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Axiom of Choice

Not everyone’s favourite axiom.

Definition
The Axiom of Choice is the following statement: Let I be a set.
Let (X

i

)
i2I be an I-indexed family of non-empty sets. Then

there is an I-indexed family (x
i

)
i2I of elements such that for

every i 2 I, x
i

2 X
i

.

An equivalent: A and B are sets, and f : A ! B a surjection. Then
there is an injection g : B ! A such that for every a 2 A,
g(f(a)) = a.
Con(ZF) � Con(ZFC) (Gödel).
Con(ZF) � Con(ZF¬C) (Cohen).



Introduction Vitali Construction Banach-Tarski Horrors without AC Conclusion

Axiom of Choice

Not everyone’s favourite axiom.

Definition
The Axiom of Choice is the following statement: Let I be a set.
Let (X

i

)
i2I be an I-indexed family of non-empty sets. Then

there is an I-indexed family (x
i

)
i2I of elements such that for

every i 2 I, x
i

2 X
i

.

An equivalent: A and B are sets, and f : A ! B a surjection. Then
there is an injection g : B ! A such that for every a 2 A,
g(f(a)) = a.
Con(ZF) � Con(ZFC) (Gödel).
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An axiom alwayz into somethin’

A non-measurable subset of the real line, R.
Fun fact: it is consistent with ZFC that any subset of R that you
can define is measurable (Foreman-Magidor-Shelah).

The Banach-Tarski paradox.
Let B3 be the unit ball in R3. Then it can be decomposed into
finitely many pieces and these pieces rearranged in R3 by only
using rotations and translations into two disjoint copies of B3.

But if you think that things are just dandy without AC, wait
till we get to the end of the presentation.
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Countable, uncountable

Vocabulary: Countable means “in bijection with N or some
n 2 N”.

E.g. R is uncountable, whereas Q is countable (Cantor).

@0 is the ‘size’ of infinite countable sets.

@1 is the smallest infinite uncountable size.
AC implies @0 ⇥ @0 = @0.
Aside: CH is the question “Does R have size @1?”
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Basic properties of a measure

Definition
A measure on R is a (possibly partial) function
µ : P(R) ! R�0 [ {1} satisfying:

(i) The lengths of intervals should be intuitive: µ([0, 1]) = 1

(ii) Singletons should be insignificant: µ({⇤}) = 0

(iii) Countable additivity: Let (S
n

)
n2N be disjoint subsets of

R. Then µ(
U

n2N S
n

) = ⌃
n2Nµ(Sn

).

(iv) Translation Invariance: Let S ✓ R and r 2 R. Let
T = {s+ r; s 2 S}. Then µ(S) = µ(T ).
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E0

Definition
The Vitali relation, E0 is defined as follows: for
(x, y) ✓ [0, 1]⇥ [0, 1], say xE0y if (x� y) 2 Q.

Observations:

(i) Each equivalence class has the same size as Q i.e. @0.

(ii) So there are uncountably many equivalence classes.
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A non-measurable set

Let V be a selector. Assume(!) it is measurable.

Let I �
= Q \ [�1, 1]. For each q 2 I, let V

q

�
= V + q, the

pointwise translation of each element of V by q.

(i) For every q 2 I 6=0, V \ V
q

= ;. Also, for each q 2 I,
V
q

✓ [�1, 2].

(ii) µ(V ) = µ(V
q

). So ⌃
q2Iµ(Vq

) = ⌃
q2Iµ(V ).

(iii) But [0, 1] ✓
U

q2I Vq

✓ [�1, 2].

(iv) So µ([0, 1])  ⌃
q2Iµ(Vq

)  µ([�1, 2]).

(v) Therefore, 1  ⌃
q2Iµ(Vq

)  3.

(vi) So µ(V ) � 0, but ⌃
q2Iµ(Vq

) = ⌃
q2Iµ(V )  3.

Contradiction.
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Groups

Definition
A group is a set G together with a binary operation • which
satisfies the following laws:

(i) Closure: If a, b 2 G then a • b 2 G.

(ii) Identity: There is an element e 2 G such that for all
g 2 G, e • g = g.

(iii) Associativity: If a, b, c 2 G, then (a • b) • c = a • (b • c).
(iv) Inverse: If a 2 G, then there is an element b 2 G such that

a • b = b • a = e.

Example: (Z,+, 0). Given a set S, the set of its permutations.
SO3, the set of rotations of R3. F2 ✓ SO3.
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Group actions

Definition
Let G be a group and X a set. A (left) group action of G on X
is a binary operator � : G⇥X ! X satisfying the following
laws:

(i) Associativity: If g, h 2 G and x 2 X,
(g • h) � x = g � (h � x).

(ii) Identity: If x 2 X, e � x = x.

Example: Any group acting on itself. Given a set S, any
subgroup of its permutation group, acting on S. SO3, acting on
R3.
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Decomposing and Assembling

Let G act on X. Let E,F subsets of X. Say E and F are
equidecomposable via G with m pieces (denoted E s

G

F ) if :

(i) There are g1, · · · gm in G and A1, · · ·Am

pairwise disjoint
subsets of E such that:

(ii) E =
U

im

A
i

and F =
U

im

g
i

A
i

.

E is paradoxical if F = E ] E.
If X is the group G itself, call G paradoxical if G = G ]G.
Aside: Amenable groups.
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The broken circle

Example: S1 a proper circle and S1 \ {⇤} a broken circle, then
S1 \ {⇤} s S1 via SO2, the group of rotations of R2 with 2
pieces.

(i) Recall the Hilbert Hotel.

(ii) Want: one rotation to do all this moving around. Let the
missing point be 1 = ei0. Then e�i does exactly that.
2⇡ is irrational so this rotation freely generates an infinite set.
That is, eim 6= ein for m 6= n.

(iii) To be precise, our two sets are: A
�
= {ein;n 2 N+} and

B
�
= (S1 \ {⇤}) \A.

(iv) It is easy to see that S1 = (e�iA) ]B.
e�i sends ei(n+1) to ein.
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(iv) It is easy to see that S1 = (e�iA) ]B.

e�i sends ei(n+1) to ein.
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The broken circle

Example: S1 a proper circle and S1 \ {⇤} a broken circle, then
S1 \ {⇤} s S1 via SO2, the group of rotations of R2 with 2
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(iv) It is easy to see that S1 = (e�iA) ]B.
e�i sends ei(n+1) to ein.
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F2

Definition
The free group on the 2 generators {a, b} is defined as follows:

(i) The base set consists of all finite strings that can be
formed from the alphabet {a, a�1, b, b�1} which do not
contain the substrings aa�1, a�1a, bb�1, b�1b.

(ii) The identity element is the empty string, denoted by ✏ or
e.

(iii) The group operation is defined as follows: Let u and v be
two strings. Then u • v is the string w obtained by first
concatenating u and v and then replacing all occurences of
the substrings aa�1, a�1a, bb�1, b�1b by the empty string.

All free groups on 2 generators are isomorphic.

Aside: The free group on 1 generator is isomorphic to (Z,+, 0).

But this is not the same as (Z⇥ Z, (+,+), (0, 0)).
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A picture of F2
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Deconstructing F2, Reconstructing F2, F2

F2 is paradoxical with 4 pieces.

(i) Let G
a

be the elements of F2 which start with a.

(ii) Then F2 = {e} [G
a

[G
a

�1 [G
b

[G
b

�1 .

(iii) Notice that F2 = G
a

] aG
a

�1 and F2 = G
b

] bG
b

�1 . But e
is still troubling us.

(iv) So consider

G1
�
= G

a

[ {e, a�1, a�2, a�3 · · · }

G2
�
= G

a

�1 \ {e, a�1, a�2, a�3 · · · }

G3
�
= G

b

G4
�
= G

b

�1

(v) Easy to verify that F2 = G1 ] aG2 = G3 ] bG4.
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Another picture of F2
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Hausdor↵ Paradox

(AC) Hausdor↵ Paradox: There is a countable set D such that
F2 acts on S2 \D paradoxically with 4 pieces.

(i) Let D
�
= {x 2 S2; 9f 2 F2(f • x = x)}.

(ii) Let G1, G2, G3, G4 be as previously.

(iii) The following is then an equivalence relation on S2 \D:
x ⇠ y i↵ there is a f 2 F2 such that f � x = y.

(iv) Let X be a selector. So S2 \D =
U

x2X F2x.

(v) But F2x = (G1x ] aG2x).

(vi) Then ⌦
i

�
=

U
x2X G

i

x for i 2 {1, 2, 3, 4} do the job.

(vii) Hence, S2 \D = ⌦1 ] a⌦2 = ⌦3 ] b⌦4.
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S2 s S2 \D

(i) A higher dimensional Hilbert Hotel trick.

(ii) Fix a line l through the origin not intersecting D.
(a) Only countably many angles ✓ such that for some n > 0

⇢nl,✓(D) \D 6= ;.
(b) Choose some other angle. Let R be the corresponding

rotation.
(c) Then any two elements of D are in separate R-orbits.
(d) That is, RiD \RjD = ; whenever i 6= j.

(iii) Then, ⌃2
�
= D [RD [R2D · · · ; and ⌃1

�
= S2 \ ⌃2.

(iv) It can be verified that S2 = ⌃1 ] ⌃2 and
S2 \D = ⌃1 ]R⌃2.
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Recap

Things we’ve done so far:

(i) S1 s (S1 \ {⇤}) (2 pieces).

(ii) (S2 \D) s (S2 \D) ] (S2 \D) (4 pieces).

(iii) S2 s (S2 \D) (2 pieces).

What this gives us:

S2 s (S2 \D) s (S2 \D) ] (S2 \D) s S2 ] S2.

So S2 s S2 ] S2.

And the number of pieces we’ve needed is 8.
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There or nearabouts

Things we’ve done, and things we can do with them.

We have S2 s S2 ] S2.
But B3 \ {0} = S2 ⇥ (0, 1]!
So B3 \ {0} s (B3 \ {0}) ] (B3 \ {0}).

So B3 \ {0} s B3 would do the job.

But this easily follows from S1 \ {⇤} s S1.
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The Banach-Tarski “Paradox”

B3 is G3-paradoxical.

This also shows that there is no finitely additive total measure on
Rn for n � 3.
Stronger version: Let A and B be bounded sets in Rn, n � 3 with
non-empty interior. Then A sG3 B.

Something weaker than AC su�ces, Gödel’s Completeness
Theorem. Or the Compactness Theorem for First-order Logic.
Both of these are equivalent to what is called the Ultrafilter
Lemma (Henkin).

Whoops?
Aside: The Downward Löwenheim-Skolem theorem is equivalent to
AC (Tarski).
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Notions of size

(i) f : A ! B, injective, then say |A|  |B|.
(ii) Clearly, the notion is transitive and reflexive.

(iii) AC is equivalent to: A and B are sets, then either
|A| < |B| or |B| > |A| or |A| = |B|.

(iv) That is, this notion of size is a total order.

(v) Aside: AC says that R has a definite size in this sense,
but this size can be almost anything by Cohen.
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The horrors in earnest

There can be infinite sets which have no subset of size @0
(Cohen).
@0 is no longer the smallest infinite cardinality, since there may be
infinite sets which are incomparable with @0.
In fact, all partial orders can be embedded as cardinalities.

Let I be a set and for every i 2 I, X
i

a non-empty set. Then
without AC,

Q
i2I Xi

may be empty.
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What about the trees?

(i) Without AC, there can be an infinite tree with no leaves,
but no infinite paths either.
Each finite path can be extended by one node, but no path
goes on forever.
König’s lemma may fail.
Aside: So may Ramsey’s theorem.

(ii) Without DC (the same as the above statement about
trees), it is not possible to develop a satisfactory theory of
real analysis or measure theory.
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More parts than there are elements

Sierpinski: Either there is a non-measurable subset of R or R
has a surjection onto a (strictly) larger set. In the original
proof, the larger set is E0 actually.

(i) Assume all subsets of R are measurable. Then !1 ⇥ 2! by
Raisonnier.

(ii) Then @1 + 2! > 2!. The injection from right to left is
trivial. The reverse injection is not possible.

(iii) But there is a partion of 2! (actually P(! + !)) into
@1 + 2! many parts. Two well-ordering of ! are mapped
to the same set if their ordertype is the same,
non-wellorderings are mapped to singletons.
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How I learned to stop worrying and...

1. R may be a countable union of countable sets
(Feferman-Lévy). But not countable, by Cantor’s theorem!

2. @1 can be a large cardinal (Jech).

3. @1 can be a countable union of countable sets (Lévy).

4. Every infinite set may be a countable union of smaller sets
(Gitik).

5. There is a model of ZF in which there is no function C
with the following properties: for all X and Y ,
(i) C(X) = C(Y ) if and only if |X| = |Y |
(ii) |C(X)| = |X|
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Be careful! :-)

There is richer structure without AC, somewhat similar to the
greater structure in Intuitionistic Logic.
To extend the analogy further, weak forms of AC play the part of
weak forms of LEM.
Aside: In a set theory with AC, you can show that LEM (or
weaker forms) holds (Diaconescu/Goodman-Myhill).

But perhaps this is too much structure? And counterintuitive
structure at times.

The Axiom of Choice is a subtle beast. Use it, but with care.
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