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1 Introduction

An important notion in epistemic logic is that of distributed knowledge
among a group of agents, i.e. the knowledge that is obtained when the
individual knowledge of all the agents in the group is put together [1, 4].

The standard semantical definition of distributed knowledge, however,
appears to be rather problematic. One major issue is that it does not fit
well with the notion of bisimulation [6, 3, 5]. Given the apparent robustness
of bisimulation as a notion of epistemic model equivalence this observation
can be taken as an argument against the standard semantical account of
distributed knowledge [3, 5].

In section 4 however, we will argue that bisimulation is not as suit-
able a notion of epistemic equivalence as is generally assumed, especially
if groups of agents are involved. We propose a straightforward generaliza-
tion of bisimulation, called collective bisimulation, which indeed avoids the
problem concerning distributed knowledge in a natural way.

Another issue that is sometimes considered as an indication of the un-
suitability of the standard semantical definition of distributed knowledge is
that it does not fully correspond with an alternative, but at least equally
well motivated, more syntactical notion of distributed knowledge [2, 7, 5].

∗The ideas presented here have largely benefited from discussions with Johan van
Benthem, Michael Franke, Jelle Gerbrandy, Paul Harrenstijn, Fenrong Liu, Maricarmen
Martinez, Siewert van Otterloo, Olivier Roy, and Yanjing Wang.
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Gerbrandy [2] and van der Hoek et.al. [7] identified special classes of epis-
temic models on which the semantical and syntactical notions of distributed
knowledge do coincide. However, no reasons whatsoever have been recog-
nized as to why one would like to restrict the present semantical framework
to either one of these special classes of models. Roelofsen and Wang [5] gave
yet another semantical definition of distributed knowledge, which is based
on the standard one, but relativized with respect to the model operation
of bisimulation contraction, and which does coincide with the syntactical
notion of distributed knowledge. But again, this solution is nothing but a
technical trick, deprived of any intuitive motivations whatsoever.

Here, we take a different stance. In sections 6 and 7, we will not only
explain the difference (and partial overlap) between the standard semantical
and the alternative syntactical notion of distributed knowledge, but also ar-
gue that it is actually desirable to have a plurality of accounts of distributed
knowledge. Under certain natural assumptions both notions are suitable,
and they indeed coincide in this case; under other assumptions only the
semantically motivated notion makes proper sense, and yet under different
assumptions the syntactically motivated account should be adopted.

2 Epistemic Logic

We assume a countable set of proposition letters P and a finite set of agents
A to be given throughout our general discussion and clear from the context
in particular examples.

Languages. The basic epistemic language consists of all formulas that can
be built from proposition letters in P, using conjunction, negation, and a
modal operator Ka for every agent a ∈ A, where Kaϕ stands for “agent a
knows that ϕ is the case”. We denote the basic epistemic language by LK :

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | Kaϕ

One standard way to extend the basic epistemic language is to add modal
operators DG for every group of agents G ⊆ A. DGϕ stands for “it is
distributed knowledge among G that ϕ is the case”, i.e., ϕ is a logical con-
sequence of the combined knowledge of all the agents in G. We denote the
resulting language by LD:

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | Kaϕ | DGϕ
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For any formula ϕ ∈ LD, let d(ϕ) denote the maximum number of nested
DG operators in ϕ: d(p) = 0 whenever p ∈ P, d(¬ϕ) = d(ϕ), d(ϕ ∧ ψ) =
max(d(ϕ), d(ψ)), d(Kaϕ) = d(ϕ), and d(DGϕ) = d(ϕ) + 1. For each n =
0, 1, 2, . . ., we define:

LDn = {ϕ ∈ LD | d(ϕ) ≤ n}
to be the sub-language of LD containing only formulas with at most n nested
DG operators. Notice that LK = LD0 and LD = ∪nLDn .

Models. An epistemic model M for P and A is a triple:

(W,∼, V )

where W is a nonempty, possibly infinite set of worlds, ∼: A → ℘(W ×W )
assigns to every agent a ∈ A a so-called indistinguishability relation ∼a ⊆
W × W , which is an equivalence relation consisting of all pairs of worlds
between which a is unable to distinguish, and finally V : W → P → {0, 1}
assigns to every world a propositional valuation of P. An epistemic state s
for P and A is a pair (M,w) where M = (W,∼, V ) is an epistemic model
for P and A and w ∈ W . We say that s is based on M . Let S5 denote the
class of all epistemic models for P and A.

We will often simply say model and state instead of epistemic model and
epistemic state. If (M,w) is an epistemic state, we call w the actual world.
If M = (W,∼, V ) is an epistemic model, we will often talk about worlds in
M when we actually mean worlds in W .

For a group of agents G ⊆ A we introduce the following abbreviation,
which is non-standard, but convenient for our further discussion.

∼∩G =
⋂

a∈G

∼a

Information states. Let M = (W,∼, V ) be an epistemic model and let
w be a world in W . Then the individual information state [M,w]a of an
agent a ∈ A in (M,w) consists of all epistemic states (M,v) that a is unable
to distinguish from (M,w):

[M,w]a = {(M,v) | w ∼a v}
Similarly, the collective information state [M,w]G of a group of agents G ⊆
A in (M,w) consists of all epistemic states (M,v) that none of the agents
in G is able to distinguish from (M,w):

[M,w]G = {(M,v) | w ∼∩G v}

3



Semantics. The satisfaction relation � between epistemic states and for-
mulas in the basic epistemic language LK is recursively defined as follows:

M,w � p iff w ∈ V (p)
M,w � ¬ϕ iff M,w � ϕ
M,w � ϕ ∧ ψ iff M,w � ϕ and M,w � ψ
M,w � Kaϕ iff M,v � ϕ for all (M,v) ∈ [M,w]a

The intuitive idea behind the Ka clause is that agent a knows ϕ if and only
if ϕ is true in all worlds that a is unable to distinguish from the actual world.

There appear to be at least two ways to define the semantics of formulas
involving distributed knowledge. The first and most standard alternative is
a semantically motivated generalization of the above Ka clause:

M,w � DGϕ iff M,v � ϕ for all (M,v) ∈ [M,w]G (1)

According to this definition, ϕ is distributed knowledge among a group of
agents G if and only if ϕ is true in every state that none of the agents in G
is able distinguish from the actual world.

The other definition is a syntactically motivated formalization of the idea
that distributed knowledge among a group of agents G is what can be de-
rived from the combined knowledge of all agents in G. This definition of the
semantics of DG is given in terms of the notions of entailment and collective
knowledge sets. These notions are defined simultaneously with the satisfac-
tion definition itself. First of all, let Know

D(n)
a (M,w) and Know

D(n)

G (M,w)
denote the individual knowledge set of an agent a ∈ A and the collective
knowledge set of a group of agents G ⊆ A, respectively, in an epistemic
state (M,w) and w.r.t. a language LD(n) :

KnowDn
a (M,w) =

{
ϕ ∈ LDn | (M,w) �◦ Kaϕ

}

KnowDn
G (M,w) =

⋃

a∈G

KnowDn
a (M,w)

KnowD
a (M,w) =

⋃

n∈N

KnowDn
a (M,w)

KnowD
G (M,w) =

⋃

a∈G

KnowD
a (M,w)

A formula φ ∈ LDn is entailed by a set of formulas Φ ⊆ LDn if and only if
all epistemic states that satisfy Φ (i.e., all formulas in Φ) also satisfy φ:

Φ � φ iff ∀(M,w) : M,w � Φ ⇒M,w � φ

4



Finally, a formula DGφ, where φ ∈ LDn , is satisfied by an epistemic state
(M,w) if and only if φ is entailed by the collective knowledge set of G in
(M,w) w.r.t. LDn :

(M,w) � DGφ (φ ∈ LDn) iff KnowDn
G (M,w) � φ (2)

Notice that, in particular, a formula which does not involve distributed
knowledge is distributed among G if and only if it is entailed by the collective
knowledge set of G w.r.t. LK :

(M,w) � DGφ (φ ∈ LK) iff KnowK
G (M,w) � φ

For further reference, let us write �• for the satisfaction relation whose DG

clause is given by 1, and �◦ for the satisfaction relation whose DG clause is
given by 2.

3 Problems

As mentioned above, �• is generally accepted as a suitable semantics for
distributed knowledge [1, 4]. Also, �• and �◦ are often assumed to give an
equivalent account of distributed knowledge, as their underlying intuitions
really seem to be two formulations of one and the same idea.

But first impressions have turned out to be deceptive in this case: �•

and �◦ have turned out not to be equivalent after all [2, 7, 5]. And �•

itself is problematic for another reason as well: it does not fit well with the
notion of bisimulation, which is the standard notion of model equivalence in
epistemic logic [6, 3, 5]. In this section we make these issues precise.

3.1 Bisimulation Invariance

Bisimulation is the standard notion of equivalence in epistemic model theory.

Definition 1 (Bisimulation) Let M = (W,∼, V ) and M ′ = (W ′,∼′, V ′)
be two epistemic models. A non-empty binary relation ≡ ⊆ W ×W ′ is a
bisimularity relation between M and M ′ if and only if for every w ∈W and
w′ ∈W ′ such that w ≡ w′ we have:

1. For every proposition letter p ∈ Φ:

• V (w)(p) = V ′(w′)(p)

2. For every agent a ∈ A:
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• if w ∼a v, then for some v′ ∈W ′: w′ ∼′
a v

′ and v ≡ v′,

• if w′ ∼′
a v

′, then for some v ∈W : w ∼a v and v ≡ v′.

We say that two models M and M ′ are bisimilar, and write M �M ′, if and
only if there is bisimilarity relation between them. We say that two states
(M,w) and (M ′, w′) are bisimilar, and wirte (M,w) � (M ′, w′), if and only
if there is a bisimularity relation ≡ between M and M ′ such that w ≡ w′.
The relation of bisimulation, which is denoted by �, is the relation that
holds between any two bisimilar states.

Definition 2 (Invariance) An epistemic language1 L∆ is invariant under
bisimulation w.r.t. a satisfiability relation � if and only if for every two
bisimilar states (M,w) and (M ′, w′), and for every formula ϕ ∈ L∆, we
have:

M,w � ϕ iff M ′, w′ � ϕ

The following proposition2 has given rise to the generally accepted concep-
tion of two bisimilar states as representations of one and the same situation.

Proposition 1 LK is invariant under bisimulation w.r.t. both �• and �◦.

Proof. The result for �• is standard [6], and the result for �◦ follows from
the fact that �• and �◦ coincide for all formulas in LKC . �

But when the DG operator for distributed knowledge are added to the
language, and when formulas involving distributed knowledge are inter-
preted according to �•, bisimulation is not a suitable notion of model equiv-
alence anymore.

Proposition 2 LD is invariant under bisimulation w.r.t. �◦, but not w.r.t.
�•.

Proof. First consider the positive result. Towards a contradiction, sup-
pose LD is not invariant under bisimulation w.r.t. �◦. Then there are two
bisimilar states (M,w) and (M ′, w′) and a formula ϕ ∈ LD such that:

M,w �◦ ϕ
M ′, w′

�
◦ ϕ

1Henceforth, L∆ is supposed to stand for LK , LD, or LDn for some n ∈ N.
2together with its successful generalization to the epistemic language with common

knowledge operators.
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First observe that ϕ must be in LDn for some n ∈ N. We proof that there
must also be a formula ϕ′ ∈ LDn−1 such that M,w �◦ ϕ′ and M ′, w′

�
◦ ϕ′.

This implies that there must in fact be a formula ϕ′′ ∈ LK with the same
properties, which contradicts proposition 1.

We consider the case where ϕ is of the form DGφ for some φ ∈ LDn−1 .
Suppose that M,w �◦ DGφ. Then, by definition, KnowDn−1

G (M,w) �◦ φ.
By compactness, there is a finite subset {ψ1, . . . , ψn} of KnowDn−1

G (M,w)
such that {ψ1, . . . , ψn} �◦ φ and therefore also ψ �◦ φ, where ψ = ψ1 ∧
. . . ∧ ψn. Notice that ψ ∈ LDn−1 . We now show that M,w �◦ ψ and
M ′, w′

�
◦ ψ. For the first, observe that, as everything which is known to

be true in (M,w) must in fact be true in (M,w), we have that M,w �◦ ψi

for every i ∈ {1, . . . , n} and thus that M,w �◦ ψ. For the second, notice
that if M ′, w′ �◦ ψ were the case then would have Know∆

G(M ′, w′) �◦ φ,
and therefore M ′, w′ �◦ DGφ would also hold, which would contradict our
assumption. So M ′, w′

�
◦ ψ. This establishes that LD is invariant under

bisimulation w.r.t. �◦.
For the negative result, compare the epistemc states given in figures 1

and 2 (in figures, the solid world always denotes the actual world).

p

-p

wM

-p

p

a

b a

b

Figure 1: (M,w).

p

-p

w'M'

a,b

v'

Figure 2: (M ′, w′).

Let G = {a, b}. Although (M,w) and (M ′, w′) are bisimilar, we have:

(M,w) �• DGp

(M ′, w′) �
• DGp

�

Proposition 2 indicates that �•, does not fit well with the notion of
bisimulation. Given the apparent robustness of bisimulation as a notion of
epistemic model equivalence this observation can be taken as an argument
against the semantic account of distributed knowledge given by �• [3, 5].
In section 4 however, we will argue that bisimulation is not as suitable a
notion of epistemic equivalence as is generally assumed if groups of agents are
involved. We will propose a straightforward generalization of bisimulation,
which restores invariance of LD w.r.t. �• in a natural way.
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3.2 Satisfaction

We proceed with a comparison of �• and �◦. We first observe that, by
definition, �• and �◦ coincide for every formula in which DG does not occur.

Fact 1 For every formula ϕ ∈ LK and every epistemic state (M,w):

M,w �◦ ϕ iff M,w �• ϕ

As soon as distributed knowledge is involved, however, things are different:
�• turns out to be strictly stronger than �◦.

Proposition 3 For every state (M,w) and every formula ϕ ∈ LD:

M,w �◦ ϕ implies M,w �• ϕ

Proof. It is enough to prove that the statement holds for every formula
ϕ ∈ LDn , for any n ∈ N. The proof is by induction on n. The case for n = 0
follows directly from fact 1. Next, suppose ϕ is of the form DGφ, where
φ ∈ LDn , and that M,w �◦ DGφ. Then, by definition, KnowDn

G (M,w) �◦

φ. Now let v be any world in W such that w ∼∩G v. Clearly, for every
ψ ∈ KnowDn

G (M,w) we have M,v �◦ ψ. By the induction hyposthesis,
M,v �◦ ψ implies M,v �• ψ, which in turn gives us M,w �• DGφ. �

Proposition 4 There is a state (M,w) and a formula ϕ ∈ LD such that:

M,w �
◦ ϕ

M,w �• ϕ

Proof. Recall the epistemic states depicted in figure 1. Let G = {a, b}.
p

-p

wM

-p

p

a

b a

b

Every world in M that neither agent a nor agent b is able to distinguish from
w (the only such world is w itself) satisfies p. Consequently, M,w �• DGp.
On the other hand, it is easy to see that KnowK

G (M,w) �◦ p, and therefore
M,w �

◦ DGp. �
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Proposition 4 demonstrates that �• and �◦ define different semantics
for distributed knowledge. Similar results have been established earlier by
Gerbrandy [3], van der Hoek et.al. [7] and Roelofsen and Wang [5]. Ger-
brandy [2] and van der Hoek et.al. [7] identified special classes of epistemic
models on which �• and �◦ do coincide. However, no motivation is provided
as to why one would like to restrict the present semantical framework to
either one of these special classes of models. Roelofsen and Wang [5] give an
alternative semantics for distributed knowledge, which does coincide with
�◦. This semantics is based on �•, but relativized to the model operation of
bisimulation contraction.

Here, we take a different approach. In sections 6 and 7, we will not only
explain the difference (and partial overlap) between �• and �◦, but also
argue that it is actually desirable to have a plurality of semantical accounts
of distributed knowledge. Under certain natural assumptions, �• and �◦

are both suitable, and indeed coincide; under other assumptions only �•

makes proper sense, and yet under different assumptions only �◦ should be
considered.

4 Collective Bisimulation

We first consider the problem brought up in section 3.1: that of �• not
preserving LD under bisimulation. Recall that bisimulation is the relation
that holds between any two bisimilar epistemic states. Gerbrandy [3] shows
that bisimulation can be characterized as the largest equivalence relation
between epistemic states that complies with what he calls the principle of
epistemic extensionality.

Definition 3 (Principle of Epistemic Extensionality)
An equivalence relation ≡ between epistemic states is called epistemically
extensional if it is such that (M,w) ≡ (M ′, w′) if and only if:

1. For every proposition letter p ∈ Φ:

• V (w)(p) = V ′(w′)(p)

2. For every agent a ∈ A:

• [M,w]a ≡ [M ′, w′]a

where A ≡ B for two sets of epistemic states A and B, means that for every
state in A we can find an equivalent one in B and vice versa.
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We will argue that the principle of extensionality as stated here is too
weak to serve as an appropriate foundation for a notion of equivalence be-
tween epistemic states. Besides identical valuations of proposition letters
and equivalence of individual information states, the principle should also
enforce equivalence of collective information states. The latter should be
made explicit, as it does not automatically follow from the former. A case
in point is the epistemic state depicted in figure 1:

p

-p

wM

-p

p

a

b a

b

v

x y

The individual information state [M,w]a of agent a in state (M,w) is equiv-
alent to its information state [M,x]a in (M,x). The same goes for agent b.
However, for G = {a, b} we have:

[M,w]G = {(M,w)}
[M,x]G = {(M,x)}

and (M,w) and (M,x) are in no natural sense equivalent, as they do not
satisfy the same proposition letters.

This observation naturally suggests the following adaptation of the prin-
ciple of epistemic extensionality:

Definition 4 (Revised Principle of Epistemic Extensionality)
An equivalence relation ≡ between epistemic states is called epistemically
extensional if it is such that (M,w) ≡ (M ′, w′) if and only if:

1. For every proposition letter p ∈ Φ:

• V (w)(p) = V ′(w′)(p)

2. For every group of agents G ⊆ A:

• [M,w]G ≡ [M ′, w′]G

Notice that the revised principle is a proper generalization of the original
principle, which only requires equivalence of information states of all groups
of agents consisting of just one agent. So every equivalence relation that
complies with the revised principle of epistemic extensionality, also complies
with the original principle of epistemic extensionality, but not vice versa.
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We call the largest equivalence relation between epistemic states that
complies with the revised principle of epistemic extensionality collective
bisimulation. This relation can also be defined directly as follows.

Definition 5 (Collective Bisimulation) Let M = (W,∼, V ) and M ′ =
(W ′,∼′, V ′) be two epistemic models. A non-empty binary relation ≡c ⊆
W ×W ′ is a collective bisimularity relation between M and M ′ if and only
if for every w ∈W and w′ ∈W ′ such that w ≡c w

′ we have:

1. For every proposition letter p ∈ Φ:

• V (w)(p) = V ′(w′)(p)

2. For every group of agents G ⊆ A:

• if w ∼∩G v, then for some v′ ∈W ′: w′ ∼′
∩G v′ and v ≡c v

′,
• if w′ ∼′

∩G v′, then for some v ∈W : w ∼∩G v and v ≡c v
′.

We say that two models M and M ′ are collectively bisimilar, and write
M �c M

′, if and only if there is a collective bisimilarity relation between
them. We say that two states (M,w) and (M ′, w′) are collectively bisimilar,
and wirte (M,w) �c (M ′, w′), if and only if there is a collective bisimularity
relation ≡c between M and M ′ such that w ≡c w

′. The relation of collective
bisimulation, which is denoted by �c, is the relation that holds between any
two collectively bisimilar states.

As expected, collective bisimulation is a proper generalization of ordinary
bisimulation. The latter only requires the “zigzag” conditions to hold for
groups consisting of one single agent only. So if two models or states are
collectively bisimilar, then they are in any case bisimilar, but not vice versa.

Theorem 1 (Collective Bisimulation Invariance)
LD is invariant under collective bisimulation w.r.t. both �◦ and �•.

Proof. The result for �◦ follows directly from the more general result
concerning ordinary bisimulation proven in proposition 2. We proof the
claim for �•, which could not be established when ordinary bisimulation
was considered (see proposition 2).

Let M = (W,∼, V ) and M ′ = (W ′,∼′, V ′) be two epistemic models and
let w ∈ W and w′ ∈ W ′ be such that (M,w) �c (M ′, w′) are collectively
bisimilar. Then we must prove that for all ϕ ∈ LD:

M,w �• ϕ iff M ′, w′ �• ϕ (3)
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Clearly, it is enough to prove that the statement holds for every ϕ ∈ LDn ,
for any n ∈ N. Moreover, it suffices to proof either the “if” or the “only
if” part of the statement. We do the latter by induction on n. The case
for n = 0 follows directly from proposition 1. Now, suppose ϕ is of the
form DGφ, where φ ∈ LDn . We proceed by contraposition, i.e., we show
that M,w �

• DGφ implies M ′, w′
�
• DGφ. Suppose M,w �

• DGφ. Then
M,v �• ¬φ for some v ∈ W such that w ∼∩G v. As (M,w) �c (M ′, w′),
there must be a world v′ ∈ W ′ such that w′ ∼′

∩G v′ and (M,v) �c (M ′, v′).
By the induction hyposthesis, then, M ′, v′ �• ¬φ, and thus M ′, w′

�
• φ. �

Theorem 1 brings the good news about collective bisimulation. How-
ever, even though it generalizes ordinary bisimulation in a most natural
way, collective bisimulation also exhibits an evident and seemingly highly
undesirable drawback3: it is not preserved under contraction4. That is, if
M is an epistemic model, and M�c is its collective bisimulation contraction,
which is obtained from M by identifying all collectively bisimilar worlds,
then it is not generally the case that M and M�c are collectively bisimilar.
The model depicted in figure 1 again serves as a case in point.

p

-p

M

-p

p

a

b a

b
v1 v2

w2

w1

Clearly, (M,w1) �c (M,w2) and (M,v1) �c (M,v2). By identifying these
worlds we obtain the model depicted in figure 2:

p

-p

w'M'

a,b

v'

Clearly, M and M ′ are not collectively bisimilar. Summarizing:

Proposition 5 (Preservation under Contraction)
Collective bisimulation is not preserved under contraction.

3This was pointed out to me by Yanjing Wang.
4Preservation under contraction is called preservation under quotients, and argued

to be a desirable property of any reasonable notion of epistemic model equivalence by
Gerbrandy [3].
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In sections 6 and 7, however, we will argue that only under certain as-
sumptions does it make sense to require from a notion of epistemic model
equivalence that it be preserved under contraction, and that in fact, under
these assumptions, collective bisimulation is indeed preserved under con-
traction. The assumptions we allude to here are introduced in the next
section.

5 Distinguishability

Consider the indistinguishability relation ∼a associated with some agent
a ∈ A in a model M = (W,∼, V ). For any two worlds w, v ∈ W , w ∼a v
represents the fact that agent a is not able to distinguish between w and v.
This appears to be a univocal intuition, but in fact one crucial aspect remains
unspecified here. The following distinction will turn out to be essential for
the remainder of our discussion.

Definition 6 (Strong and General Distinguishability)
Let M = (W,∼, V ) be an epistemic model, let w, v ∈ W , and let L∆ be the
epistemic language that is used to talk about M .

Strong Distinguishability Assumption If for every agent a, w ∼a v is
intended to mean that a is able to distinguish w and v in terms of
what he knows about expressions in L∆ only, then we say that ∼ is
assumed to represent a strong ability to distinguish worlds. We call
this assumption the sd assumption.

General Distinguishability Assumption If for every agent a, w ∼a v
is intended to mean that a is somehow able to distinguish w and v,
possibly in terms of expressions that are not in L∆, or even by non-
linguistic means (e.g., w and v may “feel” different in some unver-
balizable way), then we say that ∼ is assumed to represent a general
ability to distinguish worlds. We call this the gd assumption.

Under the gd assumumption, i.e., if ∼ is assumed to represent a general
ability to distinguish worlds, every epistemic model constitutes a reasonable
representation of which worlds agents are able to distinguish and which
not. However, under the sd assumption, i.e., if ∼ is assumed to represent
a strong ability to distinguish worlds, some epistemic models do not make
proper sense anymore and should be left out of consideration.

Example 1 Recall the epistemic model depicted in figure 1:
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p

-p

wM

-p

p

a

b a

b

v

Notice that w and v are not distinguishable for agent a as far as the part of
his knowledge that is expressable in LD is concerned:

KnowD
a (M,w) = KnowD

a (M,v)

The indistinguishability relation ∼a for a does not reflect this: w �a v.

This example gives rise to the following completeness constraint on the in-
distinguishability relations of epistemic models:

∼completeness Let M = (W,∼, V ) be an epistemic model and let L∆ be
an epistemic language. Then M is ∼complete w.r.t. L∆ if and only if
for every two worlds w, v ∈W and every agent a ∈ A:

Know∆
a (M,w) = Know∆

a (M,v) implies w ∼a v

A similar completeness constraint could be imposed on the domains of our
models. If in an epistemic state (M,w), the collective knowledge of some
group of agents G is consistent with a formula ϕ, but does not entail it,
then M must provide an explicit reason for why this is so, i.e., there must
be a world v in M which G is collectively unable to distinguish from w and
which satisfies ¬ϕ.

w-completeness Let M = (W,∼, V ) be an epistemic model and let L∆ be
an epistemic language. Then M is w-complete w.r.t. L∆ if and only
if for every world w ∈ W , every group of agents G ⊆ A, and every
formula ϕ ∈ L∆ such that:

Know∆
G(M,w) �

◦ ϕ and {ϕ} ∪Know∆
G(M,w) is �◦-satisfiable.

there is a world v ∈W such that5:

w ∼∩G v and M,v �◦ ¬ϕ
5CLARIFY why we use of �◦ rather than �• and consider only knowledge in languages

without DG.

14



Together, ∼completeness and w-completeness characterize the class of what
we call acceptable epistemic models under the sd assumption.

Definition 7 (Acceptable Models) Let M be an epistemic model and let
L∆ be an epistemic language. Then we call M acceptable w.r.t. L∆ if and
only if it is both ∼complete and w-complete w.r.t. L∆. Let S5∆ denote the
class of all epistemic models acceptable w.r.t. L∆.

We will proceed to show that the distinction between modeling a strong
and a general ability of agents to distinguish possible worlds, together with
the observation that under the sd assumption certain models should be left
out of consideration, clarifies the non-preservation of collective bisimulation
under contraction as well as the difference between �• and �◦ discussed in
section 3.2.

6 Modeling Strong Distinguishability

Let us assume that ∼ represents a strong ability to distinguish worlds. As
argued in the previous section, under this assumption it makes sense to re-
strict ourselves to acceptable models. This restriction restores the desired
preservation of collective bisimulation under contraction, as well as the har-
mony between �• and �◦. We first consider the preservation result.

Theorem 2 (Preservation under Contraction) Every epistemic model
M that is acceptable w.r.t. some epistemic language L∆ is collectively bisim-
ilar to its collective bisimulation contraction: M �c M

�c.

Proof. It is enough to proof that for every two worlds w and v in M :

(M,w) �c (M,v) implies w ∼a v for all a ∈ A

which ensures that w and v are identified in M�c only if no agent (and
therefore no group of agents) is able to distinguish one from the other.

Let M be a model acceptable w.r.t. L∆, and let w and v be two worlds
in M such that (M,w) �c (M,v). By proposition 1, (M,w) and (M,v)
satisfy exactly the same formulas in L∆. In particular, Know∆

a (M,w) =
Know∆

a (M,v) for every agent a ∈ A. But then, by ∼completeness of M
w.r.t. L∆, we may conclude that w ∼a v for every agent a ∈ A. �

Next, we show that �• and �◦ coincide on acceptable models.
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Theorem 3 (Satisfaction) Let L∆ be an epistemic language, and let M
be an acceptable model w.r.t. L∆. Then, for every formula ϕ ∈ L∆ and
every world w in M :

M,w �◦ ϕ iff M,w �• ϕ

Proof. The result is trivial for LK , as per definition, �◦ and �• coincide
for all formulas in LK . The “only if” part of the statement for LD follows
directly from the more general result in proposition 3. To estabish the “if”
part for LD it is sufficient to proof the corresponiding statement for LDn ,
n ∈ N. This can be done by induction on n. The case for n = 0 follows
from the above remarks regarding LK . Next, suppose ϕ is of the form
DGφ, where φ ∈ LDn . We proceed by contraposition. That is, we assume
M,w �

◦ DGφ and show that M,w �
• DGφ. If M,w �

◦ DGφ, then, by
definition, KnowDn

G (M,w) �
◦ φ, which means that {¬φ} ∪KnowDn

G (M,w)
is �◦-satisfiable. Now consider two cases. (1) IfKnowDn

G (M,w) �
◦ ¬φ, then,

by w-completeness of M , there must be a world v in M such that w ∼∩G v
and M,v �◦ ¬φ. From the induction hypothesis it follows that M,v �• ¬φ,
which yields M,w �

• DGφ, as desired. (2) If KnowDn
G (M,w) �◦ ¬φ, then

M,w �◦ ¬φ follows directly. Again, by the induction hypothesis, we get
M,w �• ¬φ and thus M,w �

• DGφ, as desired. �

7 Modeling General Distinguishability

Now let us assume that ∼ represents a general ability to distinguish worlds.
Then all epistemic models make proper sense. If, according to ∼, two worlds
in M are distinguishable for an agent a, then they are so for a reason, even
if this reason may not be expressable in the epistemic language that is used
to talk about the model. Within this perspective, identifying collectively
bisimilar worlds, or any worlds whatsoever, does not make sense. So the
problem of collective bisimulation not being preserved under contraction,
brought up in section 4, becomes a non-issue under the gd assumption.

Now consider the difference between �• and �◦. The intuitive idea behind
�• is that a formula ϕ is distributed knowledge among a group of agents G
if and only if ϕ holds in every world that neither of the agents in G is able
to distinguish from the actual world.

This idea only makes sense if we assume that the distinctions which all
the individual agents are able to make between different possible worlds can
somehow be combined into an overall distinction between worlds that they
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are able to make collectively. In other words, we must assume that the
agents are able to communicate with each other, in some language they all
understand, about which worlds they are able to distinguish. Furthermore,
we must assume that the language used by the agents to do so is generally
more expressive than the epistemic language that is used to talk about the
model, given that their ability to distinguish different possible worlds may
not to be fully expressable in the latter epistemic language. For further
reference, let us make a clear distinction between this assumption and its
more restrictive counterpart.

Definition 8 (Communication Language Assumptions)
Let LCOM be the language that the agents use to communicate about which
worlds they are able to distinguish, and let L∆ be the epistemic language
that is used to talk about the model of the agents’ information.

Restricted communication language assumption
We call the assumption that LCOM = L∆ the restricted communication
language assumption (rcl).

Unrestricted communication language assumption
We call the assumption that LCOM is expressive enough for all the
agents to communicate which worlds they are able to distinguish the
unrestricted communication language assumption (ucl).

Under the rcl assumption, �◦ makes proper sense: according to this
satisfaction relation, distributed knowledge of G is exactly what follows from
the combined knowledge of the agents in G, as far as this knowledge is
expressable in the modeling language L∆.

On the other hand, �• should be rejected under the rcl assumption. To
see this, consider the model from figure 1 which is depicted again below:

p

-p

wM

-p

p

a

b a

b

In terms of LD the agents are not able to distinguish any world in (M,w)
from any other: the agents’ knowledge in terms of LD is exactly the same in
all worlds. So if the agents’ communication language is limited to LD, then
it is not fair to conclude, as �• does, that p is distributed knowledge among
a and b in (M,w).
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Under the ucl assumption, tables are turned: �◦ is too weak, whereas
�• neatly fits the intuitions. In the model depicted above, p should now
be considered distributed knowledge among a and b in (M,w), which �•

confirms, but �◦ erroneously denies.
We conclude that under the rcl assumption �◦ is the proper satisfaction

relation to use, whereas under the ucl assumption �• should be adopted.
In this light, the difference between �◦ and �• is problematic at all. On
the contrary, each semantics suits a different assumption about the agents’
communication language.

8 Discussion

sd gd

Collective bisimulation preserved Preservation under contraction
under contraction. irrelevant.
�◦ and �• coincide. Use �◦ under rcl assumption;

Use �• under ucl assumption.

The above diagram summarizes our observations. We argued that bisim-
ulation is too weak a notion of equivalence between epistemic states when
(the distributed knowledge among) a group of agents is involved. We in-
troduced the notion of collective bisimulation as a natural generalization
of its traditional counterpart, and showed that it is indeed a more suitable
notion of equivalence between collective information states. An apparent
drawback of collective bisimulation (the fact that it is not generally pre-
served under contraction) was shown to dissolve under the sd assumption
(i.e., when ∼ is assumed to represent strong distinguishability) and to be
irrelevant under the gd assumption (i.e., when ∼ is assumed to represent
general distinguishability).

We also discussed the difference between �◦, which models distributed
knowledge as what follows from the combined knowledge of a group of
agents, and �•, which models distributed knowledge as what holds in all
worlds that neither agent is able to distinguish from the actual world. We
showed that �◦ and �• coincide under the sd assumption, and argued that
the contrast between them under the gd assumption is actually desired.
If the agents’ communication language is assumed to be restricted to the
epistemic language that is used to talk about the model, then �◦ should be
adopted. If not, �• provides a more sensible semantics.
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