
The Computational Content of Classical Proofs
Extracting programs from classical proofs.

Hans Bugge Grathwohl

Institute for Logic, Language and Computation,
Universiteit van Amsterdam

Cool Logic
April 19th 2013

1 / 23

Outline

1 Friedman’s A-translation

2 Program Extraction

2 / 23

Outline

1 Friedman’s A-translation

2 Program Extraction

2 / 23

Kreisel’s theorem

Theorem (Kreisel (1958))

PA is a conservative extension of HA for Π0
2-sentences.

This means that

`PA ∀x∃y . P(x, y) ⇐⇒ `HA ∀x∃y . P(x, y),

where P is a computable predicate.

Corollary
A recursive function is provably total in Peano Arithmetic iff it is provably
total in Heyting Arithmetic.

3 / 23

Kreisel’s theorem

Theorem (Kreisel (1958))

PA is a conservative extension of HA for Π0
2-sentences.

This means that

`PA ∀x∃y . P(x, y) ⇐⇒ `HA ∀x∃y . P(x, y),

where P is a computable predicate.

Corollary
A recursive function is provably total in Peano Arithmetic iff it is provably
total in Heyting Arithmetic.

3 / 23

Some preliminaries

We first fix the language.
I L has logical constants ⊥,∧,∨,→,∀, ∃, variables x, y, z, . . . , and

binary predicate =.
I ¬ϕ is an abbreviation of ϕ→ ⊥.

I Terms and formulas are defined as usual.
I `C resp. `I denotes classical resp. intuitionistic derivability in a

natural deduction system.

4 / 23

Some preliminaries

We first fix the language.
I L has logical constants ⊥,∧,∨,→,∀, ∃, variables x, y, z, . . . , and

binary predicate =.
I ¬ϕ is an abbreviation of ϕ→ ⊥.
I Terms and formulas are defined as usual.
I `C resp. `I denotes classical resp. intuitionistic derivability in a

natural deduction system.

4 / 23

Double-negation translation

Definition (Gödel, Gentzen)

Let ϕ be a formula. Define the double-negation translation ϕ− of ϕ as
follows:

⊥− := ⊥
α− := ¬¬α, where α 6= ⊥ is atomic

(ϕ ∨ ψ)− := ¬¬(ϕ− ∨ ψ−)

(ϕ ∧ ψ)− := ϕ− ∧ ψ−

(ϕ→ ψ)− := ϕ− → ψ−

(∀x.ϕ)− := ∀x.ϕ−

∃x.ϕ− := ¬¬∃x.ϕ−

So ϕ− is the result of double-negating all atomic, disjunctive and
existential subformulas of ϕ.

5 / 23

Double-negation translation

Definition (Gödel, Gentzen)

Let ϕ be a formula. Define the double-negation translation ϕ− of ϕ as
follows:

⊥− := ⊥
α− := ¬¬α, where α 6= ⊥ is atomic

(ϕ ∨ ψ)− := ¬¬(ϕ− ∨ ψ−)

(ϕ ∧ ψ)− := ϕ− ∧ ψ−

(ϕ→ ψ)− := ϕ− → ψ−

(∀x.ϕ)− := ∀x.ϕ−

∃x.ϕ− := ¬¬∃x.ϕ−

So ϕ− is the result of double-negating all atomic, disjunctive and
existential subformulas of ϕ.

5 / 23

Some properties of the double-negation translation

Lemma
Let ϕ be a formula, Γ a set of formulas, and Γ− = {ψ− | ψ ∈ Γ}.

1. `C ϕ↔ ϕ−,

2. ¬¬ϕ− `I ϕ
−,

3. If Γ `C ϕ, then Γ− `I ϕ
− (this justifies calling it a translation),

4. In general not ϕ `I ϕ
−.

1, 2 and 3 are not very surprising, and their proofs are easy inductions on
the depth of the derivation. 4 is less obvious. A counterexample is
ϕ = ¬∀x.P(x).

6 / 23

Some properties of the double-negation translation

Lemma
Let ϕ be a formula, Γ a set of formulas, and Γ− = {ψ− | ψ ∈ Γ}.

1. `C ϕ↔ ϕ−,

2. ¬¬ϕ− `I ϕ
−,

3. If Γ `C ϕ, then Γ− `I ϕ
− (this justifies calling it a translation),

4. In general not ϕ `I ϕ
−.

1, 2 and 3 are not very surprising, and their proofs are easy inductions on
the depth of the derivation. 4 is less obvious. A counterexample is
ϕ = ¬∀x.P(x).

6 / 23

Friedman’s A-translation

Definition (Friedman)
Let ϕ and A be formulas such that no bound variable of ϕ is free in A. We
define the A-translation ϕA of ϕ as follows:

⊥A := A

αA := α ∨ A, where α 6= ⊥ is atomic

(ϕ ∧ ψ)A := ϕA ∧ ψA

(ϕ ∨ ψ)A := ϕA ∨ ψA

(ϕ→ ψ)A := ϕA → ψA

(∀xϕ)A := ∀xϕA

(∃xϕ)A := ∃xϕA

So ϕA is the result of substituting all atomic subformulas α with α ∨ A, and
replacing any ⊥ with A. Note that (¬α)A = α ∨ A→ A.

7 / 23

Friedman’s A-translation

Definition (Friedman)
Let ϕ and A be formulas such that no bound variable of ϕ is free in A. We
define the A-translation ϕA of ϕ as follows:

⊥A := A

αA := α ∨ A, where α 6= ⊥ is atomic

(ϕ ∧ ψ)A := ϕA ∧ ψA

(ϕ ∨ ψ)A := ϕA ∨ ψA

(ϕ→ ψ)A := ϕA → ψA

(∀xϕ)A := ∀xϕA

(∃xϕ)A := ∃xϕA

So ϕA is the result of substituting all atomic subformulas α with α ∨ A, and
replacing any ⊥ with A.

Note that (¬α)A = α ∨ A→ A.

7 / 23

Friedman’s A-translation

Definition (Friedman)
Let ϕ and A be formulas such that no bound variable of ϕ is free in A. We
define the A-translation ϕA of ϕ as follows:

⊥A := A

αA := α ∨ A, where α 6= ⊥ is atomic

(ϕ ∧ ψ)A := ϕA ∧ ψA

(ϕ ∨ ψ)A := ϕA ∨ ψA

(ϕ→ ψ)A := ϕA → ψA

(∀xϕ)A := ∀xϕA

(∃xϕ)A := ∃xϕA

So ϕA is the result of substituting all atomic subformulas α with α ∨ A, and
replacing any ⊥ with A. Note that (¬α)A = α ∨ A→ A.

7 / 23

Some properties of Friedman’s A-translation

Lemma
Let ϕ be formula, Γ a set of formulas and A a formula such that ϕA and ΓA

are defined, where ΓA = {ψA | ψ ∈ Γ}.
1. `C ϕ

A ↔ ϕ ∨ A

2. A `I ϕ
A

3. If Γ `I ϕ, then ΓA `I ϕ
A

4. In general not ϕ `I ϕ
A

Proof of 1 and 2 are straight-forward inductions on the derivation. A
counterexample of 4 is ϕ := ¬¬A.

8 / 23

Some properties of Friedman’s A-translation

Lemma
Let ϕ be formula, Γ a set of formulas and A a formula such that ϕA and ΓA

are defined, where ΓA = {ψA | ψ ∈ Γ}.
1. `C ϕ

A ↔ ϕ ∨ A

2. A `I ϕ
A

3. If Γ `I ϕ, then ΓA `I ϕ
A

4. In general not ϕ `I ϕ
A

Proof of 1 and 2 are straight-forward inductions on the derivation. A
counterexample of 4 is ϕ := ¬¬A.

8 / 23

Sketch of proof of 3: If Γ `I ϕ, then ΓA `I ϕ
A

The rules ∧I,∧E,∨I,∨E,→I,→E are straightforward. See for example→I :

D
Γ, ϕ ` ψ →I

Γ ` ϕ→ ψ

7→
IH.

ΓA, ϕA ` ψA
→I

ΓA ` ϕA → ψA

∀I,∀E, ∃I,∃E are a bit trickier because of variable bindings. We consider ∃I :

D
Γ ` ϕ[t/x]

∃IΓ ` ∃x.ϕ
7→

IH.
ΓA ` ϕA[t/x]

∃I
ΓA ` ∃x.ϕA

because (ϕ[t/x])A = ϕA[t/x] and (∃x.ϕ)A = ∃x.ϕA.
For ⊥E: IH is ΓA ` A, and 2 gives us A ` ϕA.

9 / 23

Sketch of proof of 3: If Γ `I ϕ, then ΓA `I ϕ
A

The rules ∧I,∧E,∨I,∨E,→I,→E are straightforward. See for example→I :

D
Γ, ϕ ` ψ →I

Γ ` ϕ→ ψ

7→
IH.

ΓA, ϕA ` ψA
→I

ΓA ` ϕA → ψA

∀I,∀E, ∃I,∃E are a bit trickier because of variable bindings. We consider ∃I :

D
Γ ` ϕ[t/x]

∃IΓ ` ∃x.ϕ
7→

IH.
ΓA ` ϕA[t/x]

∃I
ΓA ` ∃x.ϕA

because (ϕ[t/x])A = ϕA[t/x] and (∃x.ϕ)A = ∃x.ϕA.
For ⊥E: IH is ΓA ` A, and 2 gives us A ` ϕA.

9 / 23

Sketch of proof of 3: If Γ `I ϕ, then ΓA `I ϕ
A

The rules ∧I,∧E,∨I,∨E,→I,→E are straightforward. See for example→I :

D
Γ, ϕ ` ψ →I

Γ ` ϕ→ ψ

7→
IH.

ΓA, ϕA ` ψA
→I

ΓA ` ϕA → ψA

∀I,∀E, ∃I,∃E are a bit trickier because of variable bindings. We consider ∃I :

D
Γ ` ϕ[t/x]

∃IΓ ` ∃x.ϕ
7→

IH.
ΓA ` ϕA[t/x]

∃I
ΓA ` ∃x.ϕA

because (ϕ[t/x])A = ϕA[t/x] and (∃x.ϕ)A = ∃x.ϕA.
For ⊥E: IH is ΓA ` A, and 2 gives us A ` ϕA.

9 / 23

Sketch of proof of 3: If Γ `I ϕ, then ΓA `I ϕ
A

The rules ∧I,∧E,∨I,∨E,→I,→E are straightforward. See for example→I :

D
Γ, ϕ ` ψ →I

Γ ` ϕ→ ψ

7→
IH.

ΓA, ϕA ` ψA
→I

ΓA ` ϕA → ψA

∀I, ∀E, ∃I, ∃E are a bit trickier because of variable bindings. We consider ∃I :

D
Γ ` ϕ[t/x]

∃IΓ ` ∃x.ϕ
7→

IH.
ΓA ` ϕA[t/x]

∃I
ΓA ` ∃x.ϕA

because (ϕ[t/x])A = ϕA[t/x] and (∃x.ϕ)A = ∃x.ϕA.
For ⊥E: IH is ΓA ` A, and 2 gives us A ` ϕA.

9 / 23

Sketch of proof of 3: If Γ `I ϕ, then ΓA `I ϕ
A

The rules ∧I,∧E,∨I,∨E,→I,→E are straightforward. See for example→I :

D
Γ, ϕ ` ψ →I

Γ ` ϕ→ ψ

7→
IH.

ΓA, ϕA ` ψA
→I

ΓA ` ϕA → ψA

∀I, ∀E, ∃I, ∃E are a bit trickier because of variable bindings. We consider ∃I :

D
Γ ` ϕ[t/x]

∃IΓ ` ∃x.ϕ

7→
IH.

ΓA ` ϕA[t/x]
∃I

ΓA ` ∃x.ϕA

because (ϕ[t/x])A = ϕA[t/x] and (∃x.ϕ)A = ∃x.ϕA.
For ⊥E: IH is ΓA ` A, and 2 gives us A ` ϕA.

9 / 23

Sketch of proof of 3: If Γ `I ϕ, then ΓA `I ϕ
A

The rules ∧I,∧E,∨I,∨E,→I,→E are straightforward. See for example→I :

D
Γ, ϕ ` ψ →I

Γ ` ϕ→ ψ

7→
IH.

ΓA, ϕA ` ψA
→I

ΓA ` ϕA → ψA

∀I, ∀E, ∃I, ∃E are a bit trickier because of variable bindings. We consider ∃I :

D
Γ ` ϕ[t/x]

∃IΓ ` ∃x.ϕ
7→

IH.
ΓA ` ϕA[t/x]

∃I
ΓA ` ∃x.ϕA

because (ϕ[t/x])A = ϕA[t/x] and (∃x.ϕ)A = ∃x.ϕA.

For ⊥E: IH is ΓA ` A, and 2 gives us A ` ϕA.

9 / 23

Sketch of proof of 3: If Γ `I ϕ, then ΓA `I ϕ
A

The rules ∧I,∧E,∨I,∨E,→I,→E are straightforward. See for example→I :

D
Γ, ϕ ` ψ →I

Γ ` ϕ→ ψ

7→
IH.

ΓA, ϕA ` ψA
→I

ΓA ` ϕA → ψA

∀I, ∀E, ∃I, ∃E are a bit trickier because of variable bindings. We consider ∃I :

D
Γ ` ϕ[t/x]

∃IΓ ` ∃x.ϕ
7→

IH.
ΓA ` ϕA[t/x]

∃I
ΓA ` ∃x.ϕA

because (ϕ[t/x])A = ϕA[t/x] and (∃x.ϕ)A = ∃x.ϕA.
For ⊥E: IH is ΓA ` A, and 2 gives us A ` ϕA.

9 / 23

Arithmetic

I We add new symbols to the language:
I nullary constant 0,
I unary function symbol S,
I symbols F,G,H, . . . for all primitive recursive functions.

I Peano axioms:
(refl) x = x

(trans) x = y ∧ y = z→ x = z
(congF) xi = x′i → F(x1, . . . , xi, . . . , xn) = F(x1, . . . , x′i , . . . , xn) for any n-ary

function constant F
(succ1) S(x) 6= 0
(succ2) S(x) = S(y)→ x = y

(ind) ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(S(x)))→ ∀xϕ(x)

(projF) F(x1, . . . , xi, . . . , xn) = xi

(compF) F(x1, . . . , xn) = G(H1(x1, . . . , xn), . . . ,Hm(x1, . . . , xn))
(recF) F(0, x1, . . . , xn) = G(x1, . . . , xn)

∧ F(S(y), x1, . . . , xn) = H(F(y, x1, . . . , xn), y, x1, . . . , xn)

10 / 23

Arithmetic

I We add new symbols to the language:
I nullary constant 0,
I unary function symbol S,
I symbols F,G,H, . . . for all primitive recursive functions.

I Peano axioms:
(refl) x = x

(trans) x = y ∧ y = z→ x = z
(congF) xi = x′i → F(x1, . . . , xi, . . . , xn) = F(x1, . . . , x′i , . . . , xn) for any n-ary

function constant F
(succ1) S(x) 6= 0
(succ2) S(x) = S(y)→ x = y

(ind) ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(S(x)))→ ∀xϕ(x)

(projF) F(x1, . . . , xi, . . . , xn) = xi

(compF) F(x1, . . . , xn) = G(H1(x1, . . . , xn), . . . ,Hm(x1, . . . , xn))
(recF) F(0, x1, . . . , xn) = G(x1, . . . , xn)

∧ F(S(y), x1, . . . , xn) = H(F(y, x1, . . . , xn), y, x1, . . . , xn)

10 / 23

Arithmetic

I We add new symbols to the language:
I nullary constant 0,
I unary function symbol S,
I symbols F,G,H, . . . for all primitive recursive functions.

I Peano axioms:
(refl) x = x

(trans) x = y ∧ y = z→ x = z
(congF) xi = x′i → F(x1, . . . , xi, . . . , xn) = F(x1, . . . , x′i , . . . , xn) for any n-ary

function constant F
(succ1) S(x) 6= 0
(succ2) S(x) = S(y)→ x = y

(ind) ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(S(x)))→ ∀xϕ(x)

(projF) F(x1, . . . , xi, . . . , xn) = xi

(compF) F(x1, . . . , xn) = G(H1(x1, . . . , xn), . . . ,Hm(x1, . . . , xn))
(recF) F(0, x1, . . . , xn) = G(x1, . . . , xn)

∧ F(S(y), x1, . . . , xn) = H(F(y, x1, . . . , xn), y, x1, . . . , xn)

10 / 23

Arithmetic

Definition (Peano Arithmetic, Heyting Arithmetic)
Let Γ be a subset of the Peano axioms and ϕ be a formula.
I Γ `C ϕ =⇒ `PA ϕ

I Γ `I ϕ =⇒ `HA ϕ

Fact
For any quantifier-free formula ϕ(x1, . . . , xn) there is a primitive recursive
function symbol F such that

`HA ϕ(x1, . . . , xn)↔ F(x1, . . . , xn) = 0.

11 / 23

Arithmetic

Definition (Peano Arithmetic, Heyting Arithmetic)
Let Γ be a subset of the Peano axioms and ϕ be a formula.
I Γ `C ϕ =⇒ `PA ϕ

I Γ `I ϕ =⇒ `HA ϕ

Fact
For any quantifier-free formula ϕ(x1, . . . , xn) there is a primitive recursive
function symbol F such that

`HA ϕ(x1, . . . , xn)↔ F(x1, . . . , xn) = 0.

11 / 23

Axiom Translations

Lemma
Let ϕ be a Peano axiom. Then `HA ϕ

− and `HA ϕ
A.

Proof.
If ϕ is on one of the forms
I α,
I α ∧ β,
I α→ β or
I α ∧ β → γ,

where α, β, γ are atomic, then ϕ `I ϕ
− and ϕ `I ϕ

A.
Luckily, everything, except instances of the induction scheme, is of this
form.

12 / 23

Axiom Translations

Lemma
Let ϕ be a Peano axiom. Then `HA ϕ

− and `HA ϕ
A.

Proof.

If ϕ is on one of the forms
I α,
I α ∧ β,
I α→ β or
I α ∧ β → γ,

where α, β, γ are atomic, then ϕ `I ϕ
− and ϕ `I ϕ

A.
Luckily, everything, except instances of the induction scheme, is of this
form.

12 / 23

Axiom Translations

Lemma
Let ϕ be a Peano axiom. Then `HA ϕ

− and `HA ϕ
A.

Proof.
If ϕ is on one of the forms
I α,
I α ∧ β,
I α→ β or
I α ∧ β → γ,

where α, β, γ are atomic, then ϕ `I ϕ
− and ϕ `I ϕ

A.

Luckily, everything, except instances of the induction scheme, is of this
form.

12 / 23

Axiom Translations

Lemma
Let ϕ be a Peano axiom. Then `HA ϕ

− and `HA ϕ
A.

Proof.
If ϕ is on one of the forms
I α,
I α ∧ β,
I α→ β or
I α ∧ β → γ,

where α, β, γ are atomic, then ϕ `I ϕ
− and ϕ `I ϕ

A.
Luckily, everything, except instances of the induction scheme, is of this
form.

12 / 23

Axiom Translations

Lemma
Let ϕ be a Peano axiom. Then `HA ϕ

− and `HA ϕ
A.

Proof.
Let ϕ be an instance of the induction axiom:

ϕ = ψ(0) ∧ ∀x(ψ(x)→ ψ(S(x)))→ ∀x.ψ(x),

for some formula ψ(x).

Now:

ϕ− = ψ−(0) ∧ ∀x(ψ−(x)→ ψ−(S(x)))→ ∀x.ψ−(x),

ϕA = ψA(0) ∧ ∀x(ψA(x)→ ψA(S(x)))→ ∀x.ψA(x),

which are themselves axioms of HA.

12 / 23

Axiom Translations

Lemma
Let ϕ be a Peano axiom. Then `HA ϕ

− and `HA ϕ
A.

Proof.
Let ϕ be an instance of the induction axiom:

ϕ = ψ(0) ∧ ∀x(ψ(x)→ ψ(S(x)))→ ∀x.ψ(x),

for some formula ψ(x). Now:

ϕ− = ψ−(0) ∧ ∀x(ψ−(x)→ ψ−(S(x)))→ ∀x.ψ−(x),

ϕA = ψA(0) ∧ ∀x(ψA(x)→ ψA(S(x)))→ ∀x.ψA(x),

which are themselves axioms of HA.

12 / 23

Axiom Translations II

Corollary

1. If `PA ϕ, then `HA ϕ
−,

2. if `HA ϕ and ϕA is defined, then `HA ϕ
A.

Proof.
1. Let Γ be the axioms used in the derivation `PA ϕ.

Γ `C ϕ =⇒ Γ− `I ϕ
− =⇒ `HA ϕ

−.

2. Let Γ be the axioms used in the derivation `HA ϕ.

Γ `I ϕ =⇒ ΓA `I ϕ
A =⇒ `HA ϕ

A.

13 / 23

Axiom Translations II

Corollary

1. If `PA ϕ, then `HA ϕ
−,

2. if `HA ϕ and ϕA is defined, then `HA ϕ
A.

Proof.
1. Let Γ be the axioms used in the derivation `PA ϕ.

Γ `C ϕ =⇒ Γ− `I ϕ
− =⇒ `HA ϕ

−.

2. Let Γ be the axioms used in the derivation `HA ϕ.

Γ `I ϕ =⇒ ΓA `I ϕ
A =⇒ `HA ϕ

A.

13 / 23

Axiom Translations II

Corollary

1. If `PA ϕ, then `HA ϕ
−,

2. if `HA ϕ and ϕA is defined, then `HA ϕ
A.

Proof.
1. Let Γ be the axioms used in the derivation `PA ϕ.

Γ `C ϕ =⇒ Γ− `I ϕ
− =⇒ `HA ϕ

−.

2. Let Γ be the axioms used in the derivation `HA ϕ.

Γ `I ϕ =⇒ ΓA `I ϕ
A =⇒ `HA ϕ

A.

13 / 23

Friedman’s proof of Kreisel’s theorem

Observation
If ϕ is a Σ0

1-formula, then `I ϕ
A ↔ ϕ ∨ A.

Proof.
I (∃y.F(x, y) = 0)A = ∃y.(F(x, y) = 0 ∨ A)

I `I ∃x(ϕ ∨ ψ)↔ ∃xϕ ∨ ψ when x not free in ψ
I Therefore `I (∃y.F(x, y) = 0)A ↔ ∃y(F(x, y) = 0) ∨ A

14 / 23

Friedman’s proof of Kreisel’s theorem

Observation
If ϕ is a Σ0

1-formula, then `I ϕ
A ↔ ϕ ∨ A.

Proof.
I (∃y.F(x, y) = 0)A = ∃y.(F(x, y) = 0 ∨ A)

I `I ∃x(ϕ ∨ ψ)↔ ∃xϕ ∨ ψ when x not free in ψ
I Therefore `I (∃y.F(x, y) = 0)A ↔ ∃y(F(x, y) = 0) ∨ A

14 / 23

Friedman’s proof of Kreisel’s theorem

Observation
If ϕ is a Σ0

1-formula, then `I ϕ
A ↔ ϕ ∨ A.

Proof.
I (∃y.F(x, y) = 0)A = ∃y.(F(x, y) = 0 ∨ A)

I `I ∃x(ϕ ∨ ψ)↔ ∃xϕ ∨ ψ when x not free in ψ

I Therefore `I (∃y.F(x, y) = 0)A ↔ ∃y(F(x, y) = 0) ∨ A

14 / 23

Friedman’s proof of Kreisel’s theorem

Observation
If ϕ is a Σ0

1-formula, then `I ϕ
A ↔ ϕ ∨ A.

Proof.
I (∃y.F(x, y) = 0)A = ∃y.(F(x, y) = 0 ∨ A)

I `I ∃x(ϕ ∨ ψ)↔ ∃xϕ ∨ ψ when x not free in ψ
I Therefore `I (∃y.F(x, y) = 0)A ↔ ∃y(F(x, y) = 0) ∨ A

14 / 23

Friedman’s proof of Kreisel’s theorem

Proof of Theorem (Friedman).
I To show: `PA ϕ ⇐⇒ `HA ϕ for any Π0

2-sentence ϕ.
I It is sufficient to show: `PA ϕ ⇐⇒ `HA ϕ for any Σ0

1-formula.

I Let A := ∃y.F(x, y) = 0.
I Assume `PA A.
I Double-negation translation: `HA ¬¬A.
I Friedman’s A translation: `HA (¬¬A)A.
I `HA (¬¬A)A ↔ (((A ∨ A)→ A)→ A) ↔ A.
I `HA A.

15 / 23

Friedman’s proof of Kreisel’s theorem

Proof of Theorem (Friedman).
I To show: `PA ϕ ⇐⇒ `HA ϕ for any Π0

2-sentence ϕ.
I It is sufficient to show: `PA ϕ ⇐⇒ `HA ϕ for any Σ0

1-formula.
I Let A := ∃y.F(x, y) = 0.

I Assume `PA A.
I Double-negation translation: `HA ¬¬A.
I Friedman’s A translation: `HA (¬¬A)A.
I `HA (¬¬A)A ↔ (((A ∨ A)→ A)→ A) ↔ A.
I `HA A.

15 / 23

Friedman’s proof of Kreisel’s theorem

Proof of Theorem (Friedman).
I To show: `PA ϕ ⇐⇒ `HA ϕ for any Π0

2-sentence ϕ.
I It is sufficient to show: `PA ϕ ⇐⇒ `HA ϕ for any Σ0

1-formula.
I Let A := ∃y.F(x, y) = 0.
I Assume `PA A.

I Double-negation translation: `HA ¬¬A.
I Friedman’s A translation: `HA (¬¬A)A.
I `HA (¬¬A)A ↔ (((A ∨ A)→ A)→ A) ↔ A.
I `HA A.

15 / 23

Friedman’s proof of Kreisel’s theorem

Proof of Theorem (Friedman).
I To show: `PA ϕ ⇐⇒ `HA ϕ for any Π0

2-sentence ϕ.
I It is sufficient to show: `PA ϕ ⇐⇒ `HA ϕ for any Σ0

1-formula.
I Let A := ∃y.F(x, y) = 0.
I Assume `PA A.
I Double-negation translation: `HA ¬¬A.

I Friedman’s A translation: `HA (¬¬A)A.
I `HA (¬¬A)A ↔ (((A ∨ A)→ A)→ A) ↔ A.
I `HA A.

15 / 23

Friedman’s proof of Kreisel’s theorem

Proof of Theorem (Friedman).
I To show: `PA ϕ ⇐⇒ `HA ϕ for any Π0

2-sentence ϕ.
I It is sufficient to show: `PA ϕ ⇐⇒ `HA ϕ for any Σ0

1-formula.
I Let A := ∃y.F(x, y) = 0.
I Assume `PA A.
I Double-negation translation: `HA ¬¬A.
I Friedman’s A translation: `HA (¬¬A)A.

I `HA (¬¬A)A ↔ (((A ∨ A)→ A)→ A) ↔ A.
I `HA A.

15 / 23

Friedman’s proof of Kreisel’s theorem

Proof of Theorem (Friedman).
I To show: `PA ϕ ⇐⇒ `HA ϕ for any Π0

2-sentence ϕ.
I It is sufficient to show: `PA ϕ ⇐⇒ `HA ϕ for any Σ0

1-formula.
I Let A := ∃y.F(x, y) = 0.
I Assume `PA A.
I Double-negation translation: `HA ¬¬A.
I Friedman’s A translation: `HA (¬¬A)A.
I `HA (¬¬A)A ↔ (((A ∨ A)→ A)→ A)

↔ A.
I `HA A.

15 / 23

Friedman’s proof of Kreisel’s theorem

Proof of Theorem (Friedman).
I To show: `PA ϕ ⇐⇒ `HA ϕ for any Π0

2-sentence ϕ.
I It is sufficient to show: `PA ϕ ⇐⇒ `HA ϕ for any Σ0

1-formula.
I Let A := ∃y.F(x, y) = 0.
I Assume `PA A.
I Double-negation translation: `HA ¬¬A.
I Friedman’s A translation: `HA (¬¬A)A.
I `HA (¬¬A)A ↔ (((A ∨ A)→ A)→ A) ↔ A.

I `HA A.

15 / 23

Friedman’s proof of Kreisel’s theorem

Proof of Theorem (Friedman).
I To show: `PA ϕ ⇐⇒ `HA ϕ for any Π0

2-sentence ϕ.
I It is sufficient to show: `PA ϕ ⇐⇒ `HA ϕ for any Σ0

1-formula.
I Let A := ∃y.F(x, y) = 0.
I Assume `PA A.
I Double-negation translation: `HA ¬¬A.
I Friedman’s A translation: `HA (¬¬A)A.
I `HA (¬¬A)A ↔ (((A ∨ A)→ A)→ A) ↔ A.
I `HA A.

15 / 23

Outline

1 Friedman’s A-translation

2 Program Extraction

15 / 23

Program Extraction I

I Rice’s Theorem: It is in general undecidable whether a program
meets some specification.

I Proofs can easily be checked.
I From a constructive proof, we can extract a correct program.

Program Extraction

` t : ∀xA ∃yB . P(x, y)

ε(t) : A→ B ` corr : ∀xA . P(x, (ε(t))(x))

16 / 23

Program Extraction I

I Rice’s Theorem: It is in general undecidable whether a program
meets some specification.

I Proofs can easily be checked.
I From a constructive proof, we can extract a correct program.

Program Extraction

` t : ∀xA ∃yB . P(x, y)

ε(t) : A→ B ` corr : ∀xA . P(x, (ε(t))(x))

16 / 23

Program Extraction II

Example
I We want a sorting function sort : list(N)→ list(N).

I ` t : ∀x : list(N)∃y : list(N) . perm(x, y) ∧ sorted(x, y)

I sort = ε(t) : list(N)→ list(N)

I ` u : ∀x : list(N) . perm(x,sort(x)) ∧ sorted(x,sort(x))

A perfect computer program: It does exactly what we want, and it is
provably bug-free.

17 / 23

Program Extraction II

Example
I We want a sorting function sort : list(N)→ list(N).
I ` t : ∀x : list(N)∃y : list(N) . perm(x, y) ∧ sorted(x, y)

I sort = ε(t) : list(N)→ list(N)

I ` u : ∀x : list(N) . perm(x,sort(x)) ∧ sorted(x,sort(x))

A perfect computer program: It does exactly what we want, and it is
provably bug-free.

17 / 23

Program Extraction II

Example
I We want a sorting function sort : list(N)→ list(N).
I ` t : ∀x : list(N)∃y : list(N) . perm(x, y) ∧ sorted(x, y)

I sort = ε(t) : list(N)→ list(N)

I ` u : ∀x : list(N) . perm(x,sort(x)) ∧ sorted(x,sort(x))

A perfect computer program: It does exactly what we want, and it is
provably bug-free.

17 / 23

Program Extraction II

Example
I We want a sorting function sort : list(N)→ list(N).
I ` t : ∀x : list(N)∃y : list(N) . perm(x, y) ∧ sorted(x, y)

I sort = ε(t) : list(N)→ list(N)

I ` u : ∀x : list(N) . perm(x,sort(x)) ∧ sorted(x,sort(x))

A perfect computer program: It does exactly what we want, and it is
provably bug-free.

17 / 23

Program Extraction II

Example
I We want a sorting function sort : list(N)→ list(N).
I ` t : ∀x : list(N)∃y : list(N) . perm(x, y) ∧ sorted(x, y)

I sort = ε(t) : list(N)→ list(N)

I ` u : ∀x : list(N) . perm(x,sort(x)) ∧ sorted(x,sort(x))

A perfect computer program: It does exactly what we want, and it is
provably bug-free.

17 / 23

Extraction from Classical Proofs I

I Using translations:

`PA t : ∀x∃y P(x, y)

18 / 23

Extraction from Classical Proofs I

I Using translations:

`PA t : ∀x∃y P(x, y) `HA t′ : ∀x∃y P(x, y)

Double-negation translation,

A-translation

18 / 23

Extraction from Classical Proofs I

I Using translations:

`PA t : ∀x∃y P(x, y) `HA t′ : ∀x∃y P(x, y)

f : N→ N
f term in Gödel’s System T

` ∀x P(x, f (x))

Double-negation translation,

A-translation

18 / 23

Extraction from Classical Proofs I

I Using translations:

`PA t : ∀x∃y P(x, y) `HA t′ : ∀x∃y P(x, y)

f : N→ N
f term in Gödel’s System T

` ∀x P(x, f (x))g : N→ N
g term in ?

?

Double-negation translation,

A-translation

18 / 23

Extraction from Classical Proofs II

I Intuitionistic proofs:
I Extracts pure functional programs.

I Classical proofs:
I Needs a more expressive programming language.
I Griffin (1990): Classical reasoning corresponds to control operators.
I Control operators allow for more flexibility; it compares to adding labels

and jumps, return or exception handling.

I Underlying algorithms in classical proofs are potentially more efficient
than ones from intuitionistic proofs.

19 / 23

Extraction from Classical Proofs II

I Intuitionistic proofs:
I Extracts pure functional programs.

I Classical proofs:
I Needs a more expressive programming language.
I Griffin (1990): Classical reasoning corresponds to control operators.
I Control operators allow for more flexibility; it compares to adding labels

and jumps, return or exception handling.

I Underlying algorithms in classical proofs are potentially more efficient
than ones from intuitionistic proofs.

19 / 23

Extraction from Classical Proofs II

I Intuitionistic proofs:
I Extracts pure functional programs.

I Classical proofs:
I Needs a more expressive programming language.
I Griffin (1990): Classical reasoning corresponds to control operators.
I Control operators allow for more flexibility; it compares to adding labels

and jumps, return or exception handling.

I Underlying algorithms in classical proofs are potentially more efficient
than ones from intuitionistic proofs.

19 / 23

Programs with control operators

I A traditional functional program mult : list(N)→ N would have a
computation similar to this:

mult[5, 7, 0, 2] 7→

5 · (mult[7, 0, 2])

7→ 5 · (7 · (mult[0, 2]))

7→ 5 · (7 · 0)

7→ 5 · 0
7→ 0

I Alternatively, when using control operators, we can make the program
behave more like the following:

mult′[5, 7, 0, 2] 7→ 5 · (mult′[7, 0, 2])

7→ 5 · (7 · ((mult′[0, 2])))

7→ 0

20 / 23

Programs with control operators

I A traditional functional program mult : list(N)→ N would have a
computation similar to this:

mult[5, 7, 0, 2] 7→ 5 · (mult[7, 0, 2])

7→ 5 · (7 · (mult[0, 2]))

7→ 5 · (7 · 0)

7→ 5 · 0
7→ 0

I Alternatively, when using control operators, we can make the program
behave more like the following:

mult′[5, 7, 0, 2] 7→ 5 · (mult′[7, 0, 2])

7→ 5 · (7 · ((mult′[0, 2])))

7→ 0

20 / 23

Programs with control operators

I A traditional functional program mult : list(N)→ N would have a
computation similar to this:

mult[5, 7, 0, 2] 7→ 5 · (mult[7, 0, 2])

7→ 5 · (7 · (mult[0, 2]))

7→ 5 · (7 · 0)

7→ 5 · 0
7→ 0

I Alternatively, when using control operators, we can make the program
behave more like the following:

mult′[5, 7, 0, 2] 7→ 5 · (mult′[7, 0, 2])

7→ 5 · (7 · ((mult′[0, 2])))

7→ 0

20 / 23

Programs with control operators

I A traditional functional program mult : list(N)→ N would have a
computation similar to this:

mult[5, 7, 0, 2] 7→ 5 · (mult[7, 0, 2])

7→ 5 · (7 · (mult[0, 2]))

7→ 5 · (7 · 0)

7→ 5 · 0
7→ 0

I Alternatively, when using control operators, we can make the program
behave more like the following:

mult′[5, 7, 0, 2] 7→ 5 · (mult′[7, 0, 2])

7→ 5 · (7 · ((mult′[0, 2])))

7→ 0

20 / 23

Programs with control operators

I A traditional functional program mult : list(N)→ N would have a
computation similar to this:

mult[5, 7, 0, 2] 7→ 5 · (mult[7, 0, 2])

7→ 5 · (7 · (mult[0, 2]))

7→ 5 · (7 · 0)

7→ 5 · 0
7→ 0

I Alternatively, when using control operators, we can make the program
behave more like the following:

mult′[5, 7, 0, 2] 7→ 5 · (mult′[7, 0, 2])

7→ 5 · (7 · ((mult′[0, 2])))

7→ 0

20 / 23

Programs with control operators

I A traditional functional program mult : list(N)→ N would have a
computation similar to this:

mult[5, 7, 0, 2] 7→ 5 · (mult[7, 0, 2])

7→ 5 · (7 · (mult[0, 2]))

7→ 5 · (7 · 0)

7→ 5 · 0

7→ 0

I Alternatively, when using control operators, we can make the program
behave more like the following:

mult′[5, 7, 0, 2] 7→ 5 · (mult′[7, 0, 2])

7→ 5 · (7 · ((mult′[0, 2])))

7→ 0

20 / 23

Programs with control operators

I A traditional functional program mult : list(N)→ N would have a
computation similar to this:

mult[5, 7, 0, 2] 7→ 5 · (mult[7, 0, 2])

7→ 5 · (7 · (mult[0, 2]))

7→ 5 · (7 · 0)

7→ 5 · 0
7→ 0

I Alternatively, when using control operators, we can make the program
behave more like the following:

mult′[5, 7, 0, 2] 7→ 5 · (mult′[7, 0, 2])

7→ 5 · (7 · ((mult′[0, 2])))

7→ 0

20 / 23

Programs with control operators

I A traditional functional program mult : list(N)→ N would have a
computation similar to this:

mult[5, 7, 0, 2] 7→ 5 · (mult[7, 0, 2])

7→ 5 · (7 · (mult[0, 2]))

7→ 5 · (7 · 0)

7→ 5 · 0
7→ 0

I Alternatively, when using control operators, we can make the program
behave more like the following:

mult′[5, 7, 0, 2] 7→

5 · (mult′[7, 0, 2])

7→ 5 · (7 · ((mult′[0, 2])))

7→ 0

20 / 23

Programs with control operators

I A traditional functional program mult : list(N)→ N would have a
computation similar to this:

mult[5, 7, 0, 2] 7→ 5 · (mult[7, 0, 2])

7→ 5 · (7 · (mult[0, 2]))

7→ 5 · (7 · 0)

7→ 5 · 0
7→ 0

I Alternatively, when using control operators, we can make the program
behave more like the following:

mult′[5, 7, 0, 2] 7→ 5 · (mult′[7, 0, 2])

7→ 5 · (7 · ((mult′[0, 2])))

7→ 0

20 / 23

Programs with control operators

I A traditional functional program mult : list(N)→ N would have a
computation similar to this:

mult[5, 7, 0, 2] 7→ 5 · (mult[7, 0, 2])

7→ 5 · (7 · (mult[0, 2]))

7→ 5 · (7 · 0)

7→ 5 · 0
7→ 0

I Alternatively, when using control operators, we can make the program
behave more like the following:

mult′[5, 7, 0, 2] 7→ 5 · (mult′[7, 0, 2])

7→ 5 · (7 · ((mult′[0, 2])))

7→ 0

20 / 23

Programs with control operators

I A traditional functional program mult : list(N)→ N would have a
computation similar to this:

mult[5, 7, 0, 2] 7→ 5 · (mult[7, 0, 2])

7→ 5 · (7 · (mult[0, 2]))

7→ 5 · (7 · 0)

7→ 5 · 0
7→ 0

I Alternatively, when using control operators, we can make the program
behave more like the following:

mult′[5, 7, 0, 2] 7→ 5 · (mult′[7, 0, 2])

7→ 5 · (7 · ((mult′[0, 2])))

7→ 0

20 / 23

Programs with control operators

I A traditional functional program mult : list(N)→ N would have a
computation similar to this:

mult[5, 7, 0, 2] 7→ 5 · (mult[7, 0, 2])

7→ 5 · (7 · (mult[0, 2]))

7→ 5 · (7 · 0)

7→ 5 · 0
7→ 0

I Alternatively, when using control operators, we can make the program
behave more like the following:

mult′[5, 7, 0, 2] 7→ 5 · (mult′[7, 0, 2])

7→ 5 · (7 · ((mult′[0, 2])))

7→ 0

20 / 23

Extraction from Classical Proofs III

I Double negation translation ↔ CPS-translation
I CPS: Continuation Passing Style
I CPS style function: The control appears explicitly in the form of a

continuation that is passed to the function.

I Instead, we want to extract to a system that has control as a primitive
construct.

I One approach is to interpret classical logics in a control calculus via a
Curry-Howard correspondence (proofs-as-terms).

I This requires a lot of fiddling around with reduction strategies. And
program extraction tend to not necessarily be correct.

I Another approach is realisability.
I Realisability can be seen as a formalisation of the BHK-interpretation:

A realiser of an existential formula gives a witness for the formula, and
a realiser of a disjunction tells which side of the disjunction is provable.

21 / 23

Extraction from Classical Proofs III

I Double negation translation ↔ CPS-translation
I CPS: Continuation Passing Style
I CPS style function: The control appears explicitly in the form of a

continuation that is passed to the function.

I Instead, we want to extract to a system that has control as a primitive
construct.

I One approach is to interpret classical logics in a control calculus via a
Curry-Howard correspondence (proofs-as-terms).

I This requires a lot of fiddling around with reduction strategies. And
program extraction tend to not necessarily be correct.

I Another approach is realisability.
I Realisability can be seen as a formalisation of the BHK-interpretation:

A realiser of an existential formula gives a witness for the formula, and
a realiser of a disjunction tells which side of the disjunction is provable.

21 / 23

Extraction from Classical Proofs III

I Double negation translation ↔ CPS-translation
I CPS: Continuation Passing Style
I CPS style function: The control appears explicitly in the form of a

continuation that is passed to the function.

I Instead, we want to extract to a system that has control as a primitive
construct.

I One approach is to interpret classical logics in a control calculus via a
Curry-Howard correspondence (proofs-as-terms).

I This requires a lot of fiddling around with reduction strategies. And
program extraction tend to not necessarily be correct.

I Another approach is realisability.
I Realisability can be seen as a formalisation of the BHK-interpretation:

A realiser of an existential formula gives a witness for the formula, and
a realiser of a disjunction tells which side of the disjunction is provable.

21 / 23

EM1: Alwayz into somethin’

I Which fragment of classical logic should we consider?
I EM1: Excluded middle restricted to Σ0

1-formulas.
I Markov’s Principle: ¬¬∃xP(x)→ ∃xP(x)

I A natural place to start seems to be HA + EM1
I HA + EM1 proves a lot of theorems (Akama, Berardi, Hayashi,

Kohlenbach 2004)

I Traditional realisability cannot be used for HA + EM1:
I HA + EM1 ` ∀x∀y(∃zTxyz ∨ ∀z¬Txyz), where T is Kleene’s predicate.
I A (traditional) realiser of this would solve the Halting Problem.

22 / 23

EM1: Alwayz into somethin’

I Which fragment of classical logic should we consider?
I EM1: Excluded middle restricted to Σ0

1-formulas.
I Markov’s Principle: ¬¬∃xP(x)→ ∃xP(x)

I A natural place to start seems to be HA + EM1
I HA + EM1 proves a lot of theorems (Akama, Berardi, Hayashi,

Kohlenbach 2004)

I Traditional realisability cannot be used for HA + EM1:
I HA + EM1 ` ∀x∀y(∃zTxyz ∨ ∀z¬Txyz), where T is Kleene’s predicate.
I A (traditional) realiser of this would solve the Halting Problem.

22 / 23

EM1: Alwayz into somethin’

I Which fragment of classical logic should we consider?
I EM1: Excluded middle restricted to Σ0

1-formulas.
I Markov’s Principle: ¬¬∃xP(x)→ ∃xP(x)

I A natural place to start seems to be HA + EM1
I HA + EM1 proves a lot of theorems (Akama, Berardi, Hayashi,

Kohlenbach 2004)

I Traditional realisability cannot be used for HA + EM1:
I HA + EM1 ` ∀x∀y(∃zTxyz ∨ ∀z¬Txyz), where T is Kleene’s predicate.
I A (traditional) realiser of this would solve the Halting Problem.

22 / 23

Learning-Based Realisability

Aschieri’s Interactive Learning-Based Realisability is based on the idea of
learning by counterexamples.
I Knowledge states S.
I At any state s, we have a truth value of all instances
∃yP(x, y) ∨ ∀y¬P(x, y) of EM1, and in case of ∃yP(x, y) being “true”,
also a witness m.

I The realiser learns:
I At stage s: It believes ∀x¬P(x)
I It turns out that P(n) for some n.
I We backtrack the computation, update to stage s′.
I At stage s′: It believes ∃xP(x), and has witness n.

I Since a proof is finite, we only need a finite piece of information about
EM1.

I A learning-based realiser is a self-correcting program.

I will investigate whether we from HA + EM1-proofs of Π0
2-sentences can

extract programs that uses control.

23 / 23

Learning-Based Realisability

Aschieri’s Interactive Learning-Based Realisability is based on the idea of
learning by counterexamples.
I Knowledge states S.
I At any state s, we have a truth value of all instances
∃yP(x, y) ∨ ∀y¬P(x, y) of EM1, and in case of ∃yP(x, y) being “true”,
also a witness m.

I The realiser learns:
I At stage s: It believes ∀x¬P(x)
I It turns out that P(n) for some n.
I We backtrack the computation, update to stage s′.
I At stage s′: It believes ∃xP(x), and has witness n.

I Since a proof is finite, we only need a finite piece of information about
EM1.

I A learning-based realiser is a self-correcting program.

I will investigate whether we from HA + EM1-proofs of Π0
2-sentences can

extract programs that uses control.

23 / 23

Learning-Based Realisability

Aschieri’s Interactive Learning-Based Realisability is based on the idea of
learning by counterexamples.
I Knowledge states S.
I At any state s, we have a truth value of all instances
∃yP(x, y) ∨ ∀y¬P(x, y) of EM1, and in case of ∃yP(x, y) being “true”,
also a witness m.

I The realiser learns:
I At stage s: It believes ∀x¬P(x)
I It turns out that P(n) for some n.
I We backtrack the computation, update to stage s′.
I At stage s′: It believes ∃xP(x), and has witness n.

I Since a proof is finite, we only need a finite piece of information about
EM1.

I A learning-based realiser is a self-correcting program.

I will investigate whether we from HA + EM1-proofs of Π0
2-sentences can

extract programs that uses control.

23 / 23

Learning-Based Realisability

Aschieri’s Interactive Learning-Based Realisability is based on the idea of
learning by counterexamples.
I Knowledge states S.
I At any state s, we have a truth value of all instances
∃yP(x, y) ∨ ∀y¬P(x, y) of EM1, and in case of ∃yP(x, y) being “true”,
also a witness m.

I The realiser learns:
I At stage s: It believes ∀x¬P(x)
I It turns out that P(n) for some n.
I We backtrack the computation, update to stage s′.
I At stage s′: It believes ∃xP(x), and has witness n.

I Since a proof is finite, we only need a finite piece of information about
EM1.

I A learning-based realiser is a self-correcting program.

I will investigate whether we from HA + EM1-proofs of Π0
2-sentences can

extract programs that uses control.
23 / 23

Thank you!

Counterexample to 4: In general not ϕ `I ϕ
−.

Consider a Kripke model with ω many nodes k0 ≤ k1 ≤ k2 ≤ . . . , with the
following domains and valuations.

i 0 1 2 . . .

D(ki) {0} {0, 1} {0, 1, 2} . . .
P {} {0} {0, 1} . . .

Clearly kn 6 ∀x.P(x) for all n, so especially k0 ¬∀xP(x). Let n be given,
and take any l ≤ n. Then kn+1 P(l). Therefore kn ¬¬P(l). Hence
k0 ∀x.¬¬P(x).
This proves that we cannot have ¬∀x.P(x) `I ¬∀x.¬¬P(x).

25 / 23

Counterexample to 4: In general not ϕ `I ϕ
−.

Consider a Kripke model with ω many nodes k0 ≤ k1 ≤ k2 ≤ . . . , with the
following domains and valuations.

i 0 1 2 . . .

D(ki) {0} {0, 1} {0, 1, 2} . . .
P {} {0} {0, 1} . . .

Clearly kn 6 ∀x.P(x) for all n, so especially k0 ¬∀xP(x).

Let n be given,
and take any l ≤ n. Then kn+1 P(l). Therefore kn ¬¬P(l). Hence
k0 ∀x.¬¬P(x).
This proves that we cannot have ¬∀x.P(x) `I ¬∀x.¬¬P(x).

25 / 23

Counterexample to 4: In general not ϕ `I ϕ
−.

Consider a Kripke model with ω many nodes k0 ≤ k1 ≤ k2 ≤ . . . , with the
following domains and valuations.

i 0 1 2 . . .

D(ki) {0} {0, 1} {0, 1, 2} . . .
P {} {0} {0, 1} . . .

Clearly kn 6 ∀x.P(x) for all n, so especially k0 ¬∀xP(x). Let n be given,
and take any l ≤ n. Then kn+1 P(l). Therefore kn ¬¬P(l).

Hence
k0 ∀x.¬¬P(x).
This proves that we cannot have ¬∀x.P(x) `I ¬∀x.¬¬P(x).

25 / 23

Counterexample to 4: In general not ϕ `I ϕ
−.

Consider a Kripke model with ω many nodes k0 ≤ k1 ≤ k2 ≤ . . . , with the
following domains and valuations.

i 0 1 2 . . .

D(ki) {0} {0, 1} {0, 1, 2} . . .
P {} {0} {0, 1} . . .

Clearly kn 6 ∀x.P(x) for all n, so especially k0 ¬∀xP(x). Let n be given,
and take any l ≤ n. Then kn+1 P(l). Therefore kn ¬¬P(l). Hence
k0 ∀x.¬¬P(x).

This proves that we cannot have ¬∀x.P(x) `I ¬∀x.¬¬P(x).

25 / 23

Counterexample to 4: In general not ϕ `I ϕ
−.

Consider a Kripke model with ω many nodes k0 ≤ k1 ≤ k2 ≤ . . . , with the
following domains and valuations.

i 0 1 2 . . .

D(ki) {0} {0, 1} {0, 1, 2} . . .
P {} {0} {0, 1} . . .

Clearly kn 6 ∀x.P(x) for all n, so especially k0 ¬∀xP(x). Let n be given,
and take any l ≤ n. Then kn+1 P(l). Therefore kn ¬¬P(l). Hence
k0 ∀x.¬¬P(x).
This proves that we cannot have ¬∀x.P(x) `I ¬∀x.¬¬P(x).

25 / 23

	Friedman's A-translation
	Program Extraction
	Appendix

