Kripke models for first-order intuitionistic logic

Alexander Block

May 31, 2013

- 4 回 2 - 4 □ 2 - 4 □

æ

Overview

1 An introduction to intuitionistic logic

- History
- Brouwer's Philosophy
- BHK Interpretation

2 The semantical setup

- Classical first order logic
- Kripke Models for IQC
- Soundness and Completeness

3 Applications

- Counterexamples
- Heyting Arithmetic

The Developement of Intuitionism

- **1901:** B. Russell detects Russell's Paradox in Frege's work. This sparks the foundational crisis.
- **1908:** L.E.J. Brouwer publishes arguments against the Law of Excluded Middle (LEM)
- After 1913: Brouwer dedicates himself to the development of intuitionism; he refuses a formalization of its logic.
- **1930s:** Heyting and Gentzen give formalizations of intuitionistic logic (as Hilbert and Natural Deduction systems respectively)
- **1943:** A. Heyting develops the Brouwer-Heyting-Kolmogorov (BHK)-interpretation of intuitionism
- **1956:** S. Kripke develops a semantics for propositional and first-order intuitionistic logic based on Kripke frames

・ロン ・回と ・ヨン・

History Brouwer's Philosophy BHK Interpretation

Brouwer's Philosophy

- **Core Idea:** Mathematical objects and proofs have no existence independently of their construction.
- **Consequence:** Mathematics changes over time according to the corpus of assembled mathematical knowledge.
- This together with the separation of mathematics from language is the **first act of intuitionism**.
- **However:** Mathematics is not subjecive; Brouwer refers to an idealized creating subject

- 4 同 6 4 日 6 4 日 6

History Brouwer's Philosophy BHK Interpretation

The BHK Interpretation

An interpretation of logical connectives and quantifiers in terms of proofs:

a proves A	conditions
a:⊥	false
$a: A \wedge B$	$a = (a_1, a_2)$, where $a_1 : A$ and $a_2 : B$
$a: A \lor B$	$a=(a_1,a_2)$, where $a_2:A$ if $a_1=0$ and $a_2:A$ if $a_1=1$
a:A ightarrow B	for all p with $p : A$ we have $a(p) : B$
$a: \exists x A(x)$	$a=(a_1,a_2)$ and $a_2:A(a_1)$
$a: \forall x A(x)$	for all $d \in D$ we have $a(d) : A(d)$, where D is given domain

Furthermore we define $\neg A :\equiv A \rightarrow \bot$. The BHK interpretation is nicely captured by the Natural Deduction system on the board.

Semantics for classical first-order logic

A signature \mathcal{R} is a set containing constant symbols, relational symbols and function symbols.

Definition

- An *R*-structure is a tuple S = (S, I_S) of a set S and a function I_S : *R* → ⋃_{n<ω} Sⁿ assigning constant symbols to elements of S, relation symbols to relations on S and function symbols to functions on S, respecting arity.
- For a first-order \mathcal{R} -sentence A with parameters in S we define the satisfaction relation $\mathfrak{S} \models A$ inductively as usual.
- For an *R*-structure S we denote by Diag⁺(S) its *positive diagram*, i.e., the set of all atomic *R*-sentences A with parameters in S such that S ⊨ A.

Kripke Models for IQC (1)

With IQC we refer to first-order Intuitionistic Calculus.

Definition

An **IQC**-Kripke model of signature \mathcal{R} is a partial order $\langle W, \leq \rangle$ together with family $(\mathfrak{S}_w)_{w \in W}$ of \mathcal{R} -structures such that for all $v, w \in W$ with $v \leq w$ we have:

$$I S_v \subseteq S_w;$$

2 the inclusion $i : \mathfrak{S}_v \to \mathfrak{S}_w$ is a homomorphism.

Heuristics: Partial order models flow of time. At every point there could be multiple possible futures – corresponding to knowledge not yet acquired.

Kripke Models for IQC (2)

Definition

For an **IQC**-Kripke model $\mathcal{K} = \langle W, \leq, (\mathfrak{S}_w)_{w \in W} \rangle$ of signature \mathcal{R} we define a *Forcing relation* between nodes $w \in W$ and first-order \mathcal{R} -formulas with parameters in S_w as follows:

- $\mathcal{K}, w \Vdash A$ iff $A \in \mathsf{Diag}^+(\mathfrak{S}_w)$ for an atomic sentence A;
- *K*, *w* ⊮ ⊥;
- $\mathcal{K}, w \Vdash A \land B$ iff $\mathcal{K}, w \Vdash A$ and $\mathcal{K}, w \Vdash B$;
- $\mathcal{K}, w \Vdash A \lor B$ iff $\mathcal{K}, w \Vdash A$ or $\mathcal{K}, w \Vdash B$;
- $\mathcal{K}, w \Vdash A \rightarrow B$ iff for all $v \geq w$, $\mathcal{K}, v \Vdash A$ implies $\mathcal{K}, v \Vdash B$;
- $\mathcal{K}, w \Vdash (\forall x) A(x)$ iff for all $v \ge w$ and $d \in D_v$, $\mathcal{K}, v \Vdash A(d)$;
- $\mathcal{K}, w \Vdash (\exists x) A(x)$ iff there is $d \in D_w$ s.t. $\mathcal{K}, w \Vdash A(d)$.

Classical first order logic Kripke Models for IQC Soundness and Completeness

Kripke Models for IQC (3)

Lemma (Upward persistency)

For any **IQC**-Kripke model \mathcal{K} , any nodes w, v with v, w and any atomic f.o. sentence of the right signature we have:

$$\mathcal{K}, \mathbf{v} \Vdash A \quad \Rightarrow \mathcal{K}, \mathbf{w} \Vdash A$$

Proof

Induction on the complexity of A using the fact that $S_v \subseteq S_w$ is an embedding from S_v into S_w and thus $\text{Diag}^+(\mathfrak{S}_v) \subseteq \text{Diag}^+(\mathfrak{S}_w)$.

Intuition: Once a fact is established it is never lost in the future.

イロン イヨン イヨン イヨン

Soundness and Completeness (1)

Definition

- For a IQC-Kripke model K we write K ⊨ A to denote that for all nodes w in K we have K, w ⊨ A.
- For a set Γ of first order sentences and a first order sentence *A* we write Γ ⊨_{IQC} *A* to mean that for every IQC-Kripke *K* we have:

If for all
$$F \in \Gamma$$
, $\mathcal{K} \models F$, then $\mathcal{K} \models A$.

イロン イヨン イヨン イヨン

Soundness and Completeness (2)

Theorem (Soundness and Strong Completeness)

Let Γ be a set of first-order sentences and A a first-order sentence, then we have:

$$\Gamma \vdash_{\mathsf{IQC}} A \quad \Leftrightarrow \quad \Gamma \models_{\mathsf{IQC}} A.$$

Proof

Soundness: Induction on the length of the derivation $\Gamma \vdash_{IQC} A$. **Completeness:** Let Γ' be an **IQC**-consistent set of formulas. Combine the Henkin Construction from first-order logic with the Canonical Model Construction from Modal Logic to obtain a **IQC**-model \mathcal{K} and a node w such that $\mathcal{K}, w \Vdash \Gamma'$. Now assume that $\Gamma \not\vdash_{IQC} A$. Then $\Gamma \cup \{\neg A\}$ is consistent. Hence $\Gamma \cup \{\neg A\}$ is satisfiable. So $\Gamma \not\models_{IQC} A$.

イロン イヨン イヨン イヨン

э

Soundness and Completeness (3)

Theorem (Tree Property)

Let Γ be a set of first-order sentences and A a first-order sentence, then if $\Gamma \not\vdash_{IQC} A$ there is already a Γ -model $\langle W, \leq, (D_w)_{w \in W} \rangle$ such that $\langle W, \leq \rangle$ is a tree with root r and $W, r \not\Vdash A$.

Proof

If $\Gamma \not\vdash_{IQC} A$, take by Completeness Γ -model \mathcal{K}' s.t. $\mathcal{K}' \not\models A$. Unravel \mathcal{K}' to transform it into a model \mathcal{K}'' on a tree s.t. $\mathcal{K}'' \not\models A$. Take r with $\mathcal{K}'', r \not\models A$ and let \mathcal{K} be the submodel generated by r.

・ロン ・回 と ・ ヨ と ・ ヨ と

Counterexamples

Kripke models give us the means to prove that certain principles are **not** intuitionistically valid.

Lemma

We have

- $\not\vdash_{IQC} A \lor \neg A$ for atomic A;
- $\not\vdash_{IQC} \neg (A \land B) \rightarrow (\neg A \lor \neg B)$ for atomic A, B;
- $\not\vdash_{\mathsf{IQC}} \neg \forall x A(x) \rightarrow \exists x \neg A(x) \text{ for atomic } A(x);$
- $\forall_{\mathsf{IQC}} \forall x(A \lor B(x)) \to A \lor \forall xB(x)$ for atomic A, B(x).

Proof

See blackboard.

Heyting Arithmetic

Definition

We let Heyting Arithmetic (HA) be the intuitionistic theory generated by the Peano Axioms, i.e. the universal closures of

- $x + 1 \neq 0$,
- $x+1 = y+1 \rightarrow x = y$,
- x + 0 = x,
- x + (y + 1) = (x + y) + 1,
- $x \cdot 0 = 0$,
- $x \cdot (y+1) = x \cdot y + x$,
- $A(0) \land (\forall x)[A(x) \rightarrow A(x+1)] \rightarrow (\forall x)A(x)$ for any formula A(x).

Disjunction Property and Existential Property for HA(1)

Lemma

Let \mathcal{K} be a model of **HA**. Then there exists in the domain D_w of each world w a unique sequence of distinct elements that are the interpretations of the numerals $\underline{0}, \underline{1}, \ldots$, where $\underline{0} = 0$ and $\underline{n+1} = \underline{n} + 1$.

Lemma (Smorynski's trick)

If *M* is a set of **HA**-models then a new **HA**-model is obtained by taking the disjoint union of *M* adding a new root w_0 below it such that $S_{w_0} = \omega$.

Disjunction Property and Existential Property for HA (2)

Theorem (DP and EP)

- HA has the Disjunction Property, i.e., HA ⊢_{IQC} A ∨ B iff
 HA ⊢_{IQC} A or HA ⊢_{IQC} B;
- HA has the Existential Property, i.e., HA ⊢_{IQC} ∃xA(x) iff
 HA ⊢_{IQC} A(<u>n</u>) for some n ∈ ω.

Corollary

HA is strictly contained in PA.

Counterexamples Heyting Arithmetic

de Jongh's Theorem

Let **IPC** denote the intuitionistic propositional calculus, which we can consider as a special case of **IQC**.

Theorem (de Jongh)

Let A be a propositional formula. Then $\vdash_{IPC} A(p_1, \ldots, p_n)$ if and only if for all arithmetic sentences ψ_1, \ldots, ψ_m , **HA** $\vdash_{IQC} A(\psi_1, \ldots, \psi_n)$.

・ロン ・回と ・ヨン・