuv: ( C x, yz & C y, uv) 	� w: (C x, uw & C w, vz) )

(8b) and likewise in the opposite direction.

Associativity is often tacitly presupposed in the formulation of dynamic semantics.

In what follows we shall avoid this practice.
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Further information about the landscape of systems for Arrow Logic may be found in

van Benthem 1991,  Marx, Németi & Sain 1992, Vakarelov 1992 and Venema 1992

(cf. also Appendix 1). Two further technical points deserve mention here. One is the

existence of a certain uniformity. The above correspondences all follow from a

general result in Modal Logic called the Sahlqvist Theorem (van Benthem 1984),

which supplies an algorithm for computing frame conditions that can also be applied

to other proposed candidates for inclusion in our core set. The other point is that the

present modal language also has clear limits to its expressive power. Notably, one

cannot force composition to become a partial function (general arrow logic allows

more than one way of composing two transitions). For the latter purpose, enriched

modal formalisms will be needed, employing further modal operators (cf. De Rijke

1992B, Roorda 1992), which we shall not pursue here. Of course, by the time we

have enforced full representability of arrow frames via sets of ordered pairs, the

resulting modal logic will be just as complex as the ordinary theory of representable

relational algebras.  The art is to know when to stop.

3 A Complete System of Dynamic Arrow Logic

Now,  Dynamic Arrow Logic  adds one infinitary operator to the above language:

M, x  |= � * iff x  can be  C-decomposed into some finite

sequence of arrows satisfying  �   in  M .

What this says is that there exists some finite sequence of  � -arrows in  M which

allows of at least one way of successive composition via intermediate arrows so as to

arrive at  x . (Without Associativity, this does not imply that  x  could be obtained by

any route of combinations from these same arrows.) Intuitively,  � *  describes the

transitive closure of  �  . It  satisfies the following simple and natural principles:

(9) axiom �   �   � *
(10) axiom � *• � *  �   � *
(11) rule if   �  �   �   and  � • �  �   �   are provable, then so is    � * �   �
These principles may be added to the earlier minimal arrow logic, to obtain a simple

base system, but our preferred choice will consist of this minimal basis plus the

earlier principles (1)–(5), to obtain a suitable axiomatic Dynamic Arrow Logic  DAL.

Here is an illustration of how this system works.

Example Derivation of Monotonicity for Iteration

If |– � ��� then  |– � ��� *       (axi|–m (9))

Als|–  |– � *• � *  �  � *   (axi|–m (10)) whence  |– � * ��� *   (rule (11))                n



5

Example Derivation of Interchange for Iteration and Converse

i �   �   � * axiom (9)

ii �  v �   � *v i  plus monotonicity for converse

(the latter follows from its distributivity)

iii � � * v •� * v)  �    ( � *• � *)v this may be derived using axioms (3) and (4)

iv  � *• � * �  � * axiom  (10)

v  ( � *• � *)v �   � * v iv  plus monotonicity for converse

vi  � � * v •� * v) �   � * v iii, v

vii  �  v *  �   � * v ii,  vi  plus rule (11)

viii  �  v v *  �   �  v *  v by similar reasoning

ix  �  � �  v v   axiom (3)

x  � * � �  v v  * monotonicity for iteration

xi  � * �  �  v *  v x, viii

xii  � * v �  �  v *  v v xi  plus monotonicity for converse

xiii  �  v *  v v �   �  v * axiom (2)

xiv  � * v �   �  v * xii, xiii       n

Completeness may be established for  DAL , as well as several of its variants.

Theorem DAL  is complete for its intended interpretation.

Proof    Take some finite universe of relevant formulas which is closed under

subformulas and which satisfies the following closure condition:

if  � *  is included, then so is  � *• � *
Now consider the usual model of all maximally consistent sets in this restricted

universe, setting (for all 'relevant' formulas):

C x, yz iff � � �  y,  � �  z:  � • � �  x
R x, y iff � � �  y:  � v � x

Here we can prove the usual 'decompositions' for maximally consistent sets, such as

� • � �  x iff there exist  y, z  with  C x, yz  and  � � y,  � � z

using the minimal distribution axioms only. The key new case here is the following:

Claim  � * �  x   iff   some finite sequence of maximally consistent sets

each containing  �   'C–composes'  to  x  in the earlier sense.

Proof    From right to left.  This is a straightforward induction on the length of the

decomposition, using axioms (9), (10) and the closure condition on relevant formulas.



6

From left to right.   Describe the finite set of all  'finitely C–decomposable' maximally

consistent sets in the usual way by means of one formula  �  , being the disjunction of

all their conjoined 'complete descriptions'  � . Then we have

|–  "!
� :

since     is provably equivalent to  £# $ % �   in propositional logic, and  �   contains all

these  �    by definition. Next, we have

|– � • �&!'� :

To see this, suppose that  ( � • � ) & ¬ �   were consistent. Using Distributivity with

respect to successive relevant formulas,  ( � 1• � 2) & ¬ �   must be consistent for some

maximally consistent  � 1 , � 2 .  And likewise,   ( � 1• � 2) & ¬ �  & � 3 will be consistent

for some maximally consistent  � 3 . Now,  � 1 , � 2  must be in  �  , and moreover

C � 3, � 1 � 2   by the definition of  C  and some deductive reasoning. Therefore,  � 3  is

in  �   too (by definition), contradicting the consistency of  ¬ �  & � 3 . So, applying the

iteration rule  (11), we have

|–  * !
�
Therefore, if    * (  x , then  x  belongs to  � )
Semantic evaluation in the canonical model will now proceed in harmony with the

above syntactic decomposition: any relevant formula is true 'at' a maximally

consistent set  iff  it belongs to that set. This completes our analysis of the basic case.

In order to deal with the additional axioms (1)–(5), their frame properties must be

enforced in our finite canonical model. This may be done as follows:

i one closes the universe of relevant formulas under Boolean operations and 

converses: the resulting infinite set of formulas will remain logically finite, 

given the Boolean laws and the interchange principles for converse,

ii the definition  of the relation  C  is to be modified by adding suitable clauses,

so as to 'build in' the required additional frame properties.

First, the required behaviour of reversal is easy to obtain. One may define  r(x)  to be

the maximally consistent set consisting of (all representatives of)  {  v |  ( x } :  the

available axioms make this an idempotent function inside the universe of relevant

maximally consistent sets. For a more difficult case, consider axiom (5) with

corresponding frame condition  * xyz:  C x, yz !  C z, r(y)x . One redefines:

C x, yz iff both *  (  y,  + (  z:   • + (  x
and *  v (  y,  + (  x:   • + (  z
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This has been designed so as to validate the given frame condition. But now, we need

to check that the earlier decomposition facts concerning maximally consistent sets are

still available, to retain the harmony between membership and truth at such sets.

Here are the two key cases:,
• - .  x iff there exist  y, z  with  C x, yz  and  

,
. y,  - . z,

* .  x   iff   some finite sequence of maximally consistent sets

containing  

,
  'C–composes'  to  x  .

The crucial direction here is from left to right: can we find maximally consistent sets

as required with  C  satisfying the additional condition? What we need is this. In the

earlier proof, the sets  y, z  were constructed 'globally', by showing how successive

selection yields a consistent set of formulas  x, &y•&z  with  

,
. y,  - . z . (For then,

whenever  / • 0  is a relevant formula with  / . y,  0 . z ,  / • 0  must belong to  x , on

pain of inconsistency. ) Now, it suffices to show that, in this same situation, the set

z, &r(y)• &x  is consistent too.  Here, we use a rule derived from axioms  (2), (5):

if   |– 

, 1
¬ 2 - • 3 4  then  |– 3 1 ¬ 2 - v•

,
4 5

Then, if   |– z 1  ¬ (&r(y)• &x),  then   |– x 1  ¬ (&rr(y)• &z) , and hence also  |– x1  ¬ (&y•&z) : contradicting the consistency of  x , &y•&z . The argument for

iteration is similar. Moreover, the general case with all frame conditions implanted

simultaneously employs the same reasoning.                   n

Corollary DAL  is decidable.

Proof The preceding argument establishes not just axiomatic completeness

but also the Finite Model Property.    n

The above strategy for accommodating the relevant additional frame properties in the

finite counter-model is that of Roorda 1991. More generally, we conjecture that every

modal logic which is complete with respect to some finite set of Horn clause frame

conditions has the Finite Model Property. But, will decidability will go through if the

further existential property of Associativity is included in our basic arrow logic?

This is more difficult, since the required additional worlds, whose existence is easily

shown in a full Henkin model by traditional arguments, seem to over-flow the finite

universe of 'relevant' maximally consistent sets during filtration. Dimiter Vakarelov

has announced a proof, but the negative results in Andréka 1991 counsel caution.

Another strategy uses a labeled version of arrow logic with statements of the form

'arrow : assertion' , which transcribe the above truth definition into a simple fragment

of predicate logic. Labels might be either bare arrows (with relations of composition

and converse), or complex descriptions from some (semi-)group. Following Roorda
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1992, decidability might then be proved via an effective equivalence with some cut-

free labeled sequent calculus for Arrow Logic, whose rules might use a format like:6
,  x : A ,  y : B  |– 7 implies

6
,  xy : A•B |– 76

|– 7 ,  r(x) : A implies

6
|– 7 ,  x : Av

A general labeled approach to Arrow Logic must be left to further investigation.

4 Propositional Dynamic Logic with Arrows

Now what about a Propositional Dynamic Logic based on the above? The usual

account in the literature considers the addition of a propositional component referring

to truth at states essential, as it allows us some negation at least at the latter level.

Since this is no longer true now, having this second component becomes more of a

convenience. Nevertheless, we do think the resulting two-level system is a natural

one: 'arrow talk' and 'state talk' belong together in an analysis of computation and

general action. So as usual, add a Boolean propositional language, plus two

mechanisms of interaction between the two resulting components:

a  test  'mode'  ?  taking statements to programs

a  domain  'projection'  < >  taking programs to statements.

For notational convenience, we shall reserve   8 , 9  , ...  henceforth for state assertions

and  : , : ; , : < , ...  for describing programs in this two-tier system.

In line with the general modal analysis of the above, let us view this system with

some greater abstraction. What we have is a two-sorted modal logic, whose models

have both 'states' and 'arrows', and whose formulas are marked for intended

interpretation at one of these. Both the arrow and state domains may carry internal

structure, reflected in certain modalities, such as the earlier  •  and  v   referring to

arrows. (States might be ordered by 'precedence' or 'preference'  with appropriate

modalities.) Our key point, however, is this. Even the modes and projections

themselves may be viewed as 'non-homogeneous' modalities, reflecting certain

structure correlating the two kinds of object in our models. For instance, 'test' is again

a distributive modality, and so is 'domain':

( 8 = 9 ) ? >?8  ? = 9 ?
< : ; = : < > > < : ; > = <: < >

whose interpretations run as follows:

M, x |= 8  ? iff there exists some  s  with  T x, s  and  M, s  |=  8
M, x |= <: > iff there exists some  x  with  D s, x  and  M, x  |=  :

Intuitively, the first relation  T x, s  says that  x  is an identity arrow for the point  s ,

while the second relation  D s, x  says that  s  is a left end-point of the arrow  x .
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Via the usual correspondences, further axioms on  ? , < >  will then impose additional

connections in our arrow frames between  T  and  D .

Example Connecting Identity Arrows and End-Points

The principle  <@ ?> AB@   (itself again a formula which is in modal 'Sahlqvist form')

expresses the conjunction ofC
s D x :  D s, x  & Tx, sC
sx:  D s, x  E C  s':  T x, s'  E s=s' .       n

Also, axiomatic completeness proofs are straightforward here, with two kinds of

maximally consistent sets: one for arrows and one for points. Thus everything  about

Propositional Dynamic Logic is Modal Logic: not just its two separate components,

but also their connections. Further elegance may be achieved here by a reformulation.

The following observation is made in van Benthem 1991:

Fact There is one projection which is a Boolean homomorphism,

namely the diagonal function  F R• F x• Rxx

There are exactly two homomorphic modes,

namely F P• F xy• Px   and  F P• F xy• Py .

Thus, we can introduce three matching modalities with corresponding new binary

relations in their semantics:

M, s  |=  DG iff for some  x ,  H  s, x  and  M, x  |=  G
M, x  |=  L@ iff for some  s ,  L s, x  and  M, s  |=  @
M, x  |=  R@ iff for some  s ,  R s, x  and  M, s  |=  @

These modalities satisfy not just the Distribution axioms, but they also commute with

Boolean negation  (just like relational converse), so that we can take  H , L , R  to be

functions. This set-up is more elegant, as well as easy to use. (It may still be

simplified a bit by dropping  R @  in favour of (L @ )v. ) For instance, one source of

axiomatic principles is the interaction of various operators:

Observation

DL @IA�@    expresses that   

C
s:  L H  (s) = s

LD GIA (G &Id) • T   expresses that   

C
x D y  :  C x,   H L (x) y

L @ • GIE L@  expresses that   

C
xyz:  C x, yz E  L(x) = L(y) .

One may achieve exactly the power of the standard system with these new primitives

under the following

Translation from old to new format@  ?   :      L @  &  Id

< G >   :      D ( G •T )
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Analyzing the usual axioms of Propositional Dynamic Logic in this fashion is a

straightforward exercise. We list the key principles that turn out to be needed (these

allow us to represent statements   <J > K    faithfully as   D ( (J  &  RK ) • T ):

1 D JIL D (J  &  Id)

2 Id L  (L K  M  RK )
3a DL KIM
K
3b DR KIM
K
4 J 1 &  RD J 2 M  J 1 • (J 2 &  Id)

5 ( J 1•J 2) &  RK  M  J 1 • (J 2 &  RK )
Their corresponding frame conditions can be computed by hand, or again with a

Sahlqvist algorithm, as they are all of the appropriate modal form. These principles

suffice for deriving various other useful ones, such as the reductions

(Id &  L K ) • J  M  L K  &  JJ • (Id &  RK ) M  J  &  RK N
Finally, there is also a converse route, via two more schemata:

Translation from old to new format

L K    :      K  ? • T

D J    :      < Id &  J >

The same style of analysis may be applied to richer systems of dynamic logic, having

additional structure in their state domains (cf. van Benthem 1991, de Rijke 1992A).

One example is the 'dynamic modal logic' in De Rijke's contribution to this Volume,

which features modes over information states with an inclusion order Ó . This may be

treated by introducing another propositional constant at the arrow level, say,  E  for

'inclusion' (perhaps with suitable axioms expressing its transitivity and reflexivity).

Then, the logic of updating and revision will employ special defined arrows, such as

E &  RK update transition for  O
(E &  RK ) & ¬( (E &  RK ) • (E &  ¬Id) ) minimal update transition for  O

This may provide a workable alternative where the undecidability of the full system is

circumvented. Roughly speaking, the arrow version should stay on the right side of

the  '2D-boundary' which allows embedding of two-dimensional grids in the models,

and hence encoding of full Turing machine computation.
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5 Appendix 1 From Amsterdam to Budapest

Arrow Logic in its 'Amsterdam manifestation' says that dynamic transitions need not

be identified with the ordered pairs over some underlying state set. This idea has

really two different aspects. Distinct arrows may correspond to the same pair of

<input, output> , but also, not every such pair need correspond to an available arrow.

This shows very well in the following less standard example:

Let arrows be functions   f : A P B  giving rise to, but not identifiable with, ordered pairs  <A, B>

of 'source' and 'target'. Then, the relation  C  expresses the partial function of composition of

mappings, while the reversal relation  R  will hold between a function and its inverse, if available.

This model will validate all of the earlier core principles, at least, in their appropriate

versions after functionality for reversal has been dropped. For instance, axiom (5)

now expresses the fact that, whenever  f = g0h  and  k = g–1 , then also  h = k0f .

Nevertheless, there is also an interesting more 'conservative' variant found in various

earlier and recent publications from Budapest, where arrows are still ordered pairs,

but one merely gives up the idea that all ordered pairs are available as arrows.

Essentially this takes us to a universally first-order definable class of arrow frames

which can be represented via sets of ordered pairs (though not necessarily full

Cartesian products). Its complete logic can be determined in our formalism, and it

turns out to be decidable as well (Marx Németi & Sain 1992). This system is another

natural, richer stopping point in the arrow landscape, including the earlier systems

presented in Section 2 above, with additional axioms expressing essentially the

uniqueness of the pair of identity arrows surrounding an arbitrary arrow, as well as

their 'proper fit' with composition and reversal. Various weaker natural arrow logics

with desirable meta-properties (decidability, interpolation, etcetera) may be found in

Németi 1987 (see also the survey Németi 1991 for more extensive documentation).

Simón 1992 investigates deduction theorems for arrow logics, showing that our basic

systems lacks one. Finally, Andréka 1991 provides a method for proving results on

non-finite-axiomatizability in the presence of full Associativity. Even undecidability

lies around the corner, in this perspective, as soon as one acquires enough power to

perform the usual encoding of relation-algebraic quasi-equations into equations.

6 Appendix 2 Dynamic Arrow Logic with a Fixed-Point Operator

The analysis of this Note may be extended to prove completeness for a more powerful

system of Dynamic Arrow Logic which has the well-known minimal fixed-point

operator  Q p• R (p) . Its two key derivation rules are as follows:
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if   |– S T U V W�U then   |– X p• S (p) W�U I

if   |– Y W�X p• S (p) then   |– S T Y V W�X p• S (p) II

This language defines iterations  S *  in our sense via the fixed-point formula

X p•  S Z p•p .

(Its successive approximations give us all C-combinations that were involved in the

earlier semantic definition.) The derivation rules for iteration then become derivable

from the above two rules:  I  corresponds to rule (11), while  II  gives the effect of the

axioms (9), (10). In the completeness theorem, these allow us to generalize the earlier

argument for the crucial decomposition:

X p• S (p) [ x   iff    x  belongs to some finite iteration of the operator\
p• S (p)  starting from the empty set for  p .

7 Appendix 3 Connections with Categorial Logic and Action Algebra

Dynamic Arrow Logic may also be compared to a dynamic version of categorial

logic, as employed in current categorial grammars, extended with Kleene iteration.

At base level, this connection runs between ordinary arrow logic and standard

systems such as the Lambek Calculus with two directed functional slashes (cf. van

Benthem 1991, 1992 for details):

a\b := ¬(av • ¬b)

b/a := ¬ (¬b • av)

Moreover, categorial product goes to composition  • . The two basic categorial laws

then express the basic interaction principles for  C  and  r  on arrow frames:

a • (a\b)  ]   b ^ xyz:  C x, yz W  C z, r(y)x

(b/a) • a  ]  b ^ xyz:  C x, yz W  C y, xr(z) .

This gives us the two implications

X  ]   a\b   _ a • X  ]   b X  ]   b/a   _    X • a  ]   b
Their converses (which generate all of the Lambek Calculus) require no more.

For instance, suppose that  a • X  ]   b . Now,  X & (av • ¬b)  ]   av •  (¬b & (a • X)) by

the first interaction principle, whence we obtain  X & (av • ¬b)  ]   av •  (¬b & b)  and

then X & (av • ¬b)  ]   av •  0  ]   0 . I.e.,  X  ]   ¬(av • ¬b) .

Thus, Basic Arrow Logic contains the Lambek Calculus, and it even does so

faithfully, thanks to the completeness theorem in Mikulás 1992. Many further

connections between categorial logics and arrow logics remain to be explored.
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With  *  added, we get some obvious further principles, such as

 (a\a)*   =   (a\a) ,

due to Tarski & Ng. Note thow this may be derived in Dynamic Arrow Logic:

1 (a\a)  `   (a\a)* axiom 9    

2 (a\a)  `   (a\a)

(a\a) • (a\a)  ̀   (a\a) by the above categorial rules (derivable in arrow logic)

(a\a)*  ̀   (a\a) by rule (11)

A related system is the Action Algebra of Pratt 1992 and previous publications, which

may be viewed as a standard categorial logic enriched with iteration and disjunction.

It would be of interest to determine the precise connection with arrow logic here.

What is easy to determine, at least, is the following 'arrow content' of the equational

axiomatization offered by Pratt. Its basic axioms each exemplify one of four kinds of

assertion in our framework:

i consequences of the minimal arrow logic – in particular, the basic laws of 

monotonicity  (a typical example is  |– a a b  `   a a  (b + b') "  )

ii expressions of categorial principles, whose content was the basic interaction 

between composition and converse  ( as expressed in the inequalities

|– a(a a  b)  `   b  ̀   a a  ab "  )

iii universally valid principles for iteration, such as its monotonicity

(compare  |–  a*  ̀   (a+b)*  "  )

iv associativity for composition (whose precise strength remains to be 

determined in the arrow framework, as we have seen).

8 Appendix 4 Predicate Arrow Logic

It may also be of interest to ask whether the above style of analysis applies to

ordinary predicate logic. In particular, does its undecidability go away too, once we

give up the usual bias toward ordered pairs? First, the formulation is easy:

Take a two-sorted language with  'objects'  and  'arrows'

and read, say,  "Rxy"  as   b a ( Ra &  l(a) = x &  r(a) = y ) .

Thus we need unary predicates for the old relations, plus two new auxiliary cross-

sorted maps  l , r  identifying end-points of arrows. (For general  n-any relations, we

may need a more-dimensional version of Arrow Logic, as in Vakarelov 1992.)

But the resulting system still faithfully embeds ordinary predicate logic, and hence it

is at least as complex.

Question     What would have to be weakened in standard predicate logic to get an 

arrow-based decidable version, either in the Amsterdam or the Budapest Way?
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What this analysis shows is that versions of Arrow Logic can also get undecidable

without identifying arrows with ordered pairs, viz. by putting in additional expressive

power via modal operators reflecting further predicate-logical types of statement,

such as a 'universal modality' or a 'difference operator' or yet other additions (cf.

again De Rijke 1992B, Roorda 1992 – as well as the various recent publications by

Gargov, Goranko, Passy and others from the 'Sofia School' in enriched modal logic).

Question    What happens to the previous versions of Propositional Arrow Logic

if one adds a 'universal modality' or a 'difference operator', or yet other

notions from extended Modal Logic?

A good concrete example here is the traditional formula enforcing infinity of a binary

relation in its models:c
x ¬Rxx &   

c
x d y Rxy &  

c
xy (Rxy  e

c
z (Ryz e  Rxz)) .

Its 'arrow transcription' reflects our natural reasoning about this formula, in terms of

growing chains in arrow diagrams. Analyzing the usual argument about its models,

one finds how little is needed to show their infinity, thus destroying the Finite Model

Property and endangering Decidability.

9 References

H. Andréka
1991 'Representations of Distributive Semilattice-Ordered Semigroups with Binary Relations', 

Algebra Universalis 28, 12-25.

J. van Benthem
1984 'Correspondence Theory' , in D. Gabbay & F. Guenthner, eds., 167-247.

1991 Language in Action. Categories, Lambdas and Dynamic Logic, Elsevier Science Publishers, 

Amsterdam, (Studies in Logic, vol. 130).

1992 'Logic and the Flow of Information', in D. Prawitz et al., eds., to appear.

D. Gabbay & F. Guenthner, eds.
1984 Handbook of Philosophical Logic, vol. II, Reidel, Dordrecht.

D. Harel
1984 'Dynamic Logic', in D. Gabbay & F. Guenthner, eds., 497-604.

M. Marx, I. Németi & I. Sain
1992 'Everything You Always Wanted to Know about Arrow Logic', Center for Computer Science 

in Organization and Management, University of Amsterdam / Mathematical Institute of the 

Hungarian Academy of Sciences, Budapest..

S. Mikulás
1992 'Completeness of the Lambek Calculus with respect to Relational Semantics', Research Report 

LP-92-03, Institute for Logic, Language and Computation, University of Amsterdam.

I. Németi
1987 'Decidability of Relation Algebras with Weakened Axioms for Associativity', Proceedings 

American Mathematical Society 100:2, 340-345.

1991 'Algebraizations of Quantifier Logics, An Introductory Overview', to appear in Studia Logica, 

special issue on Algebraic Logic (W. Blok & D. Pigozzi, eds.).



15

V. Pratt
1992 'Action Logic and Pure Induction', this Volume.

D. Prawitz, B. Skyrms & D. Westerståhl, eds.
to appear    Proceedings 9th International Congress for Logic, Methodology andPhilosophy of Science. 

Uppsala 1991, North-Holland, Amsterdam.

M. de Rijke
1992A  'A System of Dynamic Modal Logic', Report LP-92-08, Institute for Logic, Language and 

Computation, University of Amsterdam.

1992B  'The Modal Logic of Inequality', Journal of Symbolic Logic 57:2, 566-584.

D. Roorda
1991 Resource Logics. Proof-Theoretical Investigations, Dissertation, Institute for Logic, Language 

and Computation, University of Amsterdam.

1992 Lambek Calculus and Boolean Connectives: On the Road, Onderzoeksinstituut voor Taal en 

Spraak, Rijksuniversiteit, Utrecht.

A. Simon
1992 'Arrow Logic Lacks the Deduction Theorem', Mathematical Institute of the Hungarian 

Academy of Sciences, Budapest.

D. Vakarelov
1992 'A Modal Theory of Arrows I', Report ML-92-04, Institute for Logic, Language and 

Computation, University of Amsterdam.

Y. Venema

1992     Many-Dimensional Modal Logic, Dissertation, Institute for Logic, Language and Computation,

University of Amsterdam.


