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Why not use Shannon information?

Claude Shannon
(1916 – 2001)

H(X)  ==  E   log ——————  
1

Pr(X == x)



  

Why not use Shannon information?

Information
===

Prior
—

Posterior

Content Uncertainty Uncertainty

(cf. Klir 2008; Shannon 1948)



  

Why not use Shannon information?

Pr(X == 1) == 0.15

Pr(X == 2) == 0.19

Pr(X == 3) == 0.23

Pr(X == 4) == 0.21

Pr(X == 5) == 0.22

What is the
value of X?

H(X)  ==  E   log ——————     ==  2.31
1

Pr(X == x)



  

Why not use Shannon information?

Pr(X == 1) == 0.15

Pr(X == 2) == 0.19

Pr(X == 3) == 0.23

Pr(X == 4) == 0.21

Pr(X == 5) == 0.22

Is X == 2?

Is X == 3?

Is X == 5?

Is X in {4,5}?
1

0

1

1

1
0

0

0

==  2.34
Expected number 

of questions: 



  

What color are my socks?

H(p)  ==  – ∑ p log p  ==  6.53 bits of entropy.



  

How?



  

Value-of-
===

Posterior
—

Prior

Information Expectation Expectation

Why not use value-of-information?

$ !
? !

$$$$$



  

Why not use value-of-information?

Rules:

● Your capital can be 
distributed freely

● Bets on the actual outcome 
are returned twofold

● Bets on all other outcomes 
are lost



  

Why not use value-of-information?

(Everything 
on Tails)

(Everything 
on Heads)

Ex
pe

c t
ed

 p
a y

of
f Optimal Strategy:

Degenerate 
Gambling



  

Why not use value-of-information?

Rounds Rate of return (R)

ProbabilityCapital



  

Why not use value-of-information?

Rate of return:

Long-run behavior:

E[ R1 · R2 · R3 · · · Rn ]

Ri ==
Capital at time i + 1

Capital at time i

Rate of return (R)

Probability



  

Why not use value-of-information?

Rate of return:

Long-run behavior:

E[ R1 · R2 · R3 · · · Rn ]

Converges to 0
in probability as n → ∞

Ri ==
Capital at time i + 1

Capital at time i

Rate of return (R)

Probability



  

Optimal reinvestment

Daniel Bernoulli
(1700 – 1782)

John Larry Kelly, Jr.
(1923 – 1965)



  

Optimal reinvestment

Doubling rate:

(so R = 2W)

Wi ==   log
Capital at time i + 1

Capital at time i



  

Optimal reinvestment

Doubling rate:

(so R = 2W)

Wi ==   log
Capital at time i + 1

Capital at time i

Long-run behavior:

      E[ R1 · R2 · R3 · · · Rn ]

==  E[2W1 + W2 + W3 + · · · + Wn]

==  2E[W1 + W2 + W3 + · · · + Wn]

→ 2nE[W]

 for   n → ∞



  

Optimal reinvestment

Logarithmic expectation

E[W]  ==  ∑ p log bo

is maximized by propor-
tional gambling (b* == p).

Arithmetic expectation

E[R]  ==  ∑ pbo

is maximized by 
degenerate gambling



  

Amount of 
relevant 

information
===

Posterior 
expected

doubling rate
—

Prior
expected

doubling rate

$ !
? !

$$$$$

Measuring relevant information



  

Measuring relevant information

Definition (Relevant Information):

For an agent with utility function u, the amount of relevant 
information contained in the message Y == y is

K(y)  ==  ∑ maxs ∑ Pr(x | y) log u(s, x)  –  maxs ∑ Pr(x) log u(s, x)

Posterior optimal
doubling rate

Prior optimal
doubling rate



  

Measuring relevant information

● Expected relevant information is non-negative.

● Relevant information equals the maximal 
fraction of future gains you can pay for a piece 
of information without loss.

● When u has the form u(s, x) == v(x) s(x) for some 
non-negative function v, relevant information 
equals Shannon information.

K(y)  ==  ∑ maxs ∑ Pr(x | y) log u(s, x)  –  maxs ∑ Pr(x) log u(s, x)



  

Example: Code-breaking



  

Example: Code-breaking

? ? ? ?

Entropy:

H = 4

Accumulated 
information:

I(X; Y) == 0



  

Example: Code-breaking

1 ? ? ?

Entropy:

H = 3

Accumulated 
information:

I(X; Y) == 1

1 bit!



  

Example: Code-breaking

1 0 ? ?

Entropy:

H = 2

Accumulated 
information:

I(X; Y) == 2

1 bit!



  

Example: Code-breaking

1 0 1 ?

Entropy:

H = 1

Accumulated 
information:

I(X; Y) == 3

1 bit!



  

Example: Code-breaking

1 0 1 1

Entropy:

H = 0

Accumulated 
information:

I(X; Y) == 4

1 bit!



  

Example: Code-breaking

1 0 1 1

Entropy:

H = 0

Accumulated 
information:

I(X; Y) == 4

1 bit 1 bit  1 bit   1 bit



  

Example: Code-breaking

Rules:

● You can invest a fraction f of your 
capital in the guessing game

● If you guess the correct code, you 
get your investment back 16-fold:

u == 1 –  f  + 16 f 

● Otherwise, you lose it:

u == 1 – f 

?

?

?

?

W(f) == —— log(1 – f ) + —— log(1 – f + 16f )
15
16

1
16



  

Example: Code-breaking

? ? ? ?

Optimal strategy:

f * == 0

Optimal doubling rate:

W(f *) == 0.00

W(f) == —— log(1 – f ) + —— log(1 – f + 16f )
15
16

1
16



  

Example: Code-breaking

1 ? ? ?

Optimal strategy:

f * == 1/15

Optimal doubling rate:

W(f *) == 0.04

0.04 bits

W(f) == —— log(1 – f ) + —— log(1 – f + 16f )7
8

1
8



  

Example: Code-breaking

1 0 ? ?

Optimal strategy:

f * == 3/15

Optimal doubling rate:

W(f *) == 0.26

0.22 bits

W(f) == —— log(1 – f ) + —— log(1 – f + 16f )3
4

1
4



  

Example: Code-breaking

1 0 1 ?

Optimal strategy:

f * == 7/15

Optimal doubling rate:

W(f *) == 1.05

0.79 bits

W(f) == —— log(1 – f ) + —— log(1 – f + 16f )1
2

1
2



  

Example: Code-breaking

1 0 1 1

Optimal strategy:

f * == 1

Optimal doubling rate:

W(f *) == 4.00

2.95 bits

W(f) == —— log(1 – f ) + —— log(1 – f + 16f )0
1

1
1



  

Example: Code-breaking

? ? ? ?

Raw information
(drop in entropy)

Relevant information
(increase in doubling rate)

1.00 1.00 1.00 1.00

0.04 0.22 0.79 2.95



  

Example: Randomization



  

Example: Randomization

def choose():

if flip():

if flip():
return ROCK

else:
return PAPER

else:
return SCISSORS

1/2, 1/4, 1/4

1/3, 1/3, 1/3



  

Example: Randomization

Rules:

● You (1) and the 
adversary (2) both 
bet $1

● You move first

● The winner takes 
the whole pool

W(p)  ==  log min { p1 + 2 p2,  p2 + 2 p3,  p3 + 2 p1 }

1

2



  

Example: Randomization

Best accessible 
strategy:

p*  ==  (1, 0, 0)

Doubling rate:

W(p*)  ==  –∞

W(p)  ==  log min { p1 + 2 p2,  p2 + 2 p3,  p3 + 2 p1 }



  

Example: Randomization

Best accessible 
strategy:

p*  ==  (1/2, 1/2, 0)

Doubling rate:

W(p*)  ==  –1.00

W(p)  ==  log min { p1 + 2 p2,  p2 + 2 p3,  p3 + 2 p1 }



  

Example: Randomization

Best accessible 
strategy:

p*  ==  (2/4, 1/4, 1/4)

Doubling rate:

W(p*)  ==  –0.42

W(p)  ==  log min { p1 + 2 p2,  p2 + 2 p3,  p3 + 2 p1 }



  

Example: Randomization

Best accessible 
strategy:

p*  ==  (3/8, 3/8, 2/8)

Doubling rate:

W(p*)  ==  –0.19

W(p)  ==  log min { p1 + 2 p2,  p2 + 2 p3,  p3 + 2 p1 }



  

Example: Randomization

Best accessible
strategy:

p*  ==  (6/16, 5/16, 5/16)

Doubling rate:

W(p*)  ==  –0.09

W(p)  ==  log min { p1 + 2 p2,  p2 + 2 p3,  p3 + 2 p1 }



  

Coin flips Distribution Doubling rate

0 (1, 0, 0) –∞

1 (1/2, 1/2, 0) –1.00

2 (1/2, 1/4, 1/4) –0.42

3 (3/8, 3/8, 2/8) –0.19

4 (6/16, 5/16, 5/16) –0.09

. . . . . . . . .

∞ (1/3, 1/3, 1/3) 0.00

Example: Randomization

∞

0.58

0.23

0.10



  



  

Day 1: Uncertainty and Inference

Probability theory:
Semantics and expressivity
Random variables
Generative Bayesian models
stochastic processes

Uncertain and information:
Uncertainty as cost
The Hartley measure
Shannon information content and entropy
Huffman coding

Day 2: Counting Typical Sequences

The law of large numbers
Typical sequences and the source coding theorem.

Stochastic processes and entropy rates
the source coding theorem for stochastic processes
Examples

Day 3: Guessing and Gambling

Evidence, likelihood ratios, competitive prediction
Kullback-Leibler divergence
Examples of diverging stochastic models
Expressivity and the bias/variance tradeoffs.

Doubling rates and proportional betting
Card color prediction

Day 4: Asking Questions and Engineering Answers

Questions and answers (or experiments and observations)
mutual information
Coin weighing
The maximum entropy principle

The channel coding theorem

Day 5: Informative Descriptions and Residual Randomness

The practical problem of source coding
Kraft’s inequality and prefix codes
Arithmetic coding

Kolmogorov complexity
Tests of randomness
Asymptotic equivalence of complexity and entropy

January: Project course in information theory

Now with

MORE 

SHANNON!
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