
An Invitation to Homotopy Type Theory

Tingxiang Zou



Type Theory

• Formal Systems:
Church’s simply typed lambda calculus (1940);
Martin Löf’s dependent type theory (1971-1984)
• Origin: Russell’s theory of types
The world is organised by types, each entity/term is assigned
to certain type. (e.g. n :N; f :N→N)
We have some basic types and terms to start with, and build
new ones from rules. (e.g. A × B; f(n) :N )
• Four basic kinds of judgements:
A type; a : A ;
A = B; a = b : A .
• Each judgement is warranted by a suitable (possibly empty)
context, which is a variable declaration: x1 : A1, · · · , xn : An.
• x1 : A1, · · · , xn : An ` a : A



Martin Löf’s Type Theory
• Types are dependent: x : A ` B(x) type
Contexts: x1 : A1, x2 : A2(x1), · · · , xn : An(x1, · · · , xn−1),
if for each i, x1 : A1, · · · , xi : Ai(x1, · · · , xi−1) ` Ai+1 type.
• Dependent Product (Π-type):

Type Formation:
` A type; x : A ` B(x) type

` Πx:A B(x) type
;

Term Introduction:
x : A ` b(x) : B(x)

` λx .b(x) : Πx:A B(x)
;

Term Elimination:
` f : Πx:A B(x); ` a : A
` Ap(f ,a) : B(a)

;

Computation Rule:
x : A ` b(x) : B(x); ` a : A
` Ap(λx .b(x),a) = b(a) : B(a)

;



How to read a : A?

• A is a set, a is an element of A .
Type constructions corresponds to set constructions.
• A is a proposition, a is a proof/construction/witness of
proposition A . a : A implies A is true.
Type constructions corresponds to the construction of formulas.
A × B ; A ∧ B; Πx:A B(x) ; ∀xA B(x); Σx:A B(x) ; ∃xA B(x).
A proposition is nothing but a collection of proofs, term
introduction rules states what are accepted as proofs.
Howard: The typed lambda calculus corresponded to
intuitionistic natural deduction. Martin Löf extends this
correspondence to predicate logic.
• A is a problem, a is a program/algorithm solving this problem.
Foundation of a programming language (Coq, Agda).
• Curry-Howard correspondence:
Proofs-as-programs; Propositions-as-types



Various Faces of Type Theory

• Foundation of Mathematics
• Intuitionistic logic, Constructive mathematics
• Programming languages
• A is a space and a is a point of A .
The motivation is from interpreting a special kind of types,
the identity types in Martin Löf’s type theory.

• New area of research: Homotopy Type Theory.



Identity types

• Definitional equality: a = b : A ; (judgement)
• Propositional equality: (type, proposition)

Type Formation:
` A type

x : A , y : A ` IdA (x , y) type
;

Term Introduction: x : A ` rA (x) : IdA (x , x);

• Definitional equality implies propositional ones.
• Extensional identity types: propositional equality implies
definitional one, i.e., p : IdA (a,b) ` a = b : A .
Under types-as-sets view, two elements are equal, if they are
extensionally equal.
• Intensional identity types: p : IdA (a,b) ` a = b : A is not valid.
• Type theory with intentional identity types preserves nice
computational property (type checking is decidable).



Homotopy Theory

• Path: A path in space X is a continuous function f : [0,1]→ X .
• Homotopy: A homotopy between two continuous functions
f ,g : X → Y is a continuous function H : X × [0,1]→ Y such that for
all x ∈ X , H(x ,0) = f(x), H(x ,1) = g(x).
• Path homotopy: Given two paths f ,g from x to y in X , a path
homotopy is a homotopy H from f to g, such that H(0, t) = x and
H(1, t) = y for all t .
• Homotopy equivalence: A continuous function f : X → Y is a
homotopy equivalence if there is a continuous function g : Y → X
such that both f ◦ g and g ◦ f are homotopic to identity functions.
We call X ,Y are homotopy equivalent or of the same homotopy
type.

• Homotopy group: For a space X with a fixed base point b, we
define πn(X ,b) to be the group of homotopy classes of maps
g : [0,1]n → X from the n-cube to X that take the boundary of the
n-cube to the base point b.



Homotopy theory and Type theory
• Identity types are path spaces.
p : IdA (a,b) is a path from a to b, and if p,q : IdA (a,b), then
h : IdIdA (a,b)(p,q) is a path homotopy from p to q.
Not necessary p : IdA (a,b) ` a = b : A .

Transport
Suppose P is a dependent type over A and p : IdA (x , y). Then there
is a function p∗ : P(x)→ P(y).

Path Lifting Property
Suppose we have u : P(x) for some x : A , then for any p : IdA (x , y),
we have a term lift(u,p) : IdΣx:A P(x)((x ,u), (y ,p∗(u)), such that
p1(lift(u,p)) = p.

• Dependent types are fibrations;
Terms are continuous sections of fibrations;
• Martin Löf’s intentional type theory can be seen as logic for
homotopy theory. (e.g. Homotopy, Contactable)



Univalence Axiom
•Universe: We have a hierarchy of universes

U0 : U1 : U2 : · · · ,

each universe Ui is a term of the next universe Ui+1.
Universes are cumulative: if A : Ui , then A : Ui+1.
Judgement A type is A : Ui for some i, we write A : U.
•We can talk about spaces now, IdU(A ,B)
• For any type A ,B, we have the type (A ' B) of equivalences
from A to B (e.g. functions f : A → B which has both left and
right homotopical inverse).
• Univalence Axiom:(Vladimir Voevodsky)

For any A ,B : U, IdU(A ,B) ' (A ' B).
• Identity is equivalent to equivalence.
• In particular there is a term ua : (A ' B)→ IdU(A ,B), which
witnesses the proposition:
if A ,B are equivalent, then they are equal.



h-levels
• h-levels: A type A is of h-level 0 if it is contractible.
A type A is of h-level n + 1 if, for all terms a and b of type A , the type
IdA (a,b) is of h-level n.
• Homotopy n-types: We say that a space X for which all πk (X ,a)
with k > n are trivial is a homotopy n-type.

h-level corresponding space up to equivalence
0 the contractible space 1
1 the space 1 and the empty space 0
2 sets
3 the homotopy 1-types (groupoids)
· · · · · ·

n the homotopy (n − 2)-types
· · · · · ·

• Univalnet Perspective:
logic: homotopy types of level 1;
Set-theoretic mathematics: homotopy types of level 2;
Categorical-theoretic mathematics: homotopy types of level 3...



Univalent Foundation program

• Features:(Voevodsky)
Can be used both for constructive and non-constructive mathematics;
Naturally included axiomatizing of categorical thinking;
Can be conveniently formalised using dependent type systems;
The whole foundation is based on a direct formalization/axiomatizing
of the world of homotopy types instead of the world of sets.
• Do mathematics in this type theory with the proof assistant Coq!
• A lot of homotopy theory can be done in Coq, e.g. the proof
πn(Sn) ' Z. People are trying on some of the other modern
mathematics under this approach.

• ”One of Voevodsky’s goals is that in a not too distant future,
mathematicians will be able to verify the correctness of their own
papers by working within the system of univalent foundations
formalised in a proof assistant, and doing so will become natural even
for pure mathematicians.”



Conclusion

• Course: (1st April-22nd May, 2015)
Benno van den Berg: Homotopy Type Theory

Thank You !


