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Why not use Shannon information?

H(X) = E|log

Claude Shannon
(1916 - 2001)




Why not use Shannon information?
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Content Uncertainty Uncertainty

(cf. Klir 2008; Shannon 1948)



Why not use Shannon information?

Pr(X=1) =0.15

Pr(X=2)=0.19

What is the
value of X? > Pr(X=3)=0.23
Pr(X =4) =0.21
g 1 h Pr(X =5) =0.22
H(X) = E |lo = 231
° Pr(X =x)




Why not use Shannon information?

Pr(X =1) = 0.15
Pr(X =2) =0.19
Pr(X =3) = 0.23

Pr(X =4) = 0.21

Pr(X =5)=0.22
Expected number
of questions:

= 2.34



What color are my socks?
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Black White Navy Gray Green

H(p) = -Zplogp = 6.53 bits of entropy.






Why not use value-of-information?

Value-of- Posterior Prior
Information Expectation Expectation
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Why not use value-of-information?

Heads

Tails

Rules:

* Your capital can be
distributed freely

e Bets on the actual outcome
are returned twofold

e Bets on all other outcomes
are lost



Why not use value-of-information?
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Why not use value-of-information?

Capital Probability
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Rounds Rate of return (R)



Why not use value-of-information?

Rate of return: Probability

80%
o Capital at time i + 1 0%
' Capital at time i 60%
50%
40%
Long-run behavior: 30%
20%
10%

E[R;"Ry R3 "R, ] 0%

0 2

Rate of return (R)



Why not use value-of-information?

Rate of return: Probability
80%
B Capital at time i + 1 00
Capital at time i 60%
50%
40%
Long-run behavior: 30%
20%
10%
E[Ry-R,R; -*R, ] 0% |
0 2
Converges to 0 Rate of return (R)
in probability as n —




Optimal reinvestment

Daniel Bernoulli John Larry Kelly, Jr.
(1700 - 1782) (1923 - 1965)



Optimal reinvestment

Doubling rate:

Capital at time i + 1

lo
5 Capital at time i

(soR=2W)



Optimal reinvestment

Doubling rate:

Capital at time i + 1

lo
5 Capital at time i

(soR=2W)

Long-run behavior:

E[R, "Ry Ry R, ]
= E[2Wi+ W2+ Wa+--+ Wa]
— QE[W1+ W+ W3+ + W]
— 2nE[W]

for n—




Optimal reinvestment

Logarithmic expectation
E[w] = X plogbo

is maximized by propor-
tional gambling (b* = p).

Arithmetic expectation

E[R] = 2. pbo

is maximized by
degenerate gambling




Measuring relevant information
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Measuring relevant information

Definition (Relevant Information):

For an agent with utility function u, the amount of relevant
information contained in the message Y =y is

K(y) = X max, Y, Pr(x|y)logu(s,x) - max, Y, Pr(x) log u(s, x)

“ RN Y,
~" '

Posterior optimal Prior optimal
doubling rate doubling rate




Measuring relevant information

K(y) = X max, Y, Pr(x|y) logu(s,x) - max, Y, Pr(x) log u(s, x)

 Expected relevant information is non-negative.

 Relevant information equals the maximal
fraction of future gains you can pay for a piece
of information without loss.

e When u has the form u(s, x) = v(x) s(x) for some
non-negative function v, relevant information
equals Shannon information.




Example: Code-breaking



Example: Code-breaking

Accumulated

information:

I(X;:Y)=0



Example: Code-breaking

1 bit!

Entropy:

H=3

Accumulated
information:

I(X:Y)=1



Example: Code-breaking

Accumulated
information:

I(X;:Y) =2



Example: Code-breaking

tofefr

1 bit!

Entropy:

H=1

Accumulated
information:

I(X;:Y)=3



Example: Code-breaking

tofrfr

1 bit!

Entropy:

H=0

Accumulated
information:

I(X:Y)=4



Example: Code-breaking

tofrfr

1 bit 1 bit 1 bit 1 bit

Entropy:

H=0

Accumulated
information:

I(X:Y)=4



Example: Code-breaking
Rules:

* You can invest a fraction f of your
capital in the guessing game

o If you guess the correct code, you
get your investment back 16-fold:

u=1-f +16f
 Otherwise, you lose it:

u=1-f

W(f) = log(l f)+ log(l f+16f)




Example: Code-breaking

f*=0
Optimal doubling rate:
W(f*) = 0.00

W(f)— log(l f)+ log(l f+16f)




Example: Code-breaking

4 _

a e
5

0.04 bits

Optimal strategy:

f*=1/15

Optimal doubling rate:

W(f*) = 0.04

W(f) = —log(1 - f) + — log(1 -  + 16f)




Example: Code-breaking

4_
tofrfe
5

0.22 bits

Optimal strategy:

f*=3/15

Optimal doubling rate:

W(f*) =0.26

W(f) = —- log(1 - f) + ——log(1 - f+ 16f)




Example: Code-breaking

+
jofr]?
2

0.79 bits
Optimal strategy:
f*=17/15

Optimal doubling rate:

W(f*) = 1.05

W(f) = —- log(1 - ) + —-log(1 - f+ 16f)




Example: Code-breaking

n
2.95 bits
Optimal strategy:
i f* =1
21 : .
- Optimal doubling rate:
-3
_4 W(f*) = 4.00

W(f) = - log(1 - ) + ——log(1 - f+ 16f)




Example: Code-breaking

Raw information
(drop in entropy)

Relevant information
(increase in doubling rate)

1.00 1.00 1.00 1.00

0.04 0.22 0.79 2.95



Example: Randomization
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Example: Randomization

def choose():
1t flip():

1 f flip():
ret urn ROCK

el se:
return PAPER

el se:
return SClI SSORS

1/3,1/3,1/3
o
O
1/2,1/4,1/4



Example: Randomization

Rules:

1 e You (1) and the
adversary (2) both
bet $1

v 2

e You move first

e The winner takes
Y the whole pool

W(p) = logmin{p,+2p,, p,+2ps, P3+2P,}



Example: Randomization

Best accessible
* strategy:

p* = (1,0,0)

Doubling rate:

® W(P*) = —oo

W(p) = logmin{p, +2p,, p,+2ps Ps+2P;}



Example: Randomization

Best accessible
L strategy:

p* = (1/2,1/2,0)

Doubling rate:

o—— # W(p*) = -1.00

W(p) = logmin{p, +2p,, p,+2ps Ps+2P;}



Example: Randomization

Best accessible

g strategy:
* ° p* = (2/4,1/4,1/4)
& [ J &

- s . Doubling rate:
O—A @ ® W(p*) = -0.42

W(p) = logmin{p, +2p,, p,+2ps Ps+2P;}



Example: Randomization

Best accessible

° strategy:
® ¢
e o o p* e (3/8, 3/8, 2/8)
® © ¢ o

s e o o Doubling rate:

e e o o W(p*) = -0.19

W(p) = logmin{p, +2p,, p,+2ps Ps+2P;}



Example: Randomization

Best accessible
strategy:

p* = (6/16,5/16,5/16)

Doubling rate:

W(p*) = -0.09

W(p) = logmin{p, +2p,, p,+2ps Ps+2P;}



Example: Randomization

Coin flips Distribution Doubling rate
0 (1,0,0) —o0 }
1 (1/2,1/2,0) ~1.00 } 0:8
2 (1/2,1/4,1/4) -0.42 '
3 (3/8,3/8,2/8) -0.19 } 0.23
4 (6/16, 5/16, 5/16) _0.09 + 010
0o (1/3,1/3,1/3) 0.00



A Quantitative Measure of Relevance
Based on Kelly Gambling Theory

Mathias Winther Madsen

ILLC, University of Amsterdam

Defining a good concept of relevance is a key problem in all disciplines that
theorize about information, including information retrieval [3], epistemology [5],
and the pragmatics of natural languages [12].

Shannon information theory [10] provides an interesting quantification of the
notion of information, but it does not in itself provide any tools for distinguishing
useless from useful facts. The microeconomic concept of value-of-information [1]
does provide tools for doing so, but it is not easily combined with information
theory, and is largely unable to exploit any of its tools or insights.

In this paper, I propose a framework that integrates information theory more
natively with utility theory and thus tackles these problems. Specifically, [ draw
on John Kelly’s application of information theory to gambling situations [7].
Kelly showed that when we take logarithmic capital growth as our measure of
real utility, information theory can integrate seamlessly with classical Bernoulli
gambling theory. My approach here is to turn this approach on its head and base
a notion of information directly on the concept of utility.

The resulting measure coincides with Shannon information in situations in
which any piece of information can be converted into a strategy improvement.
‘When the environment provides both useful and useless information, the concept
explains and quantifies the difference, and thus suggests a novel notion of value-
of-information.

1 Doubling Rates and Kelly Gambling

In real gambling situations, people will often evaluate a strategy in terms of its
effect on the growth rate of their capital, that is,

__ Posterior capital
" Prior capital

However, using growth rate as your utility measure suggests a gambling strat-
egy in which you bet your entire capital on the single most likely event. Such
a strategy assigns a non-zero probability to the event of losing the whole cap-
ital. If it is used in repeated plays of the same game, it thus leads to eventual
bankruptcy with probability 1.

If we are instead interested in maximizing the long-term growth of a stock
of capital through repeated investment and reinvestment, a better measure of
strategy quality is the logarithm of the growth rate,

W =log R.

‘When the logarithm is base two, this quantity is called the doubling rate of
the capital, in analogy with the half-life of a radioactive material. W measures
how many times your capital is expected to be doubled in a single game, and
1/W the average number of games it takes to double your capital once.

Because log 0" = —oo, your doubling rate will be —oco if there is even the
slightest chance that you lose your whole capital by the strategy you are using,.
Consequently, using the doubling rate as your measure of utility will discour-
age strategies that can lead to bankruptcy and instead lead to a strategy that
maximizes long-term exponential growth [4, ch. 6].

For the purposes of the present paper, however, the doubling rate is also
interesting because of its seamless integration with Shannon information theory.
To see this, consider a horse race in which horse z has probability p(z) of winning.
By the method of Lagrange multipliers, we can find that independently of the
the odds on the horses, a gambler’s doubling rate is maximized by proportional
betting [4], i.e., betting a fraction of p(x) of the total capital on horse z. If you
know what these probabilities are, you thus know what the optimal strategy is.

In general, however, a gambler may have have only little or bad information
about the horses, and thus use an inferior probability estimate g ~ p. Using
the probability distribution g as a capital distribution scheme, the gambler’s
doubling rate will then be as follows, assuming that the odds are expressed as
¢/r(z) for some constant ¢ and some positive function r:

= Zp(m) log (cx % X f%)
= 3 o) s (2 ) = 3ot 108 (2 ) + e

The second term in this expression, } . p(z) log (p(z)/r(z)), is the Kull-
back-Leibler divergence [8] between p and r, and is also written D(p||r).
It is an measure of how big an error the probability estimate r induces in an
environment with actual probabilities p. Similarly, the second term is D(p||q),
the divergence from p to q.

It thus turns out that the bookmaker and the gambler are in a symmetric
situation: Both the distribution of bets (g) and the size of the odds (r) implicitly
express subjective probability estimates. The payoffs for the gambler and the
bookmaker are determined by the quality of these estimates.

In particular, if ¢ = 1, the player with the probability estimate closest to p
in informational terms will make money at the expense of the other. Further,
if one of the two players acquire 1 bit of information about the real winner of
the race, this signal can be converted into an increase of 1 capital doubling per
game. In the horse race model, information thus translates directly into utility.

However, this correspondence rests on assumptions that are particular to the
horse race model, including the fact that the situation involves only one random



Probability theory:
Semantics and expressivity
Random variables
Generative Bayesian models
stochastic processes

Uncertain and information:

Uncertainty as cost

The Hartley measure

Shannon information content and entropy
Huffman coding

Day 2: Counting Typical Sequences

The law of large numbers
Typical sequences and the source coding theorem.

Stochastic processes and entropy rates
the source coding theorem for stochastic processes
Examples

course in information theory

Day 3: Guessing and Gambling

Evidence, likelihood ratios, competitive prediction
Kullback-Leibler divergence

Examples of diverging stochastic models
Expressivity and the bias/variance tradeoffs.

Doubling rates and proportional betting
Card color prediction

Day 4: Asking Questions and Engineering Answers

Questions and answers (or experiments and observations)
mutual information

Coin weighing

The maximum entropy principle

The channel coding theorem
Day 5: Informative Descriptions and Residual Randomness
The practical problem of source coding
Kraft’s inequality and prefix codes
Arithmetic coding

Kolmogorov complexity

Tests of randomness
Asymptotic equivalence of complexity and entropy
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B Information Theory
Studiegidsnummer  5314INTHGY

Admin. code oWl

Studielast 6

Periode(n) Semester 2 block 1, voertaal English
Onderwijsinstituut Graduate School of Informatics
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Leerdoelen
Understand basic concepts of Shannon's information theory (http://en.wikipedia.org/wikifinformation_theory)

Inhoud

Information theory was developed by Claude E. Shannon in the 1930s to investigate the fundamental limits on
signal-processing operations such as compressing data and on reliably storing and communicating data. These
tasks have tumed out to be fundamental for all of computer science.

In this course, we guickly review the basics of probability theory and introduce concepts such as (conditional)
Shannon entropy, mutual information and Renyi entropy. Then, we prove Shannon's theorems about data
compression and channel coding. Later in the course, we also cover some aspects of information-theoretic
security such as the concept of randomness extraction and privacy amplification.
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Registration is required via https://www.sis.uva.nl until four weeks before the start of the semester.

Onderwijsvorm
This is a 6 ECTS course, which comes to roughly 20 hours of work per week.

There will be homework exercises every week to be handed in one week later before the start of the exercise
session on Friday. The answers should be in English (feel free to use LaTexX, but readable handwritten solutions
are fine). Cooperation while solving the exercises is allowed and encouraged, but everyone has to hand in their
own eolution set in their own words.
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