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The Developement of Intuitionism

1901: B. Russell detects Russell’s Paradox in Frege’s work.
This sparks the foundational crisis.

1908: L.E.J. Brouwer publishes arguments against the Law of
Excluded Middle (LEM)

After 1913: Brouwer dedicates himself to the development of
intuitionism; he refuses a formalization of its logic.

1930s: Heyting and Gentzen give formalizations of
intuitionistic logic (as Hilbert and Natural Deduction systems
respectively)

1943: A. Heyting develops the Brouwer-Heyting-Kolmogorov
(BHK)-interpretation of intuitionism

1956: S. Kripke develops a semantics for propositional and
first-order intuitionistic logic based on Kripke frames
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Brouwer’s Philosophy

Core Idea: Mathematical objects and proofs have no
existence independently of their construction.

Consequence: Mathematics changes over time according to
the corpus of assembled mathematical knowledge.

This together with the separation of mathematics from
language is the first act of intuitionism.

However: Mathematics is not subjecive; Brouwer refers to an
idealized creating subject
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The BHK Interpretation

An interpretation of logical connectives and quantifiers in terms of
proofs:

a proves A conditions

a : ⊥ false
a : A ∧ B a = (a1, a2), where a1 : A and a2 : B
a : A ∨ B a = (a1, a2), where a2 : A if a1 = 0 and a2 : A if a1 = 1
a : A → B for all p with p : A we have a(p) : B
a : ∃xA(x) a = (a1, a2) and a2 : A(a1)
a : ∀xA(x) for all d ∈ D we have a(d) : A(d), where D is given domain

Furthermore we define ¬A :≡ A→ ⊥.
The BHK interpretation is nicely captured by the Natural
Deduction system on the board.

Alexander Block Kripke models for first-order intuitionistic logic



An introduction to intuitionistic logic
The semantical setup

Applications

Classical first order logic
Kripke Models for IQC
Soundness and Completeness

Semantics for classical first-order logic

A signature R is a set containing constant symbols, relational
symbols and function symbols.

Definition

An R-structure is a tuple S = (S , IS) of a set S and a
function IS : R →

⋃
n<ω Sn assigning constant symbols to

elements of S , relation symbols to relations on S and function
symbols to functions on S , respecting arity.

For a first-order R-sentence A with parameters in S we define
the satisfaction relation S |= A inductively as usual.

For an R-structure S we denote by Diag+(S) its positive
diagram, i.e., the set of all atomic R-sentences A with
parameters in S such that S |= A.
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Kripke Models for IQC (1)

With IQC we refer to first-order Intuitionistic Calculus.

Definition

An IQC-Kripke model of signature R is a partial order 〈W ,≤〉
together with family (Sw )w∈W of R-structures such that for all
v ,w ∈W with v ≤ w we have:

1 Sv ⊆ Sw ;

2 the inclusion i : Sv → Sw is a homomorphism.

Heuristics: Partial order models flow of time. At every point there
could be multiple possible futures – corresponding to knowledge
not yet acquired.
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Kripke Models for IQC (2)

Definition

For an IQC-Kripke model K = 〈W ,≤, (Sw )w∈W 〉 of signature R
we define a Forcing relation between nodes w ∈W and first-order
R-formulas with parameters in Sw as follows:

K,w  A iff A ∈ Diag+(Sw ) for an atomic sentence A;

K,w 6 ⊥;

K,w  A ∧ B iff K,w  A and K,w  B;

K,w  A ∨ B iff K,w  A or K,w  B;

K,w  A→ B iff for all v ≥ w , K, v  A implies K, v  B;

K,w  (∀x)A(x) iff for all v ≥ w and d ∈ Dv , K, v  A(d);

K,w  (∃x)A(x) iff there is d ∈ Dw s.t. K,w  A(d).
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Kripke Models for IQC (3)

Lemma (Upward persistency)

For any IQC-Kripke model K, any nodes w , v with v ,w and any
atomic f.o. sentence of the right signature we have:

K, v  A ⇒ K,w  A

Proof

Induction on the complexity of A using the fact that Sv ⊆ Sw is an
embedding from Sv into Sw and thus Diag+(Sv ) ⊆ Diag+(Sw ).

Intuition: Once a fact is established it is never lost in the future.
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Soundness and Completeness (1)

Definition

For a IQC-Kripke model K we write K |= A to denote that for
all nodes w in K we have K,w  A.

For a set Γ of first order sentences and a first order sentence
A we write Γ |=IQC A to mean that for every IQC-Kripke K
we have:

If for all F ∈ Γ, K |= F , then K |= A.
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Soundness and Completeness (2)

Theorem (Soundness and Strong Completeness)

Let Γ be a set of first-order sentences and A a first-order sentence,
then we have:

Γ `IQC A ⇔ Γ |=IQC A.

Proof

Soundness: Induction on the length of the derivation Γ `IQC A.
Completeness: Let Γ′ be an IQC-consistent set of formulas.
Combine the Henkin Construction from first-order logic with the
Canonical Model Construction from Modal Logic to obtain a
IQC-model K and a node w such that K,w  Γ′.
Now assume that Γ 6`IQC A. Then Γ ∪ {¬A} is consistent. Hence
Γ ∪ {¬A} is satisfiable. So Γ 6|=IQC A.
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Soundness and Completeness (3)

Theorem (Tree Property)

Let Γ be a set of first-order sentences and A a first-order sentence,
then if Γ 6`IQC A there is already a Γ-model 〈W ,≤, (Dw )w∈W 〉
such that 〈W ,≤〉 is a tree with root r and W , r 6 A.

Proof

If Γ 6`IQC A, take by Completeness Γ-model K′ s.t. K′ 6|= A.
Unravel K′ to transform it into a model K′′ on a tree s.t. K′′ 6|= A.
Take r with K′′, r 6 A and let K be the submodel generated by r .
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Counterexamples

Kripke models give us the means to prove that certain principles
are not intuitionistically valid.

Lemma

We have

6`IQC A ∨ ¬A for atomic A;

6`IQC ¬(A ∧ B)→ (¬A ∨ ¬B) for atomic A, B;

6`IQC ¬∀xA(x)→ ∃x¬A(x) for atomic A(x);

6`IQC ∀x(A ∨ B(x))→ A ∨ ∀xB(x) for atomic A, B(x).

Proof

See blackboard.
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Heyting Arithmetic

Definition

We let Heyting Arithmetic (HA) be the intuitionistic theory
generated by the Peano Axioms, i.e. the universal closures of

x + 1 6= 0,

x + 1 = y + 1→ x = y ,

x + 0 = x ,

x + (y + 1) = (x + y) + 1,

x · 0 = 0,

x · (y + 1) = x · y + x ,

A(0) ∧ (∀x)[A(x)→ A(x + 1)]→ (∀x)A(x)
for any formula A(x).
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Disjunction Property and Existential Property for HA (1)

Lemma

Let K be a model of HA. Then there exists in the domain Dw of
each world w a unique sequence of distinct elements that are the
interpretations of the numerals 0, 1, . . . , where 0 = 0 and
n + 1 = n + 1.

Lemma (Smorynski’s trick)

If M is a set of HA-models then a new HA-model is obtained by
taking the disjoint union of M adding a new root w0 below it such
that Sw0 = ω.
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Disjunction Property and Existential Property for HA (2)

Theorem (DP and EP)

HA has the Disjunction Property, i.e., HA `IQC A ∨ B iff
HA `IQC A or HA `IQC B;

HA has the Existential Property, i.e., HA `IQC ∃xA(x) iff
HA `IQC A(n) for some n ∈ ω.

Corollary

HA is strictly contained in PA.
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de Jongh’s Theorem

Let IPC denote the intuitionistic propositional calculus, which we
can consider as a special case of IQC.

Theorem (de Jongh)

Let A be a propositional formula. Then `IPC A(p1, . . . , pn) if and
only if for all arithmetic sentences ψ1, . . . , ψm,
HA `IQC A(ψ1, . . . , ψn).
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