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OPEN PROBLEMS IN LOGIC AND GAMES

Johan van Benthem, Amsterdam & Stanford, February 2005

FIRST ROUGH DRAFT    formal definitions to be added!

This short paper is a description of some research lines on logic and games, which

occur in logic itself, computer science, and game theory. What I personally find

interesting about these recent interfaces is the importance of interaction between several

agents as a fundamental theme in logic itself, and the new ways in which mathematical

logics of computation and philosophical logics of epistemic attitudes come together.

The story is just my attempt at systematizing issues and problems. There is no pretense

at completeness. Comments – and solutions – are welcome!

A warning beforehand.  This paper is more like a tourist guide for Places To Visit,

than for specific Things To Do. This reflects the tentative state of the area, which is less

centered around one family of formal systems than e.g., dynamic epistemic logic.

1 Logic and Games

Logic and games meet in several different ways.

Logic games  First, argumentation itself is a sort of game where opposing players can

win or lose. And thus, in addition to the more dominant semantic or deductive

intuitions, logical validity also has a game-like aspect of winning strategies for players

defending valid conclusions from given data. In addition to argumentation or dialogue

games, modern logicians also use a host of other scenarios, usually two-player  games

of perfect information, for tasks of semantic evaluation in given models, model

construction, comparison of two models, proof search, or even general interaction.

Some well-known names in these developments are Lorenzen, Ehrenfeucht-Fraïssé,

Hintikka – but one can also mention more recent authors like Hodges, Abramsky,

Girard, or Hirsch & Hodkinson. For references to this literature, cf. my lecture notes

Logic in Games (van Benthem 1999–..., still under construction), whose main line of

exposition for the general 'Logic & Games' interface has been followed here.

Game logics But general games of any sort have an obvious logical structure as

process graphs that can be described in some logical language. This invites the use of

logical machinery, in addition to the standard mathematics of game theory. One stream

here consist of process languages like modal or dynamic logic, fixed-point languages,

temporal logic, or linear logic. This links up with research in logics of computation, and

in principle, it provides all the benefits achieved there for games as well: such as better

understanding of algorithms, and perhaps even better design.
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But there is also another stream. From the outset, the predictions of game theory about

equilibria that 'rational' players will or must choose have been a matter of intensive

debate. Here, logic has entered as an analysis of the knowledge and beliefs of players

underpinning their choices, and the deliberations that go into them. Thus, epistemic

logic, conditional logic, and other high-lights of philosophical logic have entered the

scene (partially discovered independently by game theorists), promising conceptual

clarification of the issues involved, as well as a more systematic view of options for

'rational' agents and rational procedures.  

'Game logics' are logical systems designed for the purpose of analyzing games.  

Modern game logics often combine the preceding two aspects, so that one could – and

does – have 'epistemic dynamic logics' for analyzing the strategies that a player might

consider or choose in a given game. Other current topics in this area concern more

generic structure of games in general, such as the analysis of general game-forming

operations. Such issues often cross over into the special area of logic games – making

the above distinction between logic games and game logics one of convenience, rather

than of principle. E.g., van Benthem 200x shows that predicate-logical evaluation

games are complete for the algebra of sequential operations on general games.  Finally,

as in other newly developing areas, there is a tendency to design new logics and coin

new terminology, rather than going through the more boring expedient of using

existing ones, such as standard first-order and modal logic. Who wants to use old tools

when the World looks fresh and new? We will also be guilty of this, though we also

mention some more conservative  approaches.

General activities and information   Material on the Logic/Games interface may be

found at several places in the literature, though there is no standard source, let alone a

textbook. But cf. van Benthem 1999–..., Hodges 200x, van der Hoek & Pauly 2004 for

some broader perspectives. The web page http://www.illc.uva.nl/~lgc is a public

resource under construction, pointing at some relevant papers and journals. Also, there

are some conferences and workshops which serve as a forum for work in this area,

such as TARK (www.tark.org), LOFT (url), LAMACS (url),and GLC (url).

Here and elsewhere, for precise definitions of basic notions concerning games, we refer

to the literature. A good compact reference is Osborne & Rubinstein 1994, while XYZ

is an up-to-date one on modern evolutionary game theory.

2 Extensive Games as Processes

Extensive games of perfect  information are trees whose nodes represent stages of the

game, while leaves represent possible final outcomes, which players can evaluate, and
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compare via their individual preferences. Players turns are indicated at all non-final

nodes, and arrows pointing to daughter nodes represent their possible moves there.

Game trees can be finite or infinite. In the latter case, infinite branches may sometimes

be a nuisance, such as a computer getting stuck forever in a loop, or a person's eternal

inability  to come to the point. But infinite branches can also be viewed as unbounded

histories of ongoing interaction, as with unlimited computational facilities like the

internet, or indeed, the functioning of social life. Whether finite or infinite, game

structures are much like those used in computer science, or standard mathematical

logic, for representing processes via graphs, trees, or other mathematical notions.

Hence, immediate analogies spring to mind with well-known logics for describing

computational processes, as well as general action. We list a few topics here.

Caveat   Note that my questions at this 'conservative' level are not spectacular new

mathematical ones, but rather issues of comparing different approaches, and unification

across different traditions. In my personal opinion, the most innovative 'game logic' to-

day in a standard logical setting is the extensive body of work on games in temporal

logic, where issues arise by mixing questions about games with those about

computational processes (cf. van der Meyden 2005, Ramanujam 2005).

2.1 Game equivalence and bisimulation   

Computational logics of processes and actions do not have one fixed level of detail for

studying  these phenomena.  Just as with the many different mathematical theories of

Space (affine or metric geometry, topology, linear algebra), there are legitimate choices

of structural similarity relations, reflecting what structure of a process one finds of

interest (van Benthem 1996 ELD). The spectrum runs from output-oriented

identifications like finite trace equivalence, through finer ones like modal bisimulation,

which also record internal choice points for agents involved in the process, to the more

demanding notion of first-order isomorphism. The same spectrum makes sense for

games (van Benthem JoLLI), running from equivalence of players' powers for

determining final outcomes, through modal bisimulation, to again stronger notions of

isomorphism preserving more game structure. The same 'equivalence levels approach'

also works when extra structure is present  in games, such as players preferences.

Consider the following two games:

  A      E

          L        R              L R

       p            E              A      A

        L      R     L       R   L        R

      q          r     p  q           p   r
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Are these the same? The answer depends on our level of interest:

(a) If we focus on turns and moves, then the two games are not equivalent.

For they differ in ‘protocol’ (who gets to play first) and in choice structure. This

natural level for looking at games with local moves and choices is that of modal

bisimulations. But one might also want to call our games equivalent in another sense –

if only, because they are evaluation games for the two sides of the valid logical law

p � (q � r)  � (p� q) � � p� r) Distribution

The sense of equivalence involved then looks at achievable outcomes only:

(b) If we focus on outcomes only, then the two games are equivalent.

The reason is that players can force the same sets of outcomes across games:

A can force the outcome to fall in the sets  {p}, {q, r},

E can force the outcome to fall in the sets  {p, q}, {p, r}.

Here ‘forcing’ refers to sets of outcomes guaranteed by strategies for players, their

'powers'. A strategy forces a set X if all outcomes of the game, under arbitrary play by

the others fall inside X. With this understanding, in the left-hand tree, A has 2

strategies, and so does E, yielding the listed sets. In the right-hand tree,  E has again 2

strategies, while A has 4:  LL, LR,  RL, RR. Of these, LL yields the outcome set {p},

and RR yields {q, r}. But  LR , RL guarantee only supersets {p, r}, {q, p} of {p}: i.e.,

weaker powers. Thus the same 'control' results in both games. More generally, at an

input–output level, propositional distribution switches the scheduling of a game without

affecting players’ powers. An appropriate bisimulation for this coarser level of game

equivalence has been proposed in many areas independently:

A power bisimulation between game models M, N is a relation

Z  between game states in M, N satisfying the two conditions:

(1) if  x Z y, then x, y satisfy the same proposition letters.

(2a)  for each  i, if  x Z y and i can force U starting from x,

then there is a set V which i can force starting from y,

such that � v � V  � u � U: u Z v

(2b) vice versa from y to x.

Thus, game equivalences come in varieties depending on one's level of interest: coarser

or finer. But there has been no systematic theory so far of all natural levels.

Open Problem 1 What are natural structural equivalences for games?



5

In logic, structural similarities usually come with a language, describing just those

properties that are relevant at the given level. A typical connection result of this sort

says that finite models are isomorphic iff they satisfy the same first-order sentences.

In process logics, a similar connection result is that there is a bisimulation between two

finite rooted models (M, s) and (N, t) iff the roots s, t satisfy the same formulas in the

modal propositional logic describing available moves and atomic properties of nodes.

Similarly for games, choosing a description level is correlated with using a particular

logical language, modal, first-order, or yet other, to describe properties of nodes in

game trees. We start with some obviously available candidates.

2.2   Modal and dynamic logics for moves and strategies

Modal logic   Propositional modal logic describes process models

M = (S, (Ra}a, V)

with modal formulas � stating properties of states s � S, such as

 [a]<b>p: after every Ra-step from s to any t, there is an

Ra–step from t to some state u where p holds.

This 	 
  pattern of successive modalities is typical for interaction between players: any

a-move can be countered by some suitably chosen b-move leading to an outcome p.

Thus, modal logic describes possible moves and choices for players in a game tree.

The  modal similarity type for the latter looks roughly like this:

M   =   (NODES, MOVES, PLAYERS, turn, end, VAL)

Dynamic logic    A more explicit account of players' plans and strategies requires a

richer propositional dynamic logic PDL which also has programs � describing binary

relations between states, representing the transitions corresponding to successful

executions of � . One can think here of computation steps – but by now, PDL is used

as a very general logic for describing any complex action. These are constructed

from atomic moves a and tests ? �  by the three sequential

operations  of composition ;, choice � ��� , and finite iteration *.

This language can describe game trees in more detail than basic modal logic, using

e.g., iterations of single moves to describe arbitrary finite paths. But even more

importantly, PDL can describe the fundamental game-theoretic notion of a strategy.

For, a player's strategy is nothing but a binary relation giving her a move at each of her

turns – where non-deterministic strategies may even allow more than one option.    
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And natural descriptions of interactive strategies have precisely the sequential and

conditional format of PDL:

"IF your opponent plays a, THEN play b ELSE play c",

"WHILE your have not reached some goal, DO move a".

It is also easy to see that, at least in finite games, PDL can easily describe the unique

outcome states of games when players i play a profile of functional strategies   i.
� ��� –Calculus   Beyond PDL, there are richer fixed-point languages such as the modal
� –calculus which can define arbitrary smallest and greatest fixed-point predicates in

the modal language by means of recursive definitions. This genuine extension of PDL

is needed for a faithful rendering of basic game-theoretic algorithms such as Zermelo

Colouring when showing that finite two-player zero-sum games are determined. E.g,

winning nodes for player i in such a game tree are defined by the following recursion:

WINi   �   (end & wini) � (turni & <E> WINi) � (turnj & [A] WINi)

Thus we can view the predicate WINi  as the smallest fixed-point defined by   

� p•  (end & wini) � (turni & <E> p) � (turnj & [A]p)

Van Benthem 2004 claims that game-theoretic equilibrium has to do with fixed-points

in a general mathematical sense. But which ones? The � –calculus can also define

behaviour of infinite branches, by means of � –operators for greatest fixed-points. This

reflects another strong intuition about games, viz. the infinite-stream-like behaviour of

strategies. If I am ill, my strategy is to consult my doctor, and extract an advice. After

that, my strategy returns - intuitively - to exactly the same state as before. This suggests

that game logics will either involve both types of fixed-point, and may even suggest a

co-algebraic treatment – as has been proposed in Baltag 200x.

I would conclude that existing modal fixed-point languages, or their first-order

extensions such as LFP(FO, provide excellent means for describing interaction games,

as long as we talk about the structure of moves and abstract outcomes – i.e., about what

game theorists would call 'game forms'.

Open Problem 2 Do a standard formalization program for key theorems, proofs,

and algorithms in game theory, and see which existing logics are necessary.

E.g., De Bruin 200x analyzes Backward Induction in  a � –calculus setting, with some

atomic propositions added for utility values. Van Benthem 200x analyzes the proof of

the Gale-Stewart Theorem (extending Zermelo's colouring argument to infinite games),

identifying its Key Lemma as a law in a temporal logic of players' powers. So, why
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don't we just use standard logical systems as game logics – and import what we already

know about their deductive apparatus and computational complexity for task like model

checking or satisfiability? Part of this may just be the New World philosophy that       

I mentioned before: 'never keep old clothes when you can buy new ones'. Part is also

the more general 'modal philosophy' in process logic: try to see what simple special-

purpose languages do the job of analyzing classes of games, striking a good balance

between expressive power and  computational complexity.

2.3 Adding preferences   

Now a game form only becomes a genuine game with some real drama when we look

at pay-offs and preferences. For instance, consider the earlier two games for

Distribution, but now with the following preferences for players:

E p:  0 q: 2 r: 1

A p: 1 q: 0 r: 2

Here are the pairs  (A–value, E–value)  computed by the usual BI algorithm:

1, 0      2, 1

1, 0 0, 2  1, 0        2, 1

   0, 2          2, 1     1, 0           0, 2 1, 0         2, 1

These trees correspond to unique outcomes for the joint behaviour of the players.

Note that these predictions are different!

Open Problem 3     Define good game equivalence when preferences are present.

Further analysis of games with preferences can be done in many ways (van Benthem

1999, JoLLI), but it does need a merge modal dynamic logics with preference logics.  I

do not seee a best formalism yet, but cf. Bonanno 199x, van der Hoek, Harrenstein &

Meijer 200x, van der Hoek, van Otterloo & Wooldridge 200x, Pauly 200x, and Van

Otterloo & Roy 2005 for ongoing attempts. The latter paper has a perspicuous

analysis of Backward Induction arguments with minimal logical means, viz. simple

reduction axioms relating backward induction subgames to available future moves.

One limitation to all these analyses, however, is the compositional simplicity of

Backward Induction, with current best actions built up in terms of those in subtrees

lower down. Logical analyses of more complex game-theoretic solution concepts in a

direct modal-dynamic-preference setting are scarce. But cf. again De Bruin 2004 on

extensive games in a 'proof-theoretic' format which achieves greater generality.

Open Problem 4 Integrate game logics with the older preference logics.
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Another take on preferences involves deontic logics of obligations and permissions.   

A deontic statement O �  says that � is true in all 'best' worlds accessible to the present

one, with 'best' as seen from the viewpoint of some moral authority. More generally,

conditional obligations O � �  say that � is true in all the best worlds satisfying the

antecedent condition � .  One can let the 'authority' vary here, including a players in

games themselves, who try to achieve best outcomes from their own private

perspectives. Still deontic logic does not use binary comparison between situations  –

as in "anything you can do I can do better". But it does suggest other interesting

variations. Van der Meyden 199x has an account of deontic preferences as located, not

between worlds, but between available actions in a process – or we might also say:

moves in a game. This suggests that players' preferences might be located elsewhere

than their locus at end states in the standard definition of a game.

Open Problem 5 Integrate deontic logic and dynamic-preference logic.

2.4 Rationality assumptions  

The main mathematics of standard game theory consists of a definition of games and

Nash equilibrium between strategies, some basic existence theorems for strategic

equilibrium due initially to Von Neuman and Nash – and a host of refined notions of

equilibrium in the decades after the 1950s which try to zero in more closely on natural

or useful equilibria. Moreover, there has always been controversy surrounding game-

theoretic predictions, or recommendations, as the mathematical model seems too poor

to make all relevant considerations explicit. In particular, whether players will play a

Backward Induction  solution depends on assumptions that underlie their deliberation.

This is well-illustrated in the Centipede Game.

A E  A (2, 3)

(1, 0) (0, 2)  (3,1)

Backward Induction predicts that A plays down, blocking the better right region!  

So, which additional assumptions underwrite the BI prediction?  A famous example is

Rationality: the statement that every player will always opt for those available moves

that make her off best in future play. Much work on game logics is about formalisms

defining Rationality and the reasoning based upon it, locking players into the BI

solution, or whatever other notion of equilibrium may be bolstered by additional

assumptions like this. In particular, Aumann has shown that, if players have common

knowledge of rationality in an extensive game, then backward induction must result.
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To a first approximation, these arguments require just dynamic-preference logic, as

above.  And their structure is remarkably similar to that in the philosophy of action,

where e.g., the famous Practical Syllogism runs as follows from 'Is's to 'Ought's:

You can do a and b.

You prefer the outcome of a over that of b.

Therefore, you will do a.

Open Problem 6  Connect the game logic of rationality with

the philosophy of action and practical reasoning.

2.5 Epistemic and doxastic logic  

There is more to rationality analysis for deriving equilibria. One crucial aspect to the

whole scenario of deliberation is that players do not know yet what others will do, and

what they are going to do themselves. Thus, knowledge becomes important, and here is

where epistemic logic has first entered game theory. This requires an expansion of the

notion of a game to that of a model for a game (Stalnaker 199x), with a space of

possible worlds containing different strategy profiles, and players knowledge encoded

in the usual manner by relations of epistemic indistinguishability. Since this topic takes

us into philosophical logic, we postpone further details until Section 4.

2.6 Game theory and logic: what good does it do?  

Game logics look at fine-structure of games below the usual strategic forms, and they

describe step-by-step behaviour over time which remains hidden in the usual strategic

equilibria. But what good does this do? There have been deep existence results for

equilibria in games, and on the logic side, there are deep results on meta-properties of

first-order, modal, or yet other calculi. Still, does the combination of good things

automatically make sense ? Here are a few things that might be expected:

(a) Systematizing the theory of possible equilibria via their properties as programs

(b) Cleaning up overly complicated notions of game model, such as 'type spaces'.

(c) Finding new mathematical results with a certain depth which integrate

Nash-style equilibrium existence theorems with logical meta-theorems.

Very little has happened so far justifying these expectations.

Open Problem  7 Do any of the preceding!

2.7 Infinite games and temporal logic  

For infinite games, tree models still suffice – but they suggest other languages in

addition to the preceding modal and dynamic ones. In particular, the computational
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tradition of linear and branching temporal logics seems relevant, as these describe

universes of branching time where infinite games can unfold. This is the perspective

suggested by Halpern et al. 1995, Parikh & Ramanujam 200x (both with epistemic

structure added),  Alur & Henzinger 199x, Goranko 200x, and many others. In

particular, Halpern 200x uses this sort of modeling to take a look at open issues in

game theory. Current expressive game logics of this sort include alternating-time

temporal logic (ATL) and its epistemic version ATEL (van der Hoek & Wooldridge

200x). Also relevant is the temporal STIT formalism of Belnap et al. 200x.

Open problem  8 Compare and relate existing modal and temporal game logics.

2.8 Games in set theory  

Infinite games have also played a role in descriptive set theory, where the Gale-Stewart

Theorem culminated in 'Martin's Theorem' saying that each infinite two-player game of

perfect information is determined, i.e., one of the players has a winning strategy.,

provided the set of winning histories for one of the players lies in the Borel Hierarchy.

More foundationally, the Axiom of Determinacy even says that  all such games are

determined, contradicting the Axiom of Choice and thereby providing an alternative set

theory. Loewe 2004 is a nice example of a paper linking up between the notion of

game solution in the set-theoretic tradition, and extended notions of Backward

Induction on infinite games, provided that players have suitably simple preference

ranking over the possible outcomes.

Open Problem 9 Merge between set theory and game theory of infinite games.

2.9 Operations on games  

Another tradition in process logics looks at processes as models identified under some

equivalence relation, such as bisimulation, and then studies operations defined on

equivalence classes that form new processes out of old. Examples are the operations of

process algebra (Handbook of Process Algebra), which include Choice, Sequential

Composition,  as well as Parallel Merges of various kinds. There is also a logical

system in this tradition, viz. linear logic, whose game semantics (Abramsky 199x,

Japaridze 200x) studies operations on infinite game trees such as

choices G1 + G2, role switch Gd, and parallel compositions G1 • G2.

Linear logic provides a sort of algebra for dealing with  equivalences and implications

between complex games  – with 'validity' meaning that  some designated player P has a

winning strategy in all games of the given form.

Open Problem 10 What is a natural repertoire of operations on games?
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In particular, there are several parallel compositions for playing a number of games

'together'. One would like to have an expressive completeness result for a natural set of

game operations, on the analogy of those for process algebra in Hollenberg  2000.

3 Strategic Forms and Powers

3.1 Powers and game representation

At a coarser level of identification, one looks merely at player's powers. Let's write
�

Gi  s, X player  i has a strategy for playing game G from state s  

onward whose resulting states are always in the set  X

It is easy to see that all games satisfy the following two conditions:

C1 if � G i s, Y  and Y �  Z, then  �  G i s, Z Monotonicity

C2 if �  G A s, Y and  �  G E s, Z,  then  Y, Z  overlap Consistency

Determined two-player games, such as those of Zermelo's Theorem, also satisfy

C3 if not  �  G A s, Y , then   �  G E s, S–Y;

and the same holds for  E  vis-á-vis  A Completeness

Here is a converse representation theorem:

Fact Any two families F1, F2 of subsets of some set S satisfying C1, C2, C3  

are the root powers for the two players  in some two-step game.

This result concerns games of perfect information: an analogue for games with

imperfect information requires just C1, C2 (van Benthem  2001). The proofs of these

representation results show one peculiarity though: it is crucial to be able to have the

same outcome at different leaves of the game tree. If we require that each leave in the

game tree is a unique outcome, then further principles beyond C1, C2, C3 will be valid

on finite games, and the restriction to two-step games is no longer appropriate. Here is

a more technical question for puzzle solvers:

Open Problem 11        Find a representation theorem like the preceding

for players' powers in determined games with unique outcomes.

3.2 Dynamic game logic  

One can now also introduce more global modal languages that deal with players'

powers directly,  in the following format:

M, s |= {G, i} �   iff there is a set X with �  G
i s, X and � s � X  M, s |= �  
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These are related to neighbourhood versions of modal logic (cf. Pauly 200x). This

differ from the earlier cases mainly in that the new modality {} with its � � character

does not distribute over either �  or � .

This modal language becomes more expressive when we also add operations on games

to obtain 'dynamic game logic' DGL (Parikh 1985). Models M = (S, {Rg}g, V) then

stand for 'game boards' with a universe S of states associated with (though not

necessarily identical to) game states,  forcing relations Rg for given atomic games,  and

appropriate semantic clauses defining forcing relations for compound games

constructed using sequential composition G;H, union (choice) G � H, game dual Gd

(role switch), and finite game iteration G*. Modalities now refer to a game expression:

{G, i} � i has a strategy making sure game G ends only in runs satisfying  

Typical axioms  validated by this semantics resemble those of PDL, such as

{G ! !!! H, i} �#" {G, i} �$� {H, i} �
{G ; H, i} �%" {G, i}{H, i} �

The characteristic axiom for role switch runs as follows in determined games:

{Gd, i} �&" ¬{G, i}¬ �

In non-determined games, these principles need to refer to different players explicitly.

Cf. Parikh & Pauly 200x for the state of the art with DGL. In particular, the system is

completely axiomatizable and decidable without the dual operation.  Here is one issue,

concerning the latter operation, which has no counterpart in PDL:

Open Problem 12 Axiomatize DGL completely with game dual Gd added.

The modality {} is an existential quantifier over strategies, which are not mentioned

explicitly. One obvious question is how DGL relates to explicit  PDL-style analysis of

games. Van Benthem 1999 suggests a two-pronged approach of game boards in

tandem with families of games over them, relating the DPL-language over those games

with a DGL language of the board.

Open Problem 13 Merge DGL and DPL in some natural way.

DGL's main novelty is in terms of game algebra. Dynamic game logic encodes the

notion G '  H: players have same powers in every concrete interpretation of  G, H on a

game board. Valid principles of game algebra include:

(a) De Morgan Algebra for choice and dual:

Boolean Algebra minus special laws for 0, 1
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(b) Relation Algebra for composition, choice and dual:

; is associative, left-distributive, right-monotone,

and also we have (G;H)d (  G d;Hd

Typically invalid for games is right-distributivity:  G;()+* *** , ) (  (G;H) * *** (G;K).

Complete axiomatizations have been given in Goranko 199x, Venema 200x.  Here is a

connection with logic games after all (van Benthem SL):

Theorem First-order evaluation games are complete for basic game algebra.

Lacking here are non-sequential parallel game operations. A natural stipulation for

games played concurrently is the following product G x H, which involves ordered

pairs of states in both component games:

- i 
GxH (s, t), X   iff  . U: - i 

G s, U , . V: - i 
H  t, V : UxV  /  X

Open Problem 14 Find the complete game algebra of DGL plus product.

3.3 Temporal game logics

Games with players' powers can also be described in a temporal language. E.g., van

Benthem 1999 identifies this key lemma in the proof of the Gale-Stewart Theorem:

{G, E} 021  {G, A} A ¬{G, E} 0     

with A the temporal operator "always on the current branch"

This generalized determinacy holds for all games, and it says that either one player has

a winning strategy, or the other has a strategy preventing the first from ever reaching a

position where she has a winning strategy.

Open Problem 15

Axiomatize the temporal logic of  players' powers over arbitrary games.

The temporal logic ATL used in computer science does part of this job, but it does not

seem to have sufficient expressive power.

On the analogy of DGL, one would also want to add game operations here. The best

known system for that is linear logic, as mentioned above.

Open Problem 16 Design and axiomatize a temporal version of linear logic

      which can also speak of truth on branches of infinite games.

There are many epistemic versions of temporal logics, such as the system of Fagin et

al. 1995, or ATEL(van der Hoek & Wooldridge 200x). These also make sense for the
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preceding systems. E.g., non-determined games are of the essence in linear logic, and

they naturally involve imperfect information (see our next Section 4) and lack of

knowledge by players, even in the finite case.

Open Problem 17 Find good epistemic versions of DGL and Linear Logic.

In particular, standard game semantics for linear logics has to use infinite games of

perfect information as non-determined counter-examples to Excluded Middle. With

game s of imperfect information, finite models might suffice for completeness.

4 Knowledge, Belief and Update

As stated before, logics of knowledge, belief, and other paraphernalia of philosophical

logic have entered game theory through the analysis of 'rationality' underpinning the

choice of specific strategic equilibria. In particular, epistemic logic plays several roles

in this connection, and it raises some new questions.

3.1 Epistemic characterizations

First, there is an extensive literature on epistemic characterizations of various game-

theoretic notions  of equilibrium, including Iterated Removal of Strictly Dominated

Strategies, or Perfect Rationalizability.  The format is as follows:

Model  M(G) of game G satisfies epistemic condition E iff the only strategy

profiles occurring in the model are those satisfying game solution concept C.

Often, the condition E is some form of iterated or common knowledge of rationality

among players. De Bruin 2004 is a survey, as well as a proposal for a uniform  logical

format of analysis for these results. Still, the current literature consists mainly of a

small bunch of such characterization results, without  any obvious system.

Open Problem 18 Find a logical analysis of epistemic  characterization results

which establish a systematic equilibrium theory.

The full form of such results in game theory usually also involves notions of belief and

probability – where the latter serves both to define equilibria requiring mixed strategies,

and also beliefs of players in the sense of subjective probability. This makes the logical

analysis more complex, and it points to further issues below.

3.2 Update about the future: knowledge and belief

The main epistemic characterization results have been about games in strategic form.

But knowledge and belief also come up naturally in thinking about player's moves in

an extensive game, and their deliberations about the remainder to be played. In this
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area, one would want to move away from the excessive emphasis on Backward

Induction, and consider other scenarios – cf. van Benthem 2005 for some alternatives,

such as 'repaying past favours'. Presumably, existing logic of update and revision can

handle the game situation, but the issue is what good they can do.

Open Problem 19 Use epistemic update and  belief revision to obtain

           a richer set of solution methods for extensive games.

3.3 Imperfect information and dynamic-epistemic logic

Knowledge also prepares the way for games of imperfect information, where players

do not know their current situation exactly. Card games are a good example, and so is

warfare. It is easy to add epistemic structure to games of imperfect information. The

usual game-theoretic trees with information sets, or dotted lines, are already models for

a combined dynamic-epistemic language combining action modalities [3 ] 4 with

epistemic operators. Here, knowledge assertions occur for individuals or groups:

M, s |= Ki 4   player i knows that 4  is the case if 4 is true

   in all states i~indistinguishable from s

M, s |= CG 4   4 is common knowledge in the group G if

  4  is true  in all states reachable from s by a finite

   sequence of accessibility steps for any player.

This is a modal language again, but now over models consisting of worlds with

equivalence relations for players' indistinguishabilities, and typical interactions.

A combined dynamic-epistemic language DEL can describe many situations of

interest. The following is a brief survey of van Benthem 2001, which explains the DEL

view of imperfect information games for both extensive and strategic forms. For the

sake of concrete illustration, consider the following two-step game:

    A
             L R

 E         E    E

           l r         l            r

       winA         winE      winE  winA

Allowing only strategies that can be played despite her uncertainty, E has only two:

‘left’, ‘right’. Note that determinacy is lost here: neither player has a winning strategy.

The following formulas describe player E's plight at her right-most turn:
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(a) KE (<l>winE 5 <r> winE)

E knows that some move will make her win

(b) ¬KE <l>winE) 6  ¬KE <r>winE)

there is no particular move of which E knows that it will make her win.

The complete logic of this system is a well-known fusion of PDL plus epistemic S5.  It

has been proposed by Moore 1985 as a logic of planning in situations where agents do

not know all the relevant information. In particular, no interaction axioms occur

between knowledge and action modalities. When these occur, they express special

features of agents. This is brought out by standard modal correspondence analysis.

Theorem The DEL formula KE[a] 7  8  [a]KE 7  is true in a frame

iff E has Perfect Recall in the sense that, if Ra xy and

y ~E z, then there exists a u with x ~Eu and Ra uz:

The latter condition requires this commutative diagram in the game trees:

       E x E u

         a    a

y E z

More complex versions of Perfect Recall yield to exactly the same analysis (Bonanno

200x). And one can also analyze other types of player, such as those having finite-state

memories. One virtue of logic analysis here is the discovery that complexity of valid

reasoning may differ widely for these different types of agent (Halpern & Vardi 199x).

Here are two questions about further possible connections with game theory:

Open Problem 20 Use DEL to analyse the various notions of game-theoretic

equilibrium that have been proposed for imperfect information games.

Open Problem 21       Analyze the 'Harsanyi trade-off' between incomplete

information about the future in perfect information games and

imperfect information games in logical DEL terms.

One can also add a calculus of strategies again, in a PDL-style extension. In game

theory, imperfect information games involve uniform strategies, which prescribe the

same move for a player across her uncertainty link. These can be correlated with

programs whose only test conditions are formulas which the relevant players  know.

(cf. Fagin et al. 1995 on 'knowledge programs', van Benthem 2001).

Incidentally, DEL also has a counterpart at the power level. As we noted above, any two

families of sets satisfying only the monotonicity and consistency conditions on powers
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can be realized by means of a two-step imperfect information game. Here is an

example displaying the necessary tricks. Suppose we are given:

powers for E   {A, B, C}, {C, D}      powers for A     {B, C}, {A, D}

An appropriate game with just these powers  is

E

A  A  A

B A    C    A C D    D   D    B A   A   C

But the language of powers, or even the full DGL of Section 3 can be easily combined

with epistemic logic. In a sense (van Benthem 200x), Hintikka's 'IF logic' of Section 5

below is already a calculus of game operations plus implicit knowledge operators.

3.4 Information update in games

'Dynamic epistemic logic' is also used in another sense these days, as a name for

concrete systems that update information. Van Benthem 2005 is an extensive survey of

open problems in this area. Here, we just mention a few issues related to games. Let's

use the letter combination EDL for this second sense of dynamics., which may be

viewed as an instantiation of DEL in the above more abstract sense. One now adds

PDL style operators referring to informational actions. The basic case is public

announcement  !A of a proposition A, removing  all worlds from the current model M

where A does not hold to obtain the relativized submodel M|A:

M, s |= [!A] 9 iff  M|A, s |= 9
This says that, after truthful announcement of A, 9  holds. Public announcement has a

complete decidable logic (cf. van Benthem, van Eijck & Kooi 2005 for an up-to-date

version), whose  axioms essentially compute  [!A] 9 by relativizing  9 to A.

More complex informative events over an epistemic model M involve hiding of one's

own actions, or partial observation by others. This happens frequently in ordinary

communication, where we whisper in lecture theatres, use bcc in emails to make

information flow in complex manners, or just cheat. A sharp focus for all this are

parlour games where not all players can see all details of some current move.

To deal with such more sophisticated informative events, the right update mechanism is

not just world elimination.  One has to first form an event model A of all relevant

actions with their preconditions, where we encode which agent can distinguish which
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events. E.g., if I read my card in your view, you know that I am performing one of a

number of possible reading actions, but you do not know which one precisely. And If I

read my card secretly, you even think my action is the same as doing nothing.

The next stage then computes a  product  model MxA whose worlds are pairs (s, a) of

current states s in M and those events  a from A which are possible at s (Baltag, Moss

& Solecki 199x). For game trees, this specializes as follows:

Take a game with current state x, and uncertainty relations ~i  among

the nodes at x's tree level computed so far. Let a new move be made.

The new states are the nodes at the next level of the game tree, which

can be identified with ordered pairs  (previous state, action last made).

Now we define the uncertainties at the next tree level as follows:

(y, b) ~i  (z, c)    iff y ~i z  and  b ~i c

Thus, new uncertainty equals ‘old uncertainty + indistinguishable actions’.

Example  Updates during play: propagating ignorance along a game tree

     Game Tree Action Diagram

A   a b c

            a   b      c         E     

         E   E  E

    d       e     e       f       f   d      e f

                    A   

Here are the successive updates:

stage 1

stage 2     E

stage 3

     A           E

One can analyze this update mechanism by its dynamic-epistemic properties. For

product update, we find two major ingredients, the earlier Perfect Recall, and  

Uniform No Learning: if two actions are ever indistinguishable ,

then they will never make indistinguishable states distinguishable.
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Uniform No Learning typically validates a converse of the earlier knowledge-action

interchange law for players who obey it. Note that this means that product update is not

a neutral stipulation: it only works for idealized agents.

The impact of such assumptions may be studied in the following mathematical setting.

One forms infinite trees whose nodes are finite sequences of events (cf. Fagin et al.

1995, Parikh & Ramanujam 2002), and allows arbitrary uncertainty relations for agents

between nodes. Such uncertainty patterns will encode what agents know, and more

generically, what types of agent are present. One important special kind of such trees

arises from product update. Define the infinite tree-like structure

Tree(M, A) to consist of all successive product levels

M, MxA, (MxA)xA, ...

The above game tree was an example. Now we can ask which patterns of epistemic

uncertainty relations are characteristic for the latter setting. Van Benthem & Liu 2004

give the following representation result

Theorem An arbitrary epistemic event tree is isomorphic to some

model  Tree(M, A)  iff its uncertainty relations for all agents

satisfy both Perfect Recall and Uniform No Learning.

Van Benthem & Liu 2004 also discuss the possibility of a classification of agents'

strategies in terms of restrictions on their format of definability. General epistemic tree

structures support epistemic temporal languages, just as much as dynamic epistemic

logics of information update (cf. van Benthem 2005 for a first attempt):

Open Problem 22 Can the theory of EDL be generalized to an epistemic temporal

        logic allowing more general temporal pre- and postconditions for events?

3.5 Diversity of agents

The preceding characterization result can be extended to other types of agent,

corresponding to other structural constraints. For instance, it is easy to characterizes

those corresponding to memory-free agents.

Open Problem 23     Find a general EDL-style classification of types of

agent based on logically expressible dynamic-epistemic constraints.

Perhaps the more interesting question, however, is about groups of agents with

different logical behaviour. How do we detect the 'memory-type' of an opponent,  and

can we take advantage of it, once we know? The movie "Memento" provides nice

examples of this scenario, and so do many other more SF-like current films.
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3.6 Other uses of EDL: solution algorithms for strategic games

Van Benthem 2002 uses scenarios with repeated announcement of 'Rationality' of

players to analyze game solutions, not as sets of strategy profiles, but rather directly on

the algorithmic procedures themselves which solve games. This works over a simple

account of game models as sets of strategy profiles where players know their own

action, but not that of the others. Standard algorithms iteratively eliminate profiles from

the initial model, in a process whose steps can be viewed as announcements of some

suitable epistemic statement. In any model M, any statement : , repeated sufficiently

often, gets to a fixed-point #(M, : ). Either the latter submodel  is empty ( : is self-

defeating), or it is non-empty, while announcing it has no further effect, so that the

statement has become common knowledge in #(M, : ) ( :  is self-fulfilling).

Theorem The algorithm SD;  of Iterated Removal of Strictly Dominated

Strategies produces just the models #(M, WR) where WR is the statement

that no one plays an action for which there is one that she knows to be better.

This type of result establishes a correspondence between (a) epistemic assertions

whose announcement can be iterated, and (b) game solution algorithms. Van Benthem

2002 gives an illustration, defining a new solution algorithm stronger than SD;  using

the statement that "no one thinks that her current action is ever a worst response".

He also shows that for existential epistemic assertions : < the solution models #(M, : )
can be defined inside the initial model by greatest fixed-point formulas in an epistemic
= –calculus.  But the general case requires an extension with inflationary fixed-points.

Open Problem 24 Develop the dynamic epistemic analysis  

of game solution procedures more systematically.

General epistemic inflationary fixed-point logic is ill-behaved. E.g., it is undecidable

(Dawar, Grädel & Kreutzer  2004) and other quirks occur, too.

Open Problem 25 Find well-behaved fragments of epistemic

inflationary fixed-point logic which suffice for game analysis.

3.7 Belief revision

EDL may be viewed also as a logic for update of belief, rather than knowledge.  But, in

the context of games, we also seem to need belief revision, as we encounter unexpected

behaviour of our opponents which contradicts our expectations so far. Now, as

explained in the companion survey van Benthem 2005, product update does not achieve

belief revision. But its methodology can be extended to a system which does, by
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enriching models with plausibility values for worlds according to agents (Spohn

1988). Then, product update can be extended to plausibility update in a natural manner

(Aucher 2003), supporting the same sorts of perspicuous logics which are the trade-

mark of EDL. But there is a difference in spirit. As pointed out in Liu 2004, diversity

of revision policies (from more radical to more conservative) is a desideratum in belief

revision theory, and hence no unique update rule can work for everyone.  Her proposal

is to parametrize the plausibility assignment function to pairs (s, a) with weight for the

past world s and the last-observed event a. This is like parametrized update rules in

inductive logic or Bayesian probability.

Open Problem  26 Apply the Spohn-Aucher-Liu analysis to extensive games.

Open Problem 27 Extend the analysis  of game solution with iterated epistemic

statements to a scenario where players' beliefs are taken into account.

3.8 Preference Dynamics

While we are dynamifying various aspects of games, we might also consider doing the

same with preferences. One might imagine that there are actions which change

preferences. Zarnic 199x analysis goals and planning in this way, with commands of

the form FIAT > : "make >  become the case". Yamada 2004 takes the same thinking to

deontic logic. A command like "you ought to make sure that > "is some authority's

instruction to give possible future outcomes satisfying > high(er) priority. (Related

ideas are in Tan 199x.) Thus, one can have an account of dynamic commands and their

effects in the same style as EDL. But there are non-trivial issues here, having to do with

the fact that EDL events are 'precondition oriented'. They convey information about the

situation when the event took place, while we just have to see or deduce what will hold

afterwards. By contrast, commands are postcondition-oriented. They tell us to do

something that will make sure a certain condition will hold afterwards.

Open Problem 28 Develop a complete expressive dynamic logic of commands.

5 Logic Games

As mentioned above, many logical tasks themselves have a game character. Most of

these involve two-person zero-sum games of perfect information, some with finite

extensive game trees, some allowing infinite runs. Van Benthem 1999 has chapters on

most of the basic varieties.  We run through a few basic cases.

Evaluation games  Semantic evaluation games exist for most logical languages.     

The original case are Hintikka games for first-order logic, whose basic feature is an

equivalence between
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 (a) truth of ? in some model M with assignment s,

(b) the existence of a winning strategy for Verifier

     in the associated evaluation game game(M, s, ? ).

These games have a finite length measured by the quantifier depth of the formula. With

this bridge, many logical and game-theoretic notions can be correlated. E.g., the game-

theoretic import of Excluded Middle is that evaluation games are determined by

Zermelo's Theorem. More complex games are needed for more expressive languages,

such as LFP(FO) with monotone fixed-point operators.  These involve infinite runs,

and counting of parity of infinitely recurring  @ – or A –subformulas.

Open Problem 29 Find a systematic logical use for the surplus information in

the game  account, viz. the different specific winning strategies for players.

Open Problem 30 Develop an abstract model theory of logical languages

based on a natural classification of game types..

Model construction games   Games for constructing models exist in great variety (cf.

Hodges 1985). One simple option is to turn semantic tableaus into games.  Now there

can be infinite branches, corresponding to the construction of an infinite model. The

tableau rules and processing procedure can be manipulated in many different ways for

this. Here a model exists for a given set of statements iff Builder has a winning

strategy, and different such strategies even encode different possible models directly.

This setting also suggests introducing new vocabulary, such as an explicit instruction

for dealing with a true universal quantifier more than once.

Open Problem 31 Use variations on tableau games to model various

substructural (categorial, linear) versions of first-order logic.

Proof games and argumentation  The oldest logic games are Lorenzen's for dialogue,

where the main result is that sequents are intuitionistically provable iff the Proponent of

the conclusion has a winning strategy against an Opponent granting the premises. Even

more constructively, there is an effective correspondence between

(a) proofs,

(b) winning strategies in the dialogue game.

These systems are driven by a mixture of 'logical rules' for dealing with complex

statements, and 'procedural rules' setting the schedule and other points of order. More

informal versions of Lorenzen games, with both features, are used in argumentation

theory, as a model for rational debate.
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Open Problem 32 Analyse the procedural component of dialogue games

more systematically, and find a systematic prediction what logic

comes out of what package of logical and procedural rules.

Open Problem 33 Compare dialogue games with model construction games,

and also the co-existence of strategies-as-proofs and strategies-as-models.

By the way, van Benthem 2004 has a more gloomy game analysis of argumentation, as

involving little logic, but rather a calculus of values of arguments decreasing with

familiarity, and making one's statements, whether weak or strong, with the right timing.

Model comparison games    The most widely used logic games are Ehrenfeucht-

Fraïssé games of model comparison, where two models M, N satisfy the same first-

order sentences up to quantifier depth k iff Duplicator has a winning strategy in the

game comp(M, N, k) over k rounds. Here, the concrete correspondence is between

(a) first-order formulas distinguishing the models, and

(b) winning strategies for the 'difference player' Spoiler.

Comparison games give fine-structure to more global structural equivalences such as

isomorphism, potential isomorphism, or bisimulation. Thus, we could also use them to

compare extensive games! Here we just mention a technical desideratum.

Open Problem 34 Find a useful comparison game matching first-order logic

with fixed-points LFP(FO).

Operations on logic games   Other logic games include more complex constructions,

such as model extension (Hirsch and Hodkinson 200x) or recursion-theoretic priority

arguments (Moschovakis 198x). Many of these, intuitively, involve combination of

subgames. Some of these are the earlier-mentioned choices, compositions, and role

switches. others involve more complex parallel product formation. Here is an

illustration from van Benthem 1999.

Theorem Ehrenfeucht-Fraïssé games are isomorphic to

'interleaved products'  of Hintikka evaluation games.

Open Problem 35 Find a good typology of game operations used for logic games.

Even though logic games have largely developed in isolation, there have been some

cultural influences from game theory coming this way.

Imperfect information  Logic games with imperfect information have been proposed

by Hintikka and the 'IF school' (Hintikka & Sandu 1997) for the purpose of analysing
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more freely scoped quantifier languages, with motivations from linguistics, philosophy,

mathematics, and these days even quantum mechanics.  Here is the well-known 'slash

notation' for such a new kind of logical evaluation game:

B
x C y/x xD y.  

This expresses, when played in any model M, that Verifier has a uniform strategy for

winning this semantic game, even when she does not know the value of x chosen earlier

by her opponent Falsifier. At the level of powers, this game is equivalent to the reverse

scope order C y 
B

x/y  Rxy . This observation is just one instance of general IF logic,  

for which we refer to Sandu & Tulenheimo 2005. In particular, the full power of the

system is equivalent to that of existential second-order logic. But Tulenheimo 2004

shows that some IF variants of modal logic remain decidable. In addition to the host of

more specialized questions in this technical area, we mention

Open Problem 36 What is the complete game algebra of IF logic?

Open Problem 37 What are natural decidable fragments of the IF language?

The move from sequential to uniform strategies makes sense for any logic game.

Open Problem 38 Develop IF versions of games of proof or model comparison.

Preferences   Finally, one can also add more finer preferences to logic games, and

introduce more sophisticated equilibria than just those far, being 'winning strategy

versus any counter-play '. Harrenstein 2004 develops some quite original extensions of

logical notions of consequence along these lines.  Other possibilities abound.:

(a) Measure effort, in making branch length to end node

an additional factor in the pay-offs for players.  

(b) Form new games out of existing logical tasks.

A good source for the latter is computing updates in Section 4. Parts of the update

universe can be turned into conversation games with a restricted set of available

assertions, where the point is for one player to be the first to find out the actual world.

Nash values for these games can be hard to compute, as complexity increases quickly.

Winning strategies clearly have something to do with solving the Reachability Problem

from one epistemic model to another by a sequence of admissible actions satisfying

certain epistemic assertions.

Open Problem 39 Develop a general theory of conversation games.
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6 Further Topics

This survey of issues and questions, broad as it is, has still left out a number of issues

that are crucial to games. We conclude by merely listing a few directions:

Probability Integrate all of the above with probability theory, Bayesian update (cf.

van Benthem 2002 for general product update in this setting), and mixed strategies.

This trend is emerging, interestingly, in IF logic with Hintikka's use of 'generalized

Skolem functions'. to deal with quantum-mechanical particles whose positions and

momenta satisfy the Heisenberg Uncertainty  Principle.

Infinite and evolutionary games    Infinitely repeated games are essential in modern

game theory, starting from Axelrod 198x on the emergence of cooperation in

Prisoner's Dilemma encounters, and continuing into modern evolutionary game theory

(XYZ). A systematic connection between such games and those found in logic seems

rewarding. E.g., how does the strategy calculus of infinite linear logic games, with its

emphasis on memory-free strategies like Copy-Cat (i.e., Tit-for-Tat) or finite-

automaton computable strategies relate to similar topics in game theory? More

generally, evolutionary game theory turns around the mathematics of dynamical

systems – and its relationship with epistemic temporal and update logics seems a

potentially important short-term/long-term  interface.
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Topics to be added

Parallel/simultaneous  action


