Duality Theory in Logic

Sumit Sourabh

ILLC, Universiteit van Amsterdam

Cool Logic
14th December

Duality in General

"Duality underlines the world"

- "Most human things go in pairs" (Alcmaeon, 450 BC)

Existence of an entity in seemingly different forms, which are strongly related.

- Dualism forms a part of the philosophy of eastern religions.
- In Physics: Wave-particle duality, electro-magnetic duality, Quantum Physics,...

Duality in Mathematics

- Back and forth mappings between dual classes of mathematical objects.
- Lattices are self-dual objects
- Projective Geometry
- Vector Spaces
- In logic, dualities have been used for relating syntactic and semantic approaches.

Algebras and Spaces

Fig. 4-11. The Alexander horned sphere.

Logic fits very well in between.

Algebras

- Equational classes having a domain and operations .
- Eg. Groups, Lattices, Boolean Algebras, Heyting Algebras ...,
- Homomorphism, Subalgebras, Direct Products, Variety, ...

Power Set Lattice (BDL)

- $\mathrm{BA}=(\mathrm{BDL}+\neg)$ s.t. $a \vee \neg a=1$

(Topological) Spaces

- Topology is the study of spaces.

A toplogy on a set X is a collection of subsets (open sets) of X, closed under arbitrary union and finite intersection.

Open Sets correspond to neighbourhoods of points in space.

- Metric topology, Product topology, Discrete topology ...
- Continuous maps, Homeomorphisms, Connectedness, Compactness, Hausdorffness,...
"I dont consider this algebra, but this doesn't mean that algebraists cant do it." (Birkhoff)

A brief history of Propositional Logic

- Boole's The Laws of Thought (1854) introduced an algebraic system for propositional reasoning.
- Boolean algebras are algebraic models for Classical Propositional logic.
- Propositional logic formulas correspond to terms of a BA.

George Boole (1815-1864)

Representation in Finite case

- Representation Theorems every element of the class of structures X is isomorphic to some element of the proper subclass Y of X
- Important and Useful (algebraic analogue of completeness)
- Cayley's theorem, Riesz's theorem, ...

Representation in Finite case

- Representation Theorems every element of the class of structures X is isomorphic to some element of the proper subclass Y of X
- Important and Useful (algebraic analogue of completeness)
- Cayley's theorem, Riesz's theorem, ...
- Representation for Finite case (Lindembaum-Tarski 1935) Easy!

Representation in Finite case

- Representation Theorems every element of the class of structures X is isomorphic to some element of the proper subclass Y of X
- Important and Useful (algebraic analogue of completeness)
- Cayley's theorem, Riesz's theorem, ...
- Representation for Finite case (Lindembaum-Tarski 1935) Easy!

- Map every element of the algebra to the set of atoms below it $f(b)=\{a \in \operatorname{At}(B) \mid a \leq b\}$ for all $b \in B$ FBA $\cong \mathcal{P}($ Atoms $)$

Stone Duality

'A cardinal principle of modern mathematical research maybe be stated as a maxim: "One must always topologize" '.

$\mathrm{BA} \cong$ Stone $^{\mathrm{Op}}$
Stone's Representation Theorem (1936)
-Marshall H. Stone

M. H. Stone (1903-1989)

From Spaces to Algebras and back

- Stone spaces Compact, Hausdorff, Totally disconnected eg. $\mathbf{2}^{A}$, Cantor set, $\mathbb{Q} \cap[0,1]$
- Stone space to BA

Lattice of clopen sets of a Stone space form a Boolean algebra

From Spaces to Algebras and back

- Stone spaces Compact, Hausdorff, Totally disconnected eg. $\mathbf{2}^{A}$, Cantor set, $\mathbb{Q} \cap[0,1]$
- Stone space to BA

Lattice of clopen sets of a Stone space form a Boolean algebra

- BA to Stone space Key Ideas:
(i) Boolean algebra can be seen a Boolean ring (Idempotent)
(ii) Introducing a topology on the space of ultrafilters of the Boolean ring

What is an ultrafilter ?

From Spaces to Algebras and back

- A filter on a BA is a subset F of $B A$ such that
- $1 \in F, 0 \notin F$;
- if $u \in F$ and $v \in F$, then $u \wedge v \in F$;
- if $u, v \in B, u \in F$ and $u \leq v$, then $v \in F$.

In short, its an upset, closed under meets.
An ultrafilter U, is a filter such that either $a \in U$ or $\neg a \in U$.

- Example: Let $\mathcal{P}(X)$ be a powerset algebra Then the subset $\uparrow\{x\}=\{A \in \mathcal{P}(X) \mid x \in A\}$ is an ultrafilter.
Non-principal ultrafilters exist (Axiom of Choice)

From Spaces to Algebras and back

- A filter on a BA is a subset F of $B A$ such that
- $1 \in F, 0 \notin F$;
- if $u \in F$ and $v \in F$, then $u \wedge v \in F$;
- if $u, v \in B, u \in F$ and $u \leq v$, then $v \in F$.

In short, its an upset, closed under meets.
An ultrafilter U, is a filter such that either $a \in U$ or $\neg a \in U$.

- Example: Let $\mathcal{P}(X)$ be a powerset algebra Then the subset $\uparrow\{x\}=\{A \in \mathcal{P}(X) \mid x \in A\}$ is an ultrafilter.
Non-principal ultrafilters exist (Axiom of Choice)
- (i) Map an element of B to the set of ultrafilters containing it $f(b)=\{u \in S(B) \mid a \in u\}$
(ii) Topology on $S(B)$, is generated by the following basis
$\{u \in S(B) \mid b \in u\}$ where $b \in B$

From Spaces to Algebras and back

- A filter on a BA is a subset F of $B A$ such that
- $1 \in F, 0 \notin F$;
- if $u \in F$ and $v \in F$, then $u \wedge v \in F$;
- if $u, v \in B, u \in F$ and $u \leq v$, then $v \in F$.

In short, its an upset, closed under meets.
An ultrafilter U, is a filter such that either $a \in U$ or $\neg a \in U$.

- Example: Let $\mathcal{P}(X)$ be a powerset algebra Then the subset $\uparrow\{x\}=\{A \in \mathcal{P}(X) \mid x \in A\}$ is an ultrafilter.
Non-principal ultrafilters exist (Axiom of Choice)
- (i) Map an element of B to the set of ultrafilters containing it $f(b)=\{u \in S(B) \mid a \in u\}$
(ii) Topology on $S(B)$, is generated by the following basis
$\{u \in S(B) \mid b \in u\}$ where $b \in B$
- Morphisms and Opposite (contravariant) Duality

The Complete Duality

- Canonical extensions
- Stone-Céch Compactification

Modal logic as we know it

Kripke had been introduced to Beth by Haskell B. Curry, who wrote the following to Beth in 1957
"I have recently been in communication with a young man in Omaha Nebraska, named Saul Kripke... This young man is a mere boy of 16 years; yet he has read and mastered my Notre Dame Lectures and writes me letters which would do credit to many a professional logician. I have suggested to him that he write you for preprints of your papers which I have already mentioned. These of course will be very difficult for him, but he appears to be a person of extraordinary brilliance, and I have no doubt something will come of it."

Saul Kripke

Modal logic as we know it

Kripke had been introduced to Beth by Haskell B. Curry, who wrote the following to Beth in 1957
"I have recently been in communication with a young man in Omaha Nebraska, named Saul Kripke... This young man is a mere boy of 16 years; yet he has read and mastered my Notre Dame Lectures and writes me letters which would do credit to many a professional logician. I have suggested to him that he write you for preprints of your papers which I have already mentioned. These of course will be very difficult for him, but he appears to be a person of extraordinary brilliance,

Saul Kripke and I have no doubt something will come of it."

Saul Kripke, A Completeness Theorem in Modal Logic. J. Symb. Log. 24(1): 1-14 (1959)

Modal logic before the Kripke Era

- C.I. Lewis, Survey of Symbolic Logic, 1918 (Axiomatic system S1-S5)
- Syntactic era (1918-59)

Algebraic semantics, JT Duality, ...

- The Classical era (1959-72)
"Revolutionary" Kripke semantics, Frame completeness,...
- Modern era (1972- present)

Incompleteness results (FT '72, JvB '73), Universal algebras in ML, CS applications,...

- Modal Algebra (MA) $=$ Boolean Algebra + Unary operator \diamond

1. $\diamond(a \vee b)=\diamond a \vee \diamond b$
2. $\diamond \perp=\perp$
3. $\diamond(a \rightarrow b) \rightarrow(\diamond a \rightarrow \diamond b)$ (Monotonicity of \diamond)

Jóhsson-Tarski Duality

Jóhnsson-Tarski Duality (1951-52)

Alfred Jarski (1901-1983)

Modal Spaces and Kripke Frames

- Key Idea: We already know, ultrafilter frame of the BA forms a Stone space. For BAO, we add the following relation between ultrafilters

$$
\text { Ruv iff } f a \in u \text { for all } a \in v
$$

- Descriptive General Frames
- Unify relational and algebraic semantics
- DGF $=\mathrm{KFr}+$ admissible or clopen valuations
- Validity on DGF \Rightarrow Validity on KFr Converse (Persistence) only true for Sahlqvist formulas

Algebraic Soundness and Completeness

- Theorem: Let Σ set of modal formulas. Define

$$
V_{\Sigma}=\{\mathbb{A} \in B A O \mid \forall \varphi(\varphi \in \sigma \Rightarrow \mathbb{A} \models \varphi=\top)\}
$$

Then for every $\psi, \vdash_{K} \psi$ iff $V_{\Sigma} \models \psi=T$.

Algebraic Soundness and Completeness

- Theorem: Let Σ set of modal formulas. Define

$$
V_{\Sigma}=\{\mathbb{A} \in B A O \mid \forall \varphi(\varphi \in \sigma \Rightarrow \mathbb{A} \models \varphi=\top)\}
$$

Then for every $\psi, \vdash_{K} \psi$ iff $V_{\Sigma} \models \psi=\mathrm{T}$. Soundness: By induction on the depth of proof of ψ.

Algebraic Soundness and Completeness

- Theorem: Let Σ set of modal formulas. Define

$$
V_{\Sigma}=\{\mathbb{A} \in B A O \mid \forall \varphi(\varphi \in \sigma \Rightarrow \mathbb{A} \models \varphi=\top)\}
$$

Then for every $\psi, \vdash_{K} \psi$ iff $V_{\Sigma} \models \psi=T$. Soundness: By induction on the depth of proof of ψ.
Completeness: Assume $\vdash_{k} \psi$. To show: $\exists \mathbb{A}_{\psi} \in V_{\Sigma}$ and $\mathbb{A}_{\psi} \models(\psi \neq \mathrm{T})$. The Lindenbaum-Tarski algebra is the canonical witness (Define $\psi \equiv \psi^{\prime}$ iff $\vdash_{K}\left(\psi \leftrightarrow \psi^{\prime}\right)$.

Algebraic Soundness and Completeness

- Theorem: Let Σ set of modal formulas. Define

$$
V_{\Sigma}=\{\mathbb{A} \in B A O \mid \forall \varphi(\varphi \in \sigma \Rightarrow \mathbb{A} \models \varphi=\top)\}
$$

Then for every $\psi, \vdash_{K} \psi$ iff $V_{\Sigma} \models \psi=T$. Soundness: By induction on the depth of proof of ψ.
Completeness: Assume $\vdash_{K} \psi$. To show: $\exists \mathbb{A}_{\psi} \in V_{\Sigma}$ and $\mathbb{A}_{\psi} \models(\psi \neq \top)$. The Lindenbaum-Tarski algebra is the canonical witness (Define $\psi \equiv \psi^{\prime}$ iff $\vdash_{K}\left(\psi \leftrightarrow \psi^{\prime}\right)$.

- Canonical Models are Ultrafilter frames of Lindenbaum-Tarski algebra

Algebraic Soundness and Completeness

- Theorem: Let Σ set of modal formulas. Define

$$
V_{\Sigma}=\{\mathbb{A} \in B A O \mid \forall \varphi(\varphi \in \sigma \Rightarrow \mathbb{A} \models \varphi=\mathrm{T})\}
$$

Then for every $\psi, \vdash_{K} \psi$ iff $V_{\Sigma} \models \psi=T$. Soundness: By induction on the depth of proof of ψ.
Completeness: Assume $\vdash_{k} \psi$. To show: $\exists \mathbb{A}_{\psi} \in V_{\Sigma}$ and $\mathbb{A}_{\psi} \models(\psi \neq \top)$. The Lindenbaum-Tarski algebra is the canonical witness (Define $\psi \equiv \psi^{\prime}$ iff $\vdash_{K}\left(\psi \leftrightarrow \psi^{\prime}\right)$.

- Canonical Models are Ultrafilter frames of Lindenbaum-Tarski algebra
- Disjoint Union \leftrightarrow Product Bounded Morphic image \leftrightarrow Subalgebras Generated subframe \leftrightarrow Homomorphic image

- Useful in characterizing Intermidiate logics.

List of Dual Structures in Logic

Duality

Priestly Duality	DL	Priestly	negation free CL
Esakia Duality	HA	Esakia	IPL
Stone Dualtiy	BA	Stone	CPL
Jóhnsson-Tarski Duality	MA	MS	ML

Frame Definability and Correspondence

- Elementary class of frames
- Reflexive, Transitive, Antisymmetric, ...

Frame Definability and Correspondence

- Elementary class of frames
- Reflexive, Transitive, Antisymmetric, ...
- Modally def. class of frames
- $p \rightarrow \square p, \square p \rightarrow \square \square p$,
$\square(\square p \rightarrow p) \rightarrow \square p, \ldots$

Frame Definability and Correspondence

- Elementary class of frames
- Reflexive, Transitive, Antisymmetric, ...
- Modally def. class of frames
- $p \rightarrow \square p, \square p \rightarrow \square \square p$, $\square(\square p \rightarrow p) \rightarrow \square p, \ldots$
- Which Elementary class of frames are Modally definable?

Frame Definability and Correspondence

- Elementary class of frames
- Reflexive, Transitive, Antisymmetric, ...
- Modally def. class of frames
- $p \rightarrow \square p, \square p \rightarrow \square \square p$, $\square(\square p \rightarrow p) \rightarrow \square p, \ldots$
- Which Elementary class of frames are Modally definable? Goldblatt-Thomason Theorem [GT '74] (Duality + Birkhoff's Thm)

Frame Definability and Correspondence

- Elementary class of frames
- Reflexive, Transitive, Antisymmetric, ...
- Modally def. class of frames
- $p \rightarrow \square p, \square p \rightarrow \square \square p$, $\square(\square p \rightarrow p) \rightarrow \square p, \ldots$
- Which Elementary class of frames are Modally definable? Goldblatt-Thomason Theorem [GT '74] (Duality + Birkhoff's Thm)
- Which Modally definable class of frames are elementary?

Frame Definability and Correspondence

- Elementary class of frames
- Reflexive, Transitive, Antisymmetric, ...
- Modally def. class of frames
- $p \rightarrow \square p, \square p \rightarrow \square \square p$, $\square(\square p \rightarrow p) \rightarrow \square p, \ldots$
- Which Elementary class of frames are Modally definable? Goldblatt-Thomason Theorem [GT '74] (Duality + Birkhoff's Thm)
- Which Modally definable class of frames are elementary? Van Benthem's Theorem [JvB '76]

Frame Definability and Correspondence

- Elementary class of frames
- Reflexive, Transitive, Antisymmetric, ...
- Modally def. class of frames
- $p \rightarrow \square p, \square p \rightarrow \square \square p$, $\square(\square p \rightarrow p) \rightarrow \square p, \ldots$
- Which Elementary class of frames are Modally definable? Goldblatt-Thomason Theorem [GT '74] (Duality + Birkhoff's Thm)
- Which Modally definable class of frames are elementary? Van Benthem's Theorem [JvB '76]
- Which modal formulas define elementary class of frames?

Frame Definability and Correspondence

- Elementary class of frames
- Reflexive, Transitive, Antisymmetric, ...
- Modally def. class of frames
- $p \rightarrow \square p, \square p \rightarrow \square \square p$, $\square(\square p \rightarrow p) \rightarrow \square p, \ldots$
- Which Elementary class of frames are Modally definable? Goldblatt-Thomason Theorem [GT '74] (Duality + Birkhoff's Thm)
- Which Modally definable class of frames are elementary? Van Benthem's Theorem [JvB '76]
- Which modal formulas define elementary class of frames?
- T, 4, B etc define elementary class of frames

Frame Definability and Correspondence

- Elementary class of frames
- Reflexive, Transitive, Antisymmetric, ...
- Modally def. class of frames
- $p \rightarrow \square p, \square p \rightarrow \square \square p$, $\square(\square p \rightarrow p) \rightarrow \square p, \ldots$
- Which Elementary class of frames are Modally definable? Goldblatt-Thomason Theorem [GT '74] (Duality + Birkhoff's Thm)
- Which Modally definable class of frames are elementary? Van Benthem's Theorem [JvB '76]
- Which modal formulas define elementary class of frames?
- T, 4, B etc define elementary class of frames
- Innocent looking McKinsey ($\square \diamond p \rightarrow \diamond \square p$) does not !

Frame Definability and Correspondence

- Elementary class of frames
- Reflexive, Transitive, Antisymmetric, ...
- Modally def. class of frames
- $p \rightarrow \square p, \square p \rightarrow \square \square p$, $\square(\square p \rightarrow p) \rightarrow \square p, \ldots$
- Which Elementary class of frames are Modally definable? Goldblatt-Thomason Theorem [GT '74] (Duality + Birkhoff's Thm)
- Which Modally definable class of frames are elementary? Van Benthem's Theorem [JvB '76]
- Which modal formulas define elementary class of frames?
- T, 4, B etc define elementary class of frames
- Innocent looking McKinsey ($\square \diamond p \rightarrow \diamond \square p$) does not !
- It's an undecidable problem [Chagrova '89]

Frame Definability and Correspondence

- Elementary class of frames
- Reflexive, Transitive, Antisymmetric, ...
- Modally def. class of frames
- $p \rightarrow \square p, \square p \rightarrow \square \square p$, $\square(\square p \rightarrow p) \rightarrow \square p, \ldots$
- Which Elementary class of frames are Modally definable? Goldblatt-Thomason Theorem [GT '74] (Duality + Birkhoff's Thm)
- Which Modally definable class of frames are elementary? Van Benthem's Theorem [JvB '76]
- Which modal formulas define elementary class of frames?
- T, 4, B etc define elementary class of frames
- Innocent looking McKinsey ($\square \diamond p \rightarrow \diamond \square p$) does not !
- It's an undecidable problem [Chagrova '89]
- Sahlqvist formulas provide sufficient conditions

Correspondence Theory

- Johan's PhD thesis Modal Correspondence Theory in 1976.
- Correspondence Provides sufficient syntactic conditions for first order frame correspondence eg. Sahlqvist formulas.
- Completeness

Sahlqvist formulas are canonical and hence axiomatization by Sahlqvist axioms is complete.

Classical Correspondence

Correspondence via Duality

Correspondence via Duality

Key Ideas
(i) Use the properties of the algebra to drive the correspondence mechanism.
(ii) Use the (order theoretic) properties of the operators to define sahlqvist formulas

Eg. $\square p \rightarrow p$
iif $\square p \leq p$
iff $p \leq(\square)^{-1} p$ (\square as SRA)
iff $\forall \mathbf{i} \forall \mathbf{j} \mathbf{i} \leq p \&(\square)^{-1} p \leq \mathbf{m}$
iff $\forall \mathbf{i} \forall \mathbf{j}(\square)^{-1} \mathbf{i} \leq \mathbf{j}$
iff $\forall x, x \in R[x]$

Sahlqvist formula

Advantages
(i) Counter-intuitive frame conditons can be easily obtained (eg.

Löb's axiom)
(ii) The approach generalizes to a wide variety of logics.

Point Free Topology

- Point free Topology
- Open sets are first class citizens
- Lattice theoretic (algebraic) approach to topology
- Sober spaces and Spatial locales

Peter T. Johnstonne

- Gelfand dualtiy
- locally KHaus and the C*-algebra of continuous complex-valued functions on X
- Understanding spaces by maps.
- Algebraic Topology?

Coalgebras

- Modal logics are Colagebraic [CKPSV '08] Kripke frames as transition systems.
- Coalgebraic Stone Duality

Ult

$\mathrm{MA} \cong \operatorname{Alg}(\operatorname{Clop} \circ \mathcal{V} \circ \mathrm{Ul} \mathrm{t}) \cong \operatorname{CoAlg}(\mathcal{V})^{o p}$

References

- Lattices and Order, B. Davey and H. Priestly
- Modal Logic, [BRV] Ch. 5
- Stone Spaces, P. T. Johnstonne
- Mathematical Structures in Logic

The Beatles

"Within You Without You" is a song written by George Harrison, released on The Beatles' 1967 album, Sgt. Pepper's Lonely Hearts Club Band.

The Beatles

". . . And the time will come when you see
We're all one, and life flows on within you and without you"

The Beatles

". . . And the time will come when you see
We're all one, and logic flows on within you and without you" (summarizes duality theory quite well !)

