Horrors with and without the Axiom of Choice

Tanmay Inamdar

February 23, 2013

Overview

Introduction

Vitali Construction

Banach-Tarski

Horrors without AC

Conclusion

Axiom of Choice

Not everyone's favourite axiom.

Axiom of Choice

Not everyone's favourite axiom.
Definition
The Axiom of Choice is the following statement: Let I be a set.
Let $\left(X_{i}\right)_{i \in I}$ be an I-indexed family of non-empty sets. Then there is an I-indexed family $\left(x_{i}\right)_{i \in I}$ of elements such that for every $i \in I, x_{i} \in X_{i}$.

Axiom of Choice

Not everyone's favourite axiom.
Definition
The Axiom of Choice is the following statement: Let I be a set.
Let $\left(X_{i}\right)_{i \in I}$ be an I-indexed family of non-empty sets. Then there is an I-indexed family $\left(x_{i}\right)_{i \in I}$ of elements such that for every $i \in I, x_{i} \in X_{i}$.

An equivalent: A and B are sets, and $f: A \rightarrow B$ a surjection. Then there is an injection $g: B \rightarrow A$ such that for every $a \in A$, $g(f(a))=a$.
$\operatorname{Con}(\mathbf{Z F}) \rightarrow \operatorname{Con}(\mathbf{Z F C})$ (Gödel).
$\operatorname{Con}(\mathbf{Z F}) \rightarrow \operatorname{Con}(\mathbf{Z F} \neg \mathbf{C})($ Cohen $)$.

An axiom alwayz into somethin'

An axiom alwayz into somethin'

A non-measurable subset of the real line, \mathbb{R}.

An axiom alwayz into somethin'

A non-measurable subset of the real line, \mathbb{R}.
Fun fact: it is consistent with ZFC that any subset of \mathbb{R} that you can define is measurable (Foreman-Magidor-Shelah).

An axiom alwayz into somethin'

A non-measurable subset of the real line, \mathbb{R}.
Fun fact: it is consistent with ZFC that any subset of \mathbb{R} that you can define is measurable (Foreman-Magidor-Shelah).
The Banach-Tarski paradox.

An axiom alwayz into somethin'

A non-measurable subset of the real line, \mathbb{R}.
Fun fact: it is consistent with ZFC that any subset of \mathbb{R} that you can define is measurable (Foreman-Magidor-Shelah).
The Banach-Tarski paradox.
Let B^{3} be the unit ball in \mathbb{R}^{3}. Then it can be decomposed into finitely many pieces and these pieces rearranged in \mathbb{R}^{3} by only using rotations and translations into two disjoint copies of B^{3}.

An axiom alwayz into somethin'

A non-measurable subset of the real line, \mathbb{R}.
Fun fact: it is consistent with ZFC that any subset of \mathbb{R} that you can define is measurable (Foreman-Magidor-Shelah).
The Banach-Tarski paradox.
Let B^{3} be the unit ball in \mathbb{R}^{3}. Then it can be decomposed into finitely many pieces and these pieces rearranged in \mathbb{R}^{3} by only using rotations and translations into two disjoint copies of B^{3}.
But if you think that things are just dandy without AC, wait till we get to the end of the presentation.

Countable, uncountable

Vocabulary: Countable means "in bijection with \mathbb{N} or some $n \in \mathbb{N}$ ".

Countable, uncountable

Vocabulary: Countable means "in bijection with \mathbb{N} or some $n \in \mathbb{N}$ ".
E.g. \mathbb{R} is uncountable, whereas \mathbb{Q} is countable (Cantor).

Countable, uncountable

Vocabulary: Countable means "in bijection with \mathbb{N} or some $n \in \mathbb{N}^{\prime \prime}$.
E.g. \mathbb{R} is uncountable, whereas \mathbb{Q} is countable (Cantor).
\aleph_{0} is the 'size' of infinite countable sets.
\aleph_{1} is the smallest infinite uncountable size.

Countable, uncountable

Vocabulary: Countable means "in bijection with \mathbb{N} or some $n \in \mathbb{N}^{\prime \prime}$.
E.g. \mathbb{R} is uncountable, whereas \mathbb{Q} is countable (Cantor).
\aleph_{0} is the 'size' of infinite countable sets.
\aleph_{1} is the smallest infinite uncountable size.
AC implies $\aleph_{0} \times \aleph_{0}=\aleph_{0}$.

Countable, uncountable

Vocabulary: Countable means "in bijection with \mathbb{N} or some $n \in \mathbb{N}^{\prime \prime}$.
E.g. \mathbb{R} is uncountable, whereas \mathbb{Q} is countable (Cantor).
\aleph_{0} is the 'size' of infinite countable sets.
\aleph_{1} is the smallest infinite uncountable size.
AC implies $\aleph_{0} \times \aleph_{0}=\aleph_{0}$.
Aside: CH is the question "Does \mathbb{R} have size \aleph_{1} ?"

Basic properties of a measure

Definition
A measure on \mathbb{R} is a (possibly partial) function $\mu: \mathcal{P}(\mathbb{R}) \rightarrow \mathbb{R}^{\geq 0} \cup\{\infty\}$ satisfying:
(i) The lengths of intervals should be intuitive: $\mu([0,1])=1$
(ii) Singletons should be insignificant: $\mu(\{*\})=0$
(iii) Countable additivity: Let $\left(S_{n}\right)_{n \in \mathbb{N}}$ be disjoint subsets of \mathbb{R}. Then $\mu\left(\biguplus_{n \in \mathbb{N}} S_{n}\right)=\Sigma_{n \in \mathbb{N}} \mu\left(S_{n}\right)$.
(iv) Translation Invariance: Let $S \subseteq \mathbb{R}$ and $r \in \mathbb{R}$. Let $T=\{s+r ; s \in S\}$. Then $\mu(S)=\mu(T)$.

E_{0}

Definition

The Vitali relation, E_{0} is defined as follows: for $(x, y) \subseteq[0,1] \times[0,1]$, say $x E_{0} y$ if $(x-y) \in \mathbb{Q}$.

E_{0}

Definition
The Vitali relation, E_{0} is defined as follows: for $(x, y) \subseteq[0,1] \times[0,1]$, say $x E_{0} y$ if $(x-y) \in \mathbb{Q}$.
Observations:
(i) Each equivalence class has the same size as \mathbb{Q} i.e. \aleph_{0}.

E_{0}

Definition
The Vitali relation, E_{0} is defined as follows: for $(x, y) \subseteq[0,1] \times[0,1]$, say $x E_{0} y$ if $(x-y) \in \mathbb{Q}$.
Observations:
(i) Each equivalence class has the same size as \mathbb{Q} i.e. \aleph_{0}.
(ii) So there are uncountably many equivalence classes.

A non-measurable set

Let V be a selector. Assume(!) it is measurable.

A non-measurable set

Let V be a selector. Assume(!) it is measurable. Let $\mathbb{I} \triangleq \mathbb{Q} \cap[-1,1]$. For each $q \in \mathbb{I}$, let $V_{q} \triangleq V+q$, the pointwise translation of each element of V by q.

A non-measurable set

Let V be a selector. Assume(!) it is measurable. Let $\mathbb{I} \triangleq \mathbb{Q} \cap[-1,1]$. For each $q \in \mathbb{I}$, let $V_{q} \triangleq V+q$, the pointwise translation of each element of V by q.
(i) For every $q \in \mathbb{I}^{\neq 0}, V \cap V_{q}=\emptyset$. Also, for each $q \in \mathbb{I}$, $V_{q} \subseteq[-1,2]$.

A non-measurable set

Let V be a selector. Assume(!) it is measurable. Let $\mathbb{I} \triangleq \mathbb{Q} \cap[-1,1]$. For each $q \in \mathbb{I}$, let $V_{q} \triangleq V+q$, the pointwise translation of each element of V by q.
(i) For every $q \in \mathbb{I}^{\neq 0}, V \cap V_{q}=\emptyset$. Also, for each $q \in \mathbb{I}$, $V_{q} \subseteq[-1,2]$.
(ii) $\mu(V)=\mu\left(V_{q}\right)$. So $\Sigma_{q \in \mathbb{I}} \mu\left(V_{q}\right)=\Sigma_{q \in \mathbb{I}} \mu(V)$.

A non-measurable set

Let V be a selector. Assume(!) it is measurable.
Let $\mathbb{I} \triangleq \mathbb{Q} \cap[-1,1]$. For each $q \in \mathbb{I}$, let $V_{q} \triangleq V+q$, the pointwise translation of each element of V by q.
(i) For every $q \in \mathbb{I}^{\neq 0}, V \cap V_{q}=\emptyset$. Also, for each $q \in \mathbb{I}$, $V_{q} \subseteq[-1,2]$.
(ii) $\mu(V)=\mu\left(V_{q}\right)$. So $\Sigma_{q \in \mathbb{I}} \mu\left(V_{q}\right)=\Sigma_{q \in \mathbb{I}} \mu(V)$.
(iii) But $[0,1] \subseteq \biguplus_{q \in \mathbb{I}} V_{q} \subseteq[-1,2]$.

A non-measurable set

Let V be a selector. Assume(!) it is measurable.
Let $\mathbb{I} \triangleq \mathbb{Q} \cap[-1,1]$. For each $q \in \mathbb{I}$, let $V_{q} \triangleq V+q$, the pointwise translation of each element of V by q.
(i) For every $q \in \mathbb{I}^{\neq 0}, V \cap V_{q}=\emptyset$. Also, for each $q \in \mathbb{I}$, $V_{q} \subseteq[-1,2]$.
(ii) $\mu(V)=\mu\left(V_{q}\right)$. So $\Sigma_{q \in \mathbb{I}} \mu\left(V_{q}\right)=\Sigma_{q \in \mathbb{I}} \mu(V)$.
(iii) But $[0,1] \subseteq \biguplus_{q \in \mathbb{I}} V_{q} \subseteq[-1,2]$.
(iv) So $\mu([0,1]) \leq \Sigma_{q \in \mathbb{I}} \mu\left(V_{q}\right) \leq \mu([-1,2])$.

A non-measurable set

Let V be a selector. Assume(!) it is measurable.
Let $\mathbb{I} \triangleq \mathbb{Q} \cap[-1,1]$. For each $q \in \mathbb{I}$, let $V_{q} \triangleq V+q$, the pointwise translation of each element of V by q.
(i) For every $q \in \mathbb{I}^{\neq 0}, V \cap V_{q}=\emptyset$. Also, for each $q \in \mathbb{I}$, $V_{q} \subseteq[-1,2]$.
(ii) $\mu(V)=\mu\left(V_{q}\right)$. So $\Sigma_{q \in \mathbb{I}} \mu\left(V_{q}\right)=\Sigma_{q \in \mathbb{I}} \mu(V)$.
(iii) But $[0,1] \subseteq \biguplus_{q \in \mathbb{I}} V_{q} \subseteq[-1,2]$.
(iv) So $\mu([0,1]) \leq \Sigma_{q \in \mathbb{I}} \mu\left(V_{q}\right) \leq \mu([-1,2])$.
(v) Therefore, $1 \leq \Sigma_{q \in \mathbb{I}} \mu\left(V_{q}\right) \leq 3$.

A non-measurable set

Let V be a selector. Assume(!) it is measurable.
Let $\mathbb{I} \triangleq \mathbb{Q} \cap[-1,1]$. For each $q \in \mathbb{I}$, let $V_{q} \triangleq V+q$, the pointwise translation of each element of V by q.
(i) For every $q \in \mathbb{I}^{\neq 0}, V \cap V_{q}=\emptyset$. Also, for each $q \in \mathbb{I}$, $V_{q} \subseteq[-1,2]$.
(ii) $\mu(V)=\mu\left(V_{q}\right)$. So $\Sigma_{q \in \mathbb{I}} \mu\left(V_{q}\right)=\Sigma_{q \in \mathbb{I}} \mu(V)$.
(iii) But $[0,1] \subseteq \biguplus_{q \in \mathbb{I}} V_{q} \subseteq[-1,2]$.
(iv) So $\mu([0,1]) \leq \Sigma_{q \in \mathbb{I}} \mu\left(V_{q}\right) \leq \mu([-1,2])$.
(v) Therefore, $1 \leq \Sigma_{q \in \mathbb{I}} \mu\left(V_{q}\right) \leq 3$.
(vi) So $\mu(V) \geq 0$, but $\Sigma_{q \in \mathbb{I}} \mu\left(V_{q}\right)=\Sigma_{q \in \mathbb{I}} \mu(V) \leq 3$.

Contradiction.

Groups

Definition

A group is a set G together with a binary operation \bullet which satisfies the following laws:
(i) Closure: If $a, b \in G$ then $a \bullet b \in G$.
(ii) Identity: There is an element $e \in G$ such that for all $g \in G, e \bullet g=g$.
(iii) Associativity: If $a, b, c \in G$, then $(a \bullet b) \bullet c=a \bullet(b \bullet c)$.
(iv) Inverse: If $a \in G$, then there is an element $b \in G$ such that $a \bullet b=b \bullet a=e$.

Groups

Definition

A group is a set G together with a binary operation • which satisfies the following laws:
(i) Closure: If $a, b \in G$ then $a \bullet b \in G$.
(ii) Identity: There is an element $e \in G$ such that for all $g \in G, e \bullet g=g$.
(iii) Associativity: If $a, b, c \in G$, then $(a \bullet b) \bullet c=a \bullet(b \bullet c)$.
(iv) Inverse: If $a \in G$, then there is an element $b \in G$ such that $a \bullet b=b \bullet a=e$.

Example: $(\mathbb{Z},+, 0)$. Given a set S, the set of its permutations. $S O_{3}$, the set of rotations of $\mathbb{R}^{3} . \mathbf{F}_{2} \subseteq S O_{3}$.

Group actions

Definition
Let G be a group and X a set. A (left) group action of G on X is a binary operator $\circ: G \times X \rightarrow X$ satisfying the following laws:
(i) Associativity: If $g, h \in G$ and $x \in X$, $(g \bullet h) \circ x=g \circ(h \circ x)$.
(ii) Identity: If $x \in X, e \circ x=x$.

Group actions

Definition

Let G be a group and X a set. A (left) group action of G on X is a binary operator $0: G \times X \rightarrow X$ satisfying the following laws:
(i) Associativity: If $g, h \in G$ and $x \in X$, $(g \bullet h) \circ x=g \circ(h \circ x)$.
(ii) Identity: If $x \in X, e \circ x=x$.

Example: Any group acting on itself. Given a set S, any subgroup of its permutation group, acting on $\mathrm{S} . \mathrm{SO}_{3}$, acting on \mathbb{R}^{3}.

Decomposing and Assembling

Let G act on X. Let E, F subsets of X. Say E and F are equidecomposable via G with m pieces (denoted $E \sim_{G} F$) if :
(i) There are $g_{1}, \cdots g_{m}$ in G and $A_{1}, \cdots A_{m}$ pairwise disjoint subsets of E such that:
(ii) $E=\biguplus_{i \leq m} A_{i}$ and $F=\biguplus_{i \leq m} g_{i} A_{i}$.

Decomposing and Assembling

Let G act on X. Let E, F subsets of X. Say E and F are equidecomposable via G with m pieces (denoted $E \sim_{G} F$) if :
(i) There are $g_{1}, \cdots g_{m}$ in G and $A_{1}, \cdots A_{m}$ pairwise disjoint subsets of E such that:
(ii) $E=\biguplus_{i \leq m} A_{i}$ and $F=\biguplus_{i \leq m} g_{i} A_{i}$.
E is paradoxical if $F=E \uplus E$.

Decomposing and Assembling

Let G act on X. Let E, F subsets of X. Say E and F are equidecomposable via G with m pieces (denoted $E \sim_{G} F$) if :
(i) There are $g_{1}, \cdots g_{m}$ in G and $A_{1}, \cdots A_{m}$ pairwise disjoint subsets of E such that:
(ii) $E=\biguplus_{i \leq m} A_{i}$ and $F=\biguplus_{i \leq m} g_{i} A_{i}$.
E is paradoxical if $F=E \uplus E$.
If X is the group G itself, call G paradoxical if $G=G \uplus G$.

Decomposing and Assembling

Let G act on X. Let E, F subsets of X. Say E and F are equidecomposable via G with m pieces (denoted $E \sim_{G} F$) if :
(i) There are $g_{1}, \cdots g_{m}$ in G and $A_{1}, \cdots A_{m}$ pairwise disjoint subsets of E such that:
(ii) $E=\biguplus_{i \leq m} A_{i}$ and $F=\biguplus_{i \leq m} g_{i} A_{i}$.
E is paradoxical if $F=E \uplus E$.
If X is the group G itself, call G paradoxical if $G=G \uplus G$. Aside: Amenable groups.

The broken circle

Example: S^{1} a proper circle and $S^{1} \backslash\{*\}$ a broken circle, then $S^{1} \backslash\{*\} \sim S^{1}$ via $S O_{2}$, the group of rotations of \mathbb{R}^{2} with 2 pieces.

The broken circle

Example: S^{1} a proper circle and $S^{1} \backslash\{*\}$ a broken circle, then $S^{1} \backslash\{*\} \sim S^{1}$ via $S O_{2}$, the group of rotations of \mathbb{R}^{2} with 2 pieces.
(i) Recall the Hilbert Hotel.

The broken circle

Example: S^{1} a proper circle and $S^{1} \backslash\{*\}$ a broken circle, then $S^{1} \backslash\{*\} \sim S^{1}$ via $S O_{2}$, the group of rotations of \mathbb{R}^{2} with 2 pieces.
(i) Recall the Hilbert Hotel.
(ii) Want: one rotation to do all this moving around. Let the missing point be $1=e^{i 0}$. Then e^{-i} does exactly that.

The broken circle

Example: S^{1} a proper circle and $S^{1} \backslash\{*\}$ a broken circle, then $S^{1} \backslash\{*\} \sim S^{1}$ via $S O_{2}$, the group of rotations of \mathbb{R}^{2} with 2 pieces.
(i) Recall the Hilbert Hotel.
(ii) Want: one rotation to do all this moving around. Let the missing point be $1=e^{i 0}$. Then e^{-i} does exactly that.
2π is irrational so this rotation freely generates an infinite set.
That is, $e^{i m} \neq e^{i n}$ for $m \neq n$.
(iii) To be precise, our two sets are: $A \triangleq\left\{e^{i n} ; n \in \mathbb{N}^{+}\right\}$and $B \triangleq\left(S^{1} \backslash\{*\}\right) \backslash A$.

The broken circle

Example: S^{1} a proper circle and $S^{1} \backslash\{*\}$ a broken circle, then $S^{1} \backslash\{*\} \sim S^{1}$ via $S O_{2}$, the group of rotations of \mathbb{R}^{2} with 2 pieces.
(i) Recall the Hilbert Hotel.
(ii) Want: one rotation to do all this moving around. Let the missing point be $1=e^{i 0}$. Then e^{-i} does exactly that.
2π is irrational so this rotation freely generates an infinite set.
That is, $e^{i m} \neq e^{i n}$ for $m \neq n$.
(iii) To be precise, our two sets are: $A \triangleq\left\{e^{i n} ; n \in \mathbb{N}^{+}\right\}$and $B \triangleq\left(S^{1} \backslash\{*\}\right) \backslash A$.
(iv) It is easy to see that $S^{1}=\left(e^{-i} A\right) \uplus B$.

The broken circle

Example: S^{1} a proper circle and $S^{1} \backslash\{*\}$ a broken circle, then $S^{1} \backslash\{*\} \sim S^{1}$ via $S O_{2}$, the group of rotations of \mathbb{R}^{2} with 2 pieces.
(i) Recall the Hilbert Hotel.
(ii) Want: one rotation to do all this moving around. Let the missing point be $1=e^{i 0}$. Then e^{-i} does exactly that.
2π is irrational so this rotation freely generates an infinite set.
That is, $e^{i m} \neq e^{i n}$ for $m \neq n$.
(iii) To be precise, our two sets are: $A \triangleq\left\{e^{i n} ; n \in \mathbb{N}^{+}\right\}$and $B \triangleq\left(S^{1} \backslash\{*\}\right) \backslash A$.
(iv) It is easy to see that $S^{1}=\left(e^{-i} A\right) \uplus B$.
e^{-i} sends $e^{i(n+1)}$ to $e^{i n}$.

\mathbf{F}_{2}

Definition
The free group on the 2 generators $\{a, b\}$ is defined as follows:
(i) The base set consists of all finite strings that can be formed from the alphabet $\left\{a, a^{-1}, b, b^{-1}\right\}$ which do not contain the substrings $a a^{-1}, a^{-1} a, b b^{-1}, b^{-1} b$.
(ii) The identity element is the empty string, denoted by ϵ or e.
(iii) The group operation is defined as follows: Let u and v be two strings. Then $u \bullet v$ is the string w obtained by first concatenating u and v and then replacing all occurences of the substrings $a a^{-1}, a^{-1} a, b b^{-1}, b^{-1} b$ by the empty string.

\mathbf{F}_{2}

Definition
The free group on the 2 generators $\{a, b\}$ is defined as follows:
(i) The base set consists of all finite strings that can be formed from the alphabet $\left\{a, a^{-1}, b, b^{-1}\right\}$ which do not contain the substrings $a a^{-1}, a^{-1} a, b b^{-1}, b^{-1} b$.
(ii) The identity element is the empty string, denoted by ϵ or e.
(iii) The group operation is defined as follows: Let u and v be two strings. Then $u \bullet v$ is the string w obtained by first concatenating u and v and then replacing all occurences of the substrings $a a^{-1}, a^{-1} a, b b^{-1}, b^{-1} b$ by the empty string.

All free groups on 2 generators are isomorphic.

\mathbf{F}_{2}

Definition
The free group on the 2 generators $\{a, b\}$ is defined as follows:
(i) The base set consists of all finite strings that can be formed from the alphabet $\left\{a, a^{-1}, b, b^{-1}\right\}$ which do not contain the substrings $a a^{-1}, a^{-1} a, b b^{-1}, b^{-1} b$.
(ii) The identity element is the empty string, denoted by ϵ or e.
(iii) The group operation is defined as follows: Let u and v be two strings. Then $u \bullet v$ is the string w obtained by first concatenating u and v and then replacing all occurences of the substrings $a a^{-1}, a^{-1} a, b b^{-1}, b^{-1} b$ by the empty string.

All free groups on 2 generators are isomorphic.
Aside: The free group on 1 generator is isomorphic to $(\mathbb{Z},+, 0)$.

F_{2}

Definition
The free group on the 2 generators $\{a, b\}$ is defined as follows:
(i) The base set consists of all finite strings that can be formed from the alphabet $\left\{a, a^{-1}, b, b^{-1}\right\}$ which do not contain the substrings $a a^{-1}, a^{-1} a, b b^{-1}, b^{-1} b$.
(ii) The identity element is the empty string, denoted by ϵ or e.
(iii) The group operation is defined as follows: Let u and v be two strings. Then $u \bullet v$ is the string w obtained by first concatenating u and v and then replacing all occurences of the substrings $a a^{-1}, a^{-1} a, b b^{-1}, b^{-1} b$ by the empty string.

All free groups on 2 generators are isomorphic.
Aside: The free group on 1 generator is isomorphic to $(\mathbb{Z},+, 0)$.
But this is not the same as $(\mathbb{Z} \times \mathbb{Z},(+,+),(0,0))$.

A picture of \mathbf{F}_{2}

Deconstructing \mathbf{F}_{2}, Reconstructing $\mathbf{F}_{2}, \mathbf{F}_{2}$

\mathbf{F}_{2} is paradoxical with 4 pieces.

Deconstructing \mathbf{F}_{2}, Reconstructing $\mathbf{F}_{2}, \mathbf{F}_{2}$

\mathbf{F}_{2} is paradoxical with 4 pieces.
(i) Let G_{a} be the elements of \mathbf{F}_{2} which start with a.

Deconstructing \mathbf{F}_{2}, Reconstructing $\mathbf{F}_{2}, \mathbf{F}_{2}$

\mathbf{F}_{2} is paradoxical with 4 pieces.
(i) Let G_{a} be the elements of \mathbf{F}_{2} which start with a.
(ii) Then $\mathbf{F}_{2}=\{e\} \cup G_{a} \cup G_{a^{-1}} \cup G_{b} \cup G_{b^{-1}}$.

Deconstructing \mathbf{F}_{2}, Reconstructing $\mathbf{F}_{2}, \mathbf{F}_{2}$

\mathbf{F}_{2} is paradoxical with 4 pieces.
(i) Let G_{a} be the elements of \mathbf{F}_{2} which start with a.
(ii) Then $\mathbf{F}_{2}=\{e\} \cup G_{a} \cup G_{a^{-1}} \cup G_{b} \cup G_{b^{-1}}$.
(iii) Notice that $\mathbf{F}_{2}=G_{a} \uplus a G_{a^{-1}}$ and $\mathbf{F}_{2}=G_{b} \uplus b G_{b^{-1}}$. But e is still troubling us.

Deconstructing \mathbf{F}_{2}, Reconstructing $\mathbf{F}_{2}, \mathbf{F}_{2}$

\mathbf{F}_{2} is paradoxical with 4 pieces.
(i) Let G_{a} be the elements of \mathbf{F}_{2} which start with a.
(ii) Then $\mathbf{F}_{2}=\{e\} \cup G_{a} \cup G_{a^{-1}} \cup G_{b} \cup G_{b^{-1}}$.
(iii) Notice that $\mathbf{F}_{2}=G_{a} \uplus a G_{a^{-1}}$ and $\mathbf{F}_{2}=G_{b} \uplus b G_{b^{-1}}$. But e is still troubling us.
(iv) So consider

$$
\begin{aligned}
& G_{1} \triangleq G_{a} \cup\left\{e, a^{-1}, a^{-2}, a^{-3} \cdots\right\} \\
& G_{2} \triangleq G_{a^{-1}} \backslash\left\{e, a^{-1}, a^{-2}, a^{-3} \cdots\right\} \\
& G_{3} \triangleq G_{b} \\
& G_{4} \triangleq G_{b^{-1}}
\end{aligned}
$$

Deconstructing \mathbf{F}_{2}, Reconstructing $\mathbf{F}_{2}, \mathbf{F}_{2}$

\mathbf{F}_{2} is paradoxical with 4 pieces.
(i) Let G_{a} be the elements of \mathbf{F}_{2} which start with a.
(ii) Then $\mathbf{F}_{2}=\{e\} \cup G_{a} \cup G_{a^{-1}} \cup G_{b} \cup G_{b^{-1}}$.
(iii) Notice that $\mathbf{F}_{2}=G_{a} \uplus a G_{a^{-1}}$ and $\mathbf{F}_{2}=G_{b} \uplus b G_{b^{-1}}$. But e is still troubling us.
(iv) So consider

$$
\begin{aligned}
& G_{1} \triangleq G_{a} \cup\left\{e, a^{-1}, a^{-2}, a^{-3} \cdots\right\} \\
& G_{2} \triangleq G_{a^{-1}} \backslash\left\{e, a^{-1}, a^{-2}, a^{-3} \cdots\right\} \\
& G_{3} \triangleq G_{b} \\
& G_{4} \triangleq G_{b^{-1}}
\end{aligned}
$$

(v) Easy to verify that $\mathbf{F}_{2}=G_{1} \uplus a G_{2}=G_{3} \uplus b G_{4}$.

Another picture of \mathbf{F}_{2}

Hausdorff Paradox

(AC) Hausdorff Paradox: There is a countable set D such that \mathbf{F}_{2} acts on $S^{2} \backslash D$ paradoxically with 4 pieces.

Hausdorff Paradox

(AC) Hausdorff Paradox: There is a countable set D such that \mathbf{F}_{2} acts on $S^{2} \backslash D$ paradoxically with 4 pieces.
(i) Let $D \triangleq\left\{x \in S^{2} ; \exists f \in \mathbf{F}_{2}(f \bullet x=x)\right\}$.
(ii) Let $G_{1}, G_{2}, G_{3}, G_{4}$ be as previously.

Hausdorff Paradox

(AC) Hausdorff Paradox: There is a countable set D such that \mathbf{F}_{2} acts on $S^{2} \backslash D$ paradoxically with 4 pieces.
(i) Let $D \triangleq\left\{x \in S^{2} ; \exists f \in \mathbf{F}_{2}(f \bullet x=x)\right\}$.
(ii) Let $G_{1}, G_{2}, G_{3}, G_{4}$ be as previously.
(iii) The following is then an equivalence relation on $S^{2} \backslash D$: $x \sim y$ iff there is a $f \in \mathbf{F}_{2}$ such that $f \circ x=y$.

Hausdorff Paradox

(AC) Hausdorff Paradox: There is a countable set D such that \mathbf{F}_{2} acts on $S^{2} \backslash D$ paradoxically with 4 pieces.
(i) Let $D \triangleq\left\{x \in S^{2} ; \exists f \in \mathbf{F}_{2}(f \bullet x=x)\right\}$.
(ii) Let $G_{1}, G_{2}, G_{3}, G_{4}$ be as previously.
(iii) The following is then an equivalence relation on $S^{2} \backslash D$: $x \sim y$ iff there is a $f \in \mathbf{F}_{2}$ such that $f \circ x=y$.
(iv) Let X be a selector. So $S^{2} \backslash D=\biguplus_{x \in X} \mathbf{F}_{2} x$.

Hausdorff Paradox

(AC) Hausdorff Paradox: There is a countable set D such that \mathbf{F}_{2} acts on $S^{2} \backslash D$ paradoxically with 4 pieces.
(i) Let $D \triangleq\left\{x \in S^{2} ; \exists f \in \mathbf{F}_{2}(f \bullet x=x)\right\}$.
(ii) Let $G_{1}, G_{2}, G_{3}, G_{4}$ be as previously.
(iii) The following is then an equivalence relation on $S^{2} \backslash D$: $x \sim y$ iff there is a $f \in \mathbf{F}_{2}$ such that $f \circ x=y$.
(iv) Let X be a selector. So $S^{2} \backslash D=\biguplus_{x \in X} \mathbf{F}_{2} x$.
(v) But $\mathbf{F}_{2} x=\left(G_{1} x \uplus a G_{2} x\right)$.

Hausdorff Paradox

(AC) Hausdorff Paradox: There is a countable set D such that \mathbf{F}_{2} acts on $S^{2} \backslash D$ paradoxically with 4 pieces.
(i) Let $D \triangleq\left\{x \in S^{2} ; \exists f \in \mathbf{F}_{2}(f \bullet x=x)\right\}$.
(ii) Let $G_{1}, G_{2}, G_{3}, G_{4}$ be as previously.
(iii) The following is then an equivalence relation on $S^{2} \backslash D$: $x \sim y$ iff there is a $f \in \mathbf{F}_{2}$ such that $f \circ x=y$.
(iv) Let X be a selector. So $S^{2} \backslash D=\biguplus_{x \in X} \mathbf{F}_{2} x$.
(v) But $\mathbf{F}_{2} x=\left(G_{1} x \uplus a G_{2} x\right)$.
(vi) Then $\Omega_{i} \triangleq \biguplus_{x \in X} G_{i} x$ for $i \in\{1,2,3,4\}$ do the job.

Hausdorff Paradox

(AC) Hausdorff Paradox: There is a countable set D such that \mathbf{F}_{2} acts on $S^{2} \backslash D$ paradoxically with 4 pieces.
(i) Let $D \triangleq\left\{x \in S^{2} ; \exists f \in \mathbf{F}_{2}(f \bullet x=x)\right\}$.
(ii) Let $G_{1}, G_{2}, G_{3}, G_{4}$ be as previously.
(iii) The following is then an equivalence relation on $S^{2} \backslash D$: $x \sim y$ iff there is a $f \in \mathbf{F}_{2}$ such that $f \circ x=y$.
(iv) Let X be a selector. So $S^{2} \backslash D=\biguplus_{x \in X} \mathbf{F}_{2} x$.
(v) But $\mathbf{F}_{2} x=\left(G_{1} x \uplus a G_{2} x\right)$.
(vi) Then $\Omega_{i} \triangleq \biguplus_{x \in X} G_{i} x$ for $i \in\{1,2,3,4\}$ do the job.
(vii) Hence, $S^{2} \backslash D=\Omega_{1} \uplus a \Omega_{2}=\Omega_{3} \uplus b \Omega_{4}$.

$S^{2} \sim S^{2} \backslash D$

$S^{2} \sim S^{2} \backslash D$

(i) A higher dimensional Hilbert Hotel trick.

$$
S^{2} \sim S^{2} \backslash D
$$

(i) A higher dimensional Hilbert Hotel trick.
(ii) Fix a line l through the origin not intersecting D.
(a) Only countably many angles θ such that for some $n>0$ $\rho_{l, \theta}^{n}(D) \cap D \neq \emptyset$.

$$
S^{2} \sim S^{2} \backslash D
$$

(i) A higher dimensional Hilbert Hotel trick.
(ii) Fix a line l through the origin not intersecting D.
(a) Only countably many angles θ such that for some $n>0$ $\rho_{l, \theta}^{n}(D) \cap D \neq \emptyset$.
(b) Choose some other angle. Let R be the corresponding rotation.

$$
S^{2} \sim S^{2} \backslash D
$$

(i) A higher dimensional Hilbert Hotel trick.
(ii) Fix a line l through the origin not intersecting D.
(a) Only countably many angles θ such that for some $n>0$ $\rho_{l, \theta}^{n}(D) \cap D \neq \emptyset$.
(b) Choose some other angle. Let R be the corresponding rotation.
(c) Then any two elements of D are in separate R-orbits.

$$
S^{2} \sim S^{2} \backslash D
$$

(i) A higher dimensional Hilbert Hotel trick.
(ii) Fix a line l through the origin not intersecting D.
(a) Only countably many angles θ such that for some $n>0$ $\rho_{l, \theta}^{n}(D) \cap D \neq \emptyset$.
(b) Choose some other angle. Let R be the corresponding rotation.
(c) Then any two elements of D are in separate R-orbits.
(d) That is, $R^{i} D \cap R^{j} D=\emptyset$ whenever $i \neq j$.

$$
S^{2} \sim S^{2} \backslash D
$$

(i) A higher dimensional Hilbert Hotel trick.
(ii) Fix a line l through the origin not intersecting D.
(a) Only countably many angles θ such that for some $n>0$ $\rho_{l, \theta}^{n}(D) \cap D \neq \emptyset$.
(b) Choose some other angle. Let R be the corresponding rotation.
(c) Then any two elements of D are in separate R-orbits.
(d) That is, $R^{i} D \cap R^{j} D=\emptyset$ whenever $i \neq j$.
(iii) Then, $\Sigma_{2} \triangleq D \cup R D \cup R^{2} D \cdots ;$ and $\Sigma_{1} \triangleq S^{2} \backslash \Sigma_{2}$.

$$
S^{2} \sim S^{2} \backslash D
$$

(i) A higher dimensional Hilbert Hotel trick.
(ii) Fix a line l through the origin not intersecting D.
(a) Only countably many angles θ such that for some $n>0$ $\rho_{l, \theta}^{n}(D) \cap D \neq \emptyset$.
(b) Choose some other angle. Let R be the corresponding rotation.
(c) Then any two elements of D are in separate R-orbits.
(d) That is, $R^{i} D \cap R^{j} D=\emptyset$ whenever $i \neq j$.
(iii) Then, $\Sigma_{2} \triangleq D \cup R D \cup R^{2} D \cdots$; and $\Sigma_{1} \triangleq S^{2} \backslash \Sigma_{2}$.
(iv) It can be verified that $S^{2}=\Sigma_{1} \uplus \Sigma_{2}$ and $S^{2} \backslash D=\Sigma_{1} \uplus R \Sigma_{2}$.

Recap

Things we've done so far:

Recap

Things we've done so far:
(i) $S^{1} \sim\left(S^{1} \backslash\{*\}\right)(2$ pieces $)$.

Recap

Things we've done so far:
(i) $S^{1} \sim\left(S^{1} \backslash\{*\}\right)(2$ pieces).
(ii) $\left(S^{2} \backslash D\right) \sim\left(S^{2} \backslash D\right) \uplus\left(S^{2} \backslash D\right)$ (4 pieces).

Recap

Things we've done so far:
(i) $S^{1} \sim\left(S^{1} \backslash\{*\}\right)(2$ pieces $)$.
(ii) $\left(S^{2} \backslash D\right) \sim\left(S^{2} \backslash D\right) \uplus\left(S^{2} \backslash D\right)$ (4 pieces).
(iii) $S^{2} \sim\left(S^{2} \backslash D\right)$ (2 pieces).

Recap

Things we've done so far:
(i) $S^{1} \sim\left(S^{1} \backslash\{*\}\right)(2$ pieces $)$.
(ii) $\left(S^{2} \backslash D\right) \sim\left(S^{2} \backslash D\right) \uplus\left(S^{2} \backslash D\right)$ (4 pieces).
(iii) $S^{2} \sim\left(S^{2} \backslash D\right)$ (2 pieces).

What this gives us:

Recap

Things we've done so far:
(i) $S^{1} \sim\left(S^{1} \backslash\{*\}\right)(2$ pieces $)$.
(ii) $\left(S^{2} \backslash D\right) \sim\left(S^{2} \backslash D\right) \uplus\left(S^{2} \backslash D\right)$ (4 pieces).
(iii) $S^{2} \sim\left(S^{2} \backslash D\right)$ (2 pieces).

What this gives us:

$$
S^{2} \sim\left(S^{2} \backslash D\right) \sim\left(S^{2} \backslash D\right) \uplus\left(S^{2} \backslash D\right) \sim S^{2} \uplus S^{2}
$$

Recap

Things we've done so far:
(i) $S^{1} \sim\left(S^{1} \backslash\{*\}\right)(2$ pieces).
(ii) $\left(S^{2} \backslash D\right) \sim\left(S^{2} \backslash D\right) \uplus\left(S^{2} \backslash D\right)$ (4 pieces).
(iii) $S^{2} \sim\left(S^{2} \backslash D\right)$ (2 pieces).

What this gives us:
$S^{2} \sim\left(S^{2} \backslash D\right) \sim\left(S^{2} \backslash D\right) \uplus\left(S^{2} \backslash D\right) \sim S^{2} \uplus S^{2}$.
So $S^{2} \sim S^{2} \uplus S^{2}$.

Recap

Things we've done so far:
(i) $S^{1} \sim\left(S^{1} \backslash\{*\}\right)(2$ pieces).
(ii) $\left(S^{2} \backslash D\right) \sim\left(S^{2} \backslash D\right) \uplus\left(S^{2} \backslash D\right)$ (4 pieces).
(iii) $S^{2} \sim\left(S^{2} \backslash D\right)$ (2 pieces).

What this gives us:
$S^{2} \sim\left(S^{2} \backslash D\right) \sim\left(S^{2} \backslash D\right) \uplus\left(S^{2} \backslash D\right) \sim S^{2} \uplus S^{2}$.
So $S^{2} \sim S^{2} \uplus S^{2}$.
And the number of pieces we've needed is 8 .

There or nearabouts

Things we've done, and things we can do with them.

There or nearabouts

Things we've done, and things we can do with them. We have $S^{2} \sim S^{2} \uplus S^{2}$.

There or nearabouts

Things we've done, and things we can do with them.
We have $S^{2} \sim S^{2} \uplus S^{2}$.
But $B^{3} \backslash\{0\}=S^{2} \times(0,1]$!

There or nearabouts

Things we've done, and things we can do with them.
We have $S^{2} \sim S^{2} \uplus S^{2}$.
But $B^{3} \backslash\{0\}=S^{2} \times(0,1]$!
So $B^{3} \backslash\{0\} \sim\left(B^{3} \backslash\{0\}\right) \uplus\left(B^{3} \backslash\{0\}\right)$.

There or nearabouts

Things we've done, and things we can do with them.
We have $S^{2} \sim S^{2} \uplus S^{2}$.
But $B^{3} \backslash\{0\}=S^{2} \times(0,1]$!
So $B^{3} \backslash\{0\} \sim\left(B^{3} \backslash\{0\}\right) \uplus\left(B^{3} \backslash\{0\}\right)$.
So $B^{3} \backslash\{0\} \sim B^{3}$ would do the job.

There or nearabouts

Things we've done, and things we can do with them.
We have $S^{2} \sim S^{2} \uplus S^{2}$.
But $B^{3} \backslash\{0\}=S^{2} \times(0,1]$!
So $B^{3} \backslash\{0\} \sim\left(B^{3} \backslash\{0\}\right) \uplus\left(B^{3} \backslash\{0\}\right)$.
So $B^{3} \backslash\{0\} \sim B^{3}$ would do the job.
But this easily follows from $S^{1} \backslash\{*\} \sim S^{1}$.

The Banach-Tarski "Paradox"

B^{3} is G_{3}-paradoxical.

The Banach-Tarski "Paradox"

B^{3} is G_{3}-paradoxical.
This also shows that there is no finitely additive total measure on \mathbb{R}^{n} for $n \geq 3$.

The Banach-Tarski "Paradox"

B^{3} is G_{3}-paradoxical.
This also shows that there is no finitely additive total measure on \mathbb{R}^{n} for $n \geq 3$.
Stronger version: Let A and B be bounded sets in $\mathbb{R}^{n}, n \geq 3$ with non-empty interior. Then $A \sim_{G_{3}} B$.

The Banach-Tarski "Paradox"

B^{3} is G_{3}-paradoxical.
This also shows that there is no finitely additive total measure on \mathbb{R}^{n} for $n \geq 3$.
Stronger version: Let A and B be bounded sets in $\mathbb{R}^{n}, n \geq 3$ with non-empty interior. Then $A \sim_{G_{3}} B$.
Something weaker than AC suffices, Gödel's Completeness Theorem. Or the Compactness Theorem for First-order Logic.
Both of these are equivalent to what is called the Ultrafilter Lemma (Henkin).

The Banach-Tarski "Paradox"

B^{3} is G_{3}-paradoxical.
This also shows that there is no finitely additive total measure on \mathbb{R}^{n} for $n \geq 3$.
Stronger version: Let A and B be bounded sets in $\mathbb{R}^{n}, n \geq 3$ with non-empty interior. Then $A \sim_{G_{3}} B$.
Something weaker than AC suffices, Gödel's Completeness Theorem. Or the Compactness Theorem for First-order Logic.
Both of these are equivalent to what is called the Ultrafilter Lemma (Henkin).
Whoops?

The Banach-Tarski "Paradox"

B^{3} is G_{3}-paradoxical.
This also shows that there is no finitely additive total measure on \mathbb{R}^{n} for $n \geq 3$.
Stronger version: Let A and B be bounded sets in $\mathbb{R}^{n}, n \geq 3$ with non-empty interior. Then $A \sim_{G_{3}} B$.
Something weaker than AC suffices, Gödel's Completeness Theorem. Or the Compactness Theorem for First-order Logic.
Both of these are equivalent to what is called the Ultrafilter Lemma (Henkin).
Whoops?
Aside: The Downward Löwenheim-Skolem theorem is equivalent to AC (Tarski).

Notions of size

Notions of size
(i) $f: A \rightarrow B$, injective, then say $|A| \leq|B|$.

Notions of size

(i) $f: A \rightarrow B$, injective, then say $|A| \leq|B|$.
(ii) Clearly, the notion is transitive and reflexive.

Notions of size

(i) $f: A \rightarrow B$, injective, then say $|A| \leq|B|$.
(ii) Clearly, the notion is transitive and reflexive.
(iii) $\mathbf{A C}$ is equivalent to: A and B are sets, then either $|A|<|B|$ or $|B|>|A|$ or $|A|=|B|$.

Notions of size

(i) $f: A \rightarrow B$, injective, then say $|A| \leq|B|$.
(ii) Clearly, the notion is transitive and reflexive.
(iii) $\mathbf{A C}$ is equivalent to: A and B are sets, then either $|A|<|B|$ or $|B|>|A|$ or $|A|=|B|$.
(iv) That is, this notion of size is a total order.

Notions of size

(i) $f: A \rightarrow B$, injective, then say $|A| \leq|B|$.
(ii) Clearly, the notion is transitive and reflexive.
(iii) $\mathbf{A C}$ is equivalent to: A and B are sets, then either $|A|<|B|$ or $|B|>|A|$ or $|A|=|B|$.
(iv) That is, this notion of size is a total order.
(v) Aside: AC says that \mathbb{R} has a definite size in this sense, but this size can be almost anything by Cohen.

The horrors in earnest

The horrors in earnest

There can be infinite sets which have no subset of size \aleph_{0} (Cohen).

The horrors in earnest

There can be infinite sets which have no subset of size \aleph_{0} (Cohen).
\aleph_{0} is no longer the smallest infinite cardinality, since there may be infinite sets which are incomparable with \aleph_{0}.

The horrors in earnest

There can be infinite sets which have no subset of size \aleph_{0} (Cohen).
\aleph_{0} is no longer the smallest infinite cardinality, since there may be infinite sets which are incomparable with \aleph_{0}.
In fact, all partial orders can be embedded as cardinalities.

The horrors in earnest

There can be infinite sets which have no subset of size \aleph_{0} (Cohen).
\aleph_{0} is no longer the smallest infinite cardinality, since there may be infinite sets which are incomparable with \aleph_{0}.
In fact, all partial orders can be embedded as cardinalities.
Let I be a set and for every $i \in I, X_{i}$ a non-empty set. Then without $\mathbf{A C}, \prod_{i \in I} X_{i}$ may be empty.

What about the trees?

What about the trees?

(i) Without AC, there can be an infinite tree with no leaves, but no infinite paths either.
Each finite path can be extended by one node, but no path goes on forever.
König's lemma may fail.
Aside: So may Ramsey's theorem.

What about the trees?

(i) Without AC, there can be an infinite tree with no leaves, but no infinite paths either.
Each finite path can be extended by one node, but no path goes on forever.
König's lemma may fail.
Aside: So may Ramsey's theorem.
(ii) Without DC (the same as the above statement about trees), it is not possible to develop a satisfactory theory of real analysis or measure theory.

More parts than there are elements

Sierpinski: Either there is a non-measurable subset of \mathbb{R} or \mathbb{R} has a surjection onto a (strictly) larger set. In the original proof, the larger set is E_{0} actually.

More parts than there are elements

Sierpinski: Either there is a non-measurable subset of \mathbb{R} or \mathbb{R} has a surjection onto a (strictly) larger set. In the original proof, the larger set is E_{0} actually.
(i) Assume all subsets of \mathbb{R} are measurable. Then $\omega_{1} \not \leq 2^{\omega}$ by Raisonnier.
(ii) Then $\aleph_{1}+2^{\omega}>2^{\omega}$. The injection from right to left is trivial. The reverse injection is not possible.
(iii) But there is a partion of 2^{ω} (actually $\mathcal{P}(\omega+\omega)$) into $\aleph_{1}+2^{\omega}$ many parts. Two well-ordering of ω are mapped to the same set if their ordertype is the same, non-wellorderings are mapped to singletons.

How I learned to stop worrying and...

1. \mathbb{R} may be a countable union of countable sets (Feferman-Lévy). But not countable, by Cantor's theorem!
2. \aleph_{1} can be a large cardinal (Jech).
3. \aleph_{1} can be a countable union of countable sets (Lévy).
4. Every infinite set may be a countable union of smaller sets (Gitik).
5. There is a model of $\mathbf{Z F}$ in which there is no function C with the following properties: for all X and Y,
(i) $C(X)=C(Y)$ if and only if $|X|=|Y|$
(ii) $|C(X)|=|X|$

Be careful! :-)

There is richer structure without $\mathbf{A C}$, somewhat similar to the greater structure in Intuitionistic Logic.
To extend the analogy further, weak forms of AC play the part of weak forms of LEM.
Aside: In a set theory with AC, you can show that LEM (or weaker forms) holds (Diaconescu/Goodman-Myhill).
But perhaps this is too much structure? And counterintuitive structure at times.
The Axiom of Choice is a subtle beast. Use it, but with care.

