Introduction	A classical proof	Sperner's lemma	
000	0000	00000	

Brouwer's fixed point theorem

Constructive variants 000000

Brouwer's Fixed Point Theorem

An 'almost constructive' proof

Ezra Schoen

March 31, 2021

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへ⊙

Ezra Schoen

Introduction 000	A classical proof	Sperner's lemma 00000	Brouwer's fixed point theorem	Constructive variants 000000

1 Introduction

2 A classical proof

3 Sperner's lemma

- 4 Brouwer's fixed point theorem
- 5 Constructive variants

のすの 明 (中国)・(明)・(四)・(日)

Brouwer's Fixed Point Theorem

Ezra Schoen

Introduction	A classical proof	Sperner's lemma	Brouwer's fixed point theorem	Constructive variants
●00	0000	00000		000000

Introduction

メロト メヨト メヨト メヨト

= 990

Ezra Schoen

Introduction	A classical p
000	

Brouwer's fixed point theorem

Constructive variants 000000

Brouwer

Ezra Schoen Brouwer's Fixed Point Theorem

Brouwer's fixed point theorem

イロト イポト イヨト イヨト

Constructive variants 000000

э

The Fixed Point Theorem

Theorem

Any continuous function from the closed (*n*-dimensional) disc to the closed (*n*-dimensional) disc has a fixed point; that is, a point that is left invariant by the function.

Ezra Schoen Brouwer's Fixed Point Theorem

Brouwer's fixed point theorem

Constructive variants

The Fixed Point Theorem

Theorem

Any continuous function from the closed (*n*-dimensional) disc to the closed (*n*-dimensional) disc has a fixed point; that is, a point that is left invariant by the function.

If $f: \mathbb{D}^n \to \mathbb{D}^n$ is continuous, then there is an $x \in \mathbb{D}^n$ with f(x) = x.

Ezra Schoen

Introduction	A classical proof	Sperner's lemma	Brouwer's fixed point theorem	Constructive variants
000	●000	00000		000000

メロト メロト メヨト メヨト

= 990

Ezra Schoen

A classical proof	
0000	

Brouwer's fixed point theorem

Constructive variants

A key lemma

Lemma

There is no continuous function $g : \mathbb{D}^2 \to \mathbb{S}^1$ such that f(x) = x for all $x \in \mathbb{S}^1$.

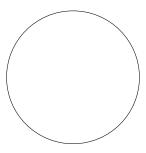
Proof: If there were such an f, then \mathbb{D}^2 and \mathbb{S}^1 would be homotopy-equivalent, but \mathbb{D}^2 is contractible, whereas $\pi_1(\mathbb{S}^1) = \mathbb{Z} \neq 0$.

Sperner's l 00000 Brouwer's fixed point theorem

Constructive variants

Constructing a function g

Assume $f : \mathbb{D}^2 \to \mathbb{D}^2$ has no fixed points.



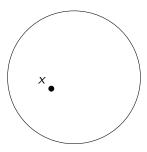
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Sperner's len 00000 Brouwer's fixed point theorem

Constructive variants 000000

Constructing a function g

Assume $f : \mathbb{D}^2 \to \mathbb{D}^2$ has no fixed points.



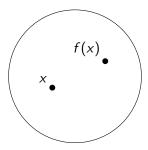
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Brouwer's fixed point theorem

Constructive variants 000000

Constructing a function g

Assume $f : \mathbb{D}^2 \to \mathbb{D}^2$ has no fixed points.



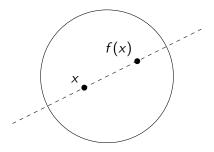
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Brouwer's fixed point theorem

Constructive variants 000000

Constructing a function g

Assume $f : \mathbb{D}^2 \to \mathbb{D}^2$ has no fixed points.



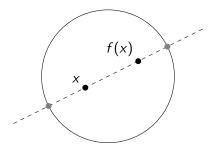
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Brouwer's fixed point theorem

Constructive variants

Constructing a function g

Assume $f : \mathbb{D}^2 \to \mathbb{D}^2$ has no fixed points.



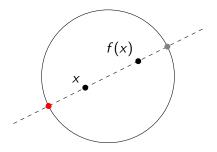
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Brouwer's fixed point theorem

Constructive variants

Constructing a function g

Assume $f : \mathbb{D}^2 \to \mathbb{D}^2$ has no fixed points.



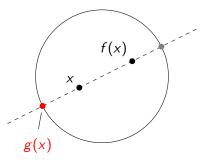
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Brouwer's fixed point theorem

Constructive variants

Constructing a function g

Assume $f : \mathbb{D}^2 \to \mathbb{D}^2$ has no fixed points.



・ロト ・回 ト ・ヨト ・ヨト ・ヨー うへの

Ezra Schoen

A classical proof	Sperner's lemma	Brouwer's fixed point theorem	Constructive variants
0000			

Finishing the proof

If $f : \mathbb{D}^2 \to \mathbb{D}^2$ has no fixed points, then there is a continuous $g : \mathbb{D}^2 \to \mathbb{S}^1$ with g(x) = x for all $x \in \mathbb{S}^1$.

Brouwer's Fixed Point Theorem

Ezra Schoen

A classical proof	Sperner's lemma	Brouwer's fixed point theorem	Constructive variants
0000			

Finishing the proof

If $f : \mathbb{D}^2 \to \mathbb{D}^2$ has no fixed points, then there is a continuous $g : \mathbb{D}^2 \to \mathbb{S}^1$ with g(x) = x for all $x \in \mathbb{S}^1$. Contradiction!

Unconstructivity

We can at best prove $\forall f : \neg \forall x \neg (f(x) = x)$. But this is not the same as $\forall f : \exists x (f(x) = x)!$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへ⊙

Ezra Schoen

Introduction	A classical proof	Sperner's lemma	Brouwer's fixed point theorem	Constructive variants
000	0000	●0000		000000

メロト メロト メヨト メヨト

= 990

Ezra Schoen

A classical proof	Sperner's lemma	Brouwer's fixed point theorem	Constructive va
	0000		

The lemma

Lemma

Every Sperner coloring of a subdivision of the triangle has a rainbow triangle.

Ezra Schoen

assical proof

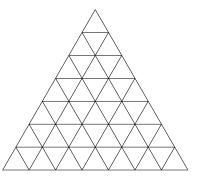
Sperner's lemma ○●○○○ Brouwer's fixed point theorem

Constructive variants 000000

The lemma

Lemma

Every Sperner coloring of a subdivision of the triangle has a rainbow triangle.



▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Sperner's lemma ○●○○○ Brouwer's fixed point theorem

Constructive variants 000000

The lemma

Lemma

Every Sperner coloring of a subdivision of the triangle has a rainbow triangle.



Ezra Schoen

A classical

Sperner's lemma

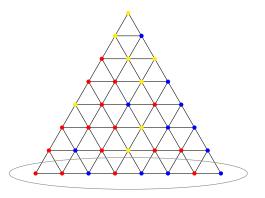
Brouwer's fixed point theorem

Constructive variants 000000

The lemma

Lemma

Every Sperner coloring of a subdivision of the triangle has a rainbow triangle.



Ezra Schoen

l proof Sperner's lemma

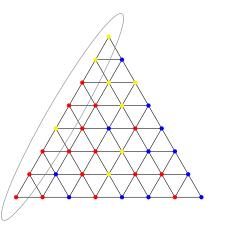
Brouwer's fixed point theorem

Constructive variants 000000

The lemma

Lemma

Every Sperner coloring of a subdivision of the triangle has a rainbow triangle.



Ezra Schoen

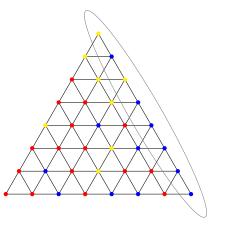
sal proof Sperner's lemma

Brouwer's fixed point t 000000 Constructive variants

The lemma

Lemma

Every Sperner coloring of a subdivision of the triangle has a rainbow triangle.



Ezra Schoen

Sperner's lemma ○●○○○ Brouwer's fixed point theorem

Constructive variants 000000

The lemma

Lemma

Every Sperner coloring of a subdivision of the triangle has a rainbow triangle.



Ezra Schoen

Sperner's lemma

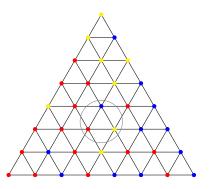
Brouwer's fixed point theorem

Constructive variants 000000

The lemma

Lemma

Every Sperner coloring of a subdivision of the triangle has a rainbow triangle.



Ezra Schoen

Sperner's lemma

Brouwer's fixed point theorem

Constructive variants

Proof of Sperner's lemma (i): Doors

(日)

Ezra Schoen Brouwer's Fixed Point Theorem

Sperner's lemma 00●00 Brouwer's fixed point theorem

Constructive variants

Proof of Sperner's lemma (i): Doors

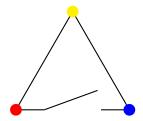
(日)

Ezra Schoen Brouwer's Fixed Point Theorem

Sperner's lemma 00●00 Brouwer's fixed point theorem

Constructive variants

Proof of Sperner's lemma (i): Doors



(日)

Brouwer's Fixed Point Theorem

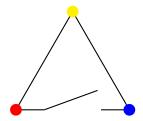
Ezra Schoen

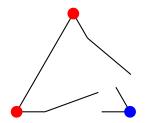
Sperner's lemma

Brouwer's fixed point theorem

Constructive variants

Proof of Sperner's lemma (i): Doors





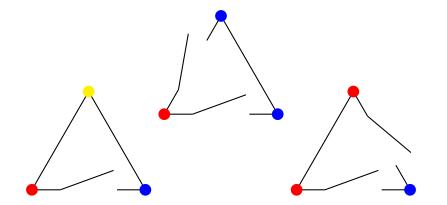
Brouwer's Fixed Point Theorem

Ezra Schoen

Brouwer's fixed point theorem

Constructive variants 000000

Proof of Sperner's lemma (i): Doors



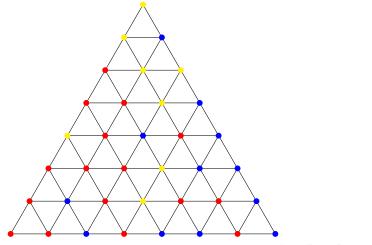
・ロト ・回 ト ・ヨト ・ヨト ・ヨー うへの

Ezra Schoen

Brouwer's fixed point theorem

Constructive variants

Proof of Sperner's Lemma (ii): Walks



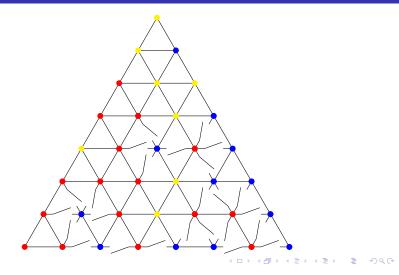
◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

Sperner's lemma 000●0

Brouwer's fixed point theorem

Constructive variants

Proof of Sperner's Lemma (ii): Walks

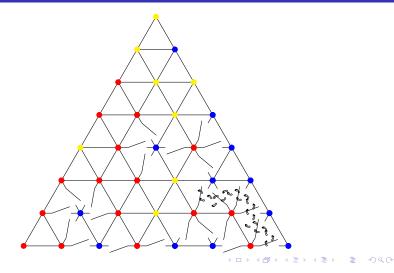


Sperner's lemma 000●0

Brouwer's fixed point theorem

Constructive variants

Proof of Sperner's Lemma (ii): Walks

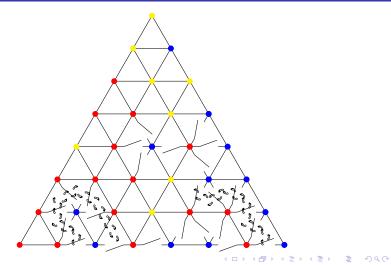


sical proof

Sperner's lemma 000●0 Brouwer's fixed point theorem

Constructive variants

Proof of Sperner's Lemma (ii): Walks



Ezra Schoen

Brouwer's fixed point theorem

Constructive variants 000000

Proof of Sperner's lemma (iii): Counting Doors

Every exit either leads to a rainbow triangle, or is linked to one unique other exit.

Ezra Schoen Brouwer's Fixed Point Theorem ▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへ⊙

Constructive variants

Proof of Sperner's lemma (iii): Counting Doors

Every exit either leads to a rainbow triangle, or is linked to one unique other exit.

The number of exits is odd

Proof:

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - 釣ぬ()

Ezra Schoen

Constructive variants

Proof of Sperner's lemma (iii): Counting Doors

Every exit either leads to a rainbow triangle, or is linked to one unique other exit.

The number of exits is odd

Proof: Go from left to right.

Brouwer's Fixed Point Theorem

Constructive variants

Proof of Sperner's lemma (iii): Counting Doors

Every exit either leads to a rainbow triangle, or is linked to one unique other exit.

The number of exits is odd

Proof: Go from left to right. The color changes after a segment if and only if it is an exit.

▲口 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Ezra Schoen

Constructive variants 000000

Proof of Sperner's lemma (iii): Counting Doors

Every exit either leads to a rainbow triangle, or is linked to one unique other exit.

The number of exits is odd

Proof: Go from left to right. The color changes after a segment if and only if it is an exit. Since the start and end point have different colors, the color must change an odd number of times.

Ezra Schoen

Constructive variants 000000

Proof of Sperner's lemma (iii): Counting Doors

Every exit either leads to a rainbow triangle, or is linked to one unique other exit.

The number of exits is odd

Proof: Go from left to right. The color changes after a segment if and only if it is an exit. Since the start and end point have different colors, the color must change an odd number of times. \Box

Ezra Schoen

Constructive variants 000000

Proof of Sperner's lemma (iii): Counting Doors

Every exit either leads to a rainbow triangle, or is linked to one unique other exit.

The number of exits is odd

Proof: Go from left to right. The color changes after a segment if and only if it is an exit. Since the start and end point have different colors, the color must change an odd number of times. \Box

So at least one exit is not linked to another,

Constructive variants

Proof of Sperner's lemma (iii): Counting Doors

Every exit either leads to a rainbow triangle, or is linked to one unique other exit.

The number of exits is odd

Proof: Go from left to right. The color changes after a segment if and only if it is an exit. Since the start and end point have different colors, the color must change an odd number of times. \Box

So at least one exit is not linked to another, hence there is a rainbow triangle.

Introduction	A classical proof	Sperner's lemma	Brouwer's fixed point theorem	Constructive variants
000	0000	00000		000000

・ロト ・四ト ・ヨト ・ヨト

2

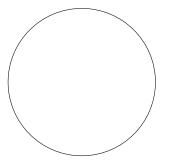
Ezra Schoen

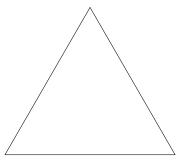
Introduction	A classical pro

Brouwer's fixed point theorem 0 = 0000

Constructive variants 000000

A topological joke





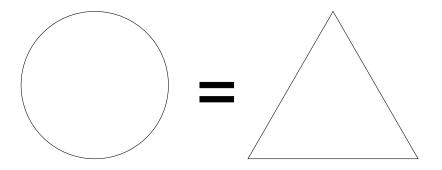
◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

A classical pro

Brouwer's fixed point theorem 0 = 0000

Constructive variants

A topological joke



Ezra Schoen

Sperner's lemma

Brouwer's fixed point theorem 000000

Constructive variants 000000

Coloring the standard simplex

$$\Delta^2 = \{ (t_1, t_2, t_3) \in \mathbb{R}^3 \mid t_1, t_2, t_3 \ge 0, t_1 + t_2 + t_3 = 1 \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Brouwer's Fixed Point Theorem

Sperner's lemma

Brouwer's fixed point theorem 000000

Constructive variants 000000

Coloring the standard simplex

$$\Delta^2 = \{(t_1, t_2, t_3) \in \mathbb{R}^3 \mid t_1, t_2, t_3 \ge 0, t_1 + t_2 + t_3 = 1\}$$

Let $f: \Delta^2 \to \Delta^2$ be a function. We color t in Δ^2

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Brouwer's Fixed Point Theorem

Brouwer's fixed point theorem 000000

Constructive variants

Coloring the standard simplex

$$\Delta^2 = \{(t_1, t_2, t_3) \in \mathbb{R}^3 \mid t_1, t_2, t_3 \ge 0, t_1 + t_2 + t_3 = 1\}$$

Let $f: \Delta^2 \to \Delta^2$ be a function. We color t in Δ^2 Red if $f(t)_1 < t_1$;

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Brouwer's Fixed Point Theorem

Sperner's lemma

Brouwer's fixed point theorem 000000

Constructive variants

Coloring the standard simplex

$$\Delta^2 = \{ (t_1, t_2, t_3) \in \mathbb{R}^3 \mid t_1, t_2, t_3 \ge 0, t_1 + t_2 + t_3 = 1 \}$$

Let $f : \Delta^2 \to \Delta^2$ be a function. We color t in Δ^2 Red if $f(t)_1 < t_1$; Blue if $f(t)_2 < t_2$;

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Ezra Schoen

Brouwer's fixed point theorem 000000

Constructive variants

Coloring the standard simplex

$$\Delta^2 = \{(t_1, t_2, t_3) \in \mathbb{R}^3 \mid t_1, t_2, t_3 \ge 0, t_1 + t_2 + t_3 = 1\}$$

Let $f : \Delta^2 \to \Delta^2$ be a function. We color t in Δ^2 Red if $f(t)_1 < t_1$; Blue if $f(t)_2 < t_2$; Yellow if $f(t)_3 < t_3$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Ezra Schoen

Coloring the standard simplex

$$\Delta^2 = \{(t_1, t_2, t_3) \in \mathbb{R}^3 \mid t_1, t_2, t_3 \ge 0, t_1 + t_2 + t_3 = 1\}$$

Let $f: \Delta^2 \to \Delta^2$ be a function. We color t in Δ^2 Red if $f(t)_1 < t_1$; Blue if $f(t)_2 < t_2$; Yellow if $f(t)_3 < t_3$.

This is a Sperner coloring!

Ezra Schoen

Brouwer's fixed point theorem 000000

Constructive variants

Coloring the standard simplex

$$\Delta^2 = \{(t_1, t_2, t_3) \in \mathbb{R}^3 \mid t_1, t_2, t_3 \ge 0, t_1 + t_2 + t_3 = 1\}$$

Let $f: \Delta^2 \to \Delta^2$ be a function. We color t in Δ^2

Red if $f(t)_1 < t_1$; Blue if $f(t)_2 < t_2$; Yellow if $f(t)_3 < t_3$.

This is a Sperner coloring!

Goal

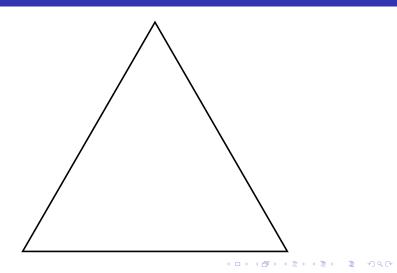
Find a shrinking sequence of rainbow triangles.

Ezra Schoen

Sperner's lemma

Brouwer's fixed point theorem 000000

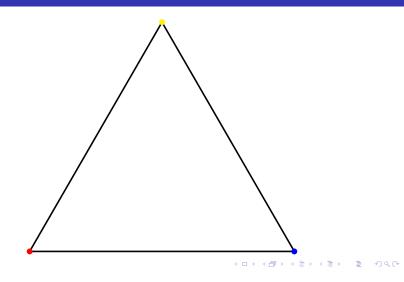
Constructive variants



Sperner's lemma

Brouwer's fixed point theorem 000000

Constructive variants 000000

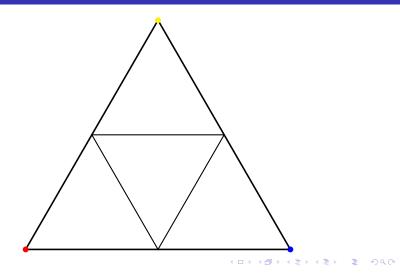


ssical proof

Sperner's lemma

Brouwer's fixed point theorem 000000

Constructive variants 000000



ssical proof

Sperner's lemma

Brouwer's fixed point theorem 000000

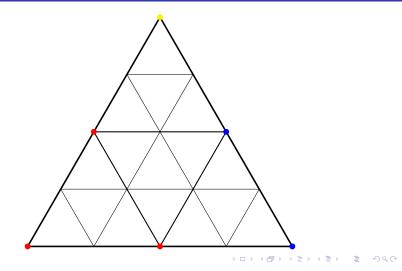
Constructive variants 000000



Sperner's lemma

Brouwer's fixed point theorem 000000

Constructive variants

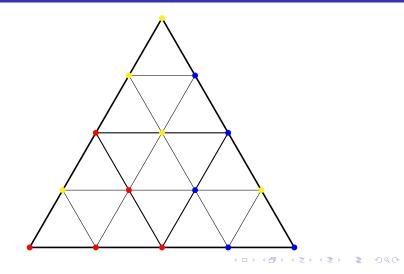


proof Sp

Sperner's lemma

Brouwer's fixed point theorem 000000

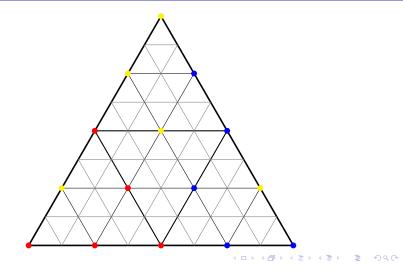
Constructive variants 000000



Sperner's lemma

Brouwer's fixed point theorem 000000

Constructive variants 000000

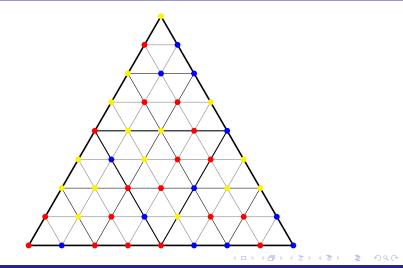


Sperner's lemma

Brouwer's fixed point theorem 000000

Constructive variants 000000

Further subdivisions

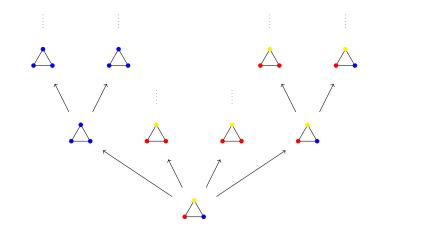


Ezra Schoen

Brouwer's fixed point theorem 000000

Constructive variants

Building a tree

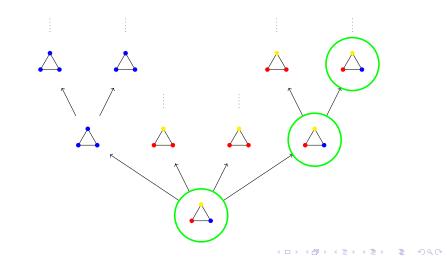


▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ▲臣 - のへの

Brouwer's fixed point theorem 000000

Constructive variants

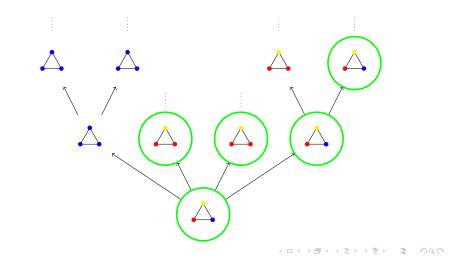
Building a tree



Brouwer's fixed point theorem 000000

Constructive variants

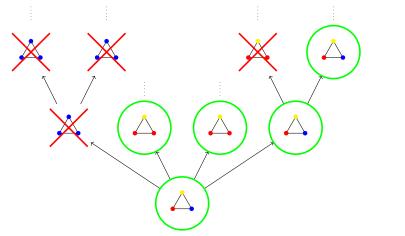
Building a tree



oof Sperne 00000 Brouwer's fixed point theorem 000000

Constructive variants

Building a tree



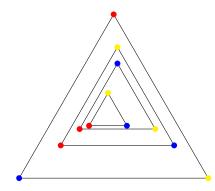
・ロト・日本・ キョン・ ヨー うえつ

Ezra Schoen

Brouwer's fixed point theorem 000000

Constructive variants 000000

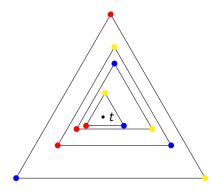
Finding the fixed point



Brouwer's fixed point theorem 000000

Constructive variants 000000

Finding the fixed point



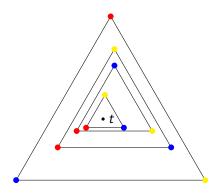
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Ezra Schoen

Brouwer's fixed point theorem 000000

Constructive variants 000000

Finding the fixed point



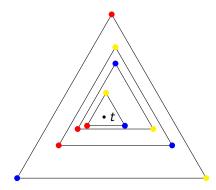
Ezra Schoen

Sperner's lemma

Brouwer's fixed point theorem 000000

Constructive variants 000000

Finding the fixed point



 $\bullet_i \rightarrow t \quad \Rightarrow f(t)_1 \leq t_1$ $\bullet_i \rightarrow t$ $\bullet_i \rightarrow t$

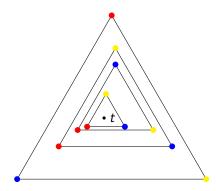
Ezra Schoen

Sperner's lemma

Brouwer's fixed point theorem 000000

Constructive variants

Finding the fixed point



 $egin{aligned} \bullet_i & o t \quad \Rightarrow f(t)_1 \leq t_1 \ \bullet_i & o t \quad \Rightarrow f(t)_2 \leq t_2 \ \bullet_i & o t \end{aligned}$

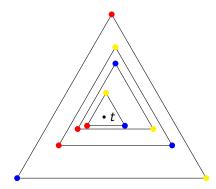
Ezra Schoen

Sperner's lemma

Brouwer's fixed point theorem $\circ\circ\circ\circ\circ\circ$

Constructive variants 000000

Finding the fixed point



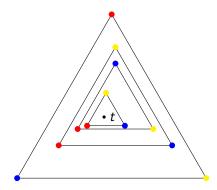
 $\begin{array}{ll} \bullet_i \to t & \Rightarrow f(t)_1 \leq t_1 \\ \bullet_i \to t & \Rightarrow f(t)_2 \leq t_2 \\ \bullet_i \to t & \Rightarrow f(t)_3 \leq t_3 \end{array}$

Ezra Schoen

Brouwer's fixed point theorem 00000

Constructive variants

Finding the fixed point



 $\begin{array}{ll} \bullet_i \to t & \Rightarrow f(t)_1 \leq t_1 \\ \bullet_i \to t & \Rightarrow f(t)_2 \leq t_2 \\ \bullet_i \to t & \Rightarrow f(t)_3 \leq t_3 \end{array}$

 $t_1+t_2+t_3 = f(t)_1+f(t)_2+f(t)_3(!)$

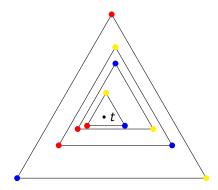
▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Ezra Schoen

Brouwer's fixed point theorem 000000

Constructive variants

Finding the fixed point



 $egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$

$$t_1+t_2+t_3 = f(t)_1+f(t)_2+f(t)_3(!)$$

So $t = f(t)$.

Ezra Schoen

Introduction	A classical proof	Sperner's lemma	Brouwer's fixed point theorem	Constructive variants
000	0000	00000		●00000

Constructive variants

Ezra Schoen Brouwer's Fixed Point Theorem ▲□▶▲御▶▲臣▶▲臣▶ 臣 のへで

Brouwer's fixed point theorem

Constructive variants 00000

Is the alternative proof constructive?

Ezra Schoen Brouwer's Fixed Point Theorem

Brouwer's fixed point theorem

Constructive variants 00000

Is the alternative proof constructive?

Ezra Schoen

Brouwer's Fixed Point Theorem

・ロト・日本・日本・日本・日本・日本

Brouwer's fixed point theorem

Constructive variants 00000

Is the alternative proof constructive?

• Decidability of \leq

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 - のへの

Ezra Schoen Brouwer's Fixed Point Theorem

Brouwer's fixed point theorem

Constructive variants 00000

Is the alternative proof constructive?

NO

• Decidability of $\leq \quad \leftarrow$ Let's not worry about this.

・ロト ・回 ト ・ヨト ・ヨト ・ヨー うへの

Ezra Schoen Brouwer's Fixed Point Theorem

Brouwer's fixed point theorem

Constructive variants 00000

Is the alternative proof constructive?

NO

- Decidability of $\leq \quad \leftarrow$ Let's not worry about this.
- Choice principle!

Ezra Schoen

Brouwer's fixed point theorem

Constructive variants 00000

Is the alternative proof constructive?

NO

- Decidability of $\leq \quad \Leftarrow$ Let's not worry about this.
- Choice principle! ← Can we get rid of this?

・ロト ・回 ト ・ヨト ・ヨト ・ヨー うへの

Ezra Schoen

Brouwer's fixed point theorem

Constructive variants 00000

Is the alternative proof constructive?

NO

- Decidability of $\leq \quad \leftarrow$ Let's not worry about this.
- Choice principle! ← Can we get rid of this?

Demand more

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 20ペ

Ezra Schoen

Brouwer's fixed point theorem

イロト イロト イヨト イヨト

Constructive variants 00000

3

Is the alternative proof constructive?

NO

- Decidability of $\leq \quad \leftarrow$ Let's not worry about this.
- Choice principle! ← Can we get rid of this?

Demand more or

Ezra Schoen

Brouwer's fixed point theorem

Constructive variants

Is the alternative proof constructive?

NO

- Decidability of $\leq \quad \leftarrow$ Let's not worry about this.
- Choice principle! ← Can we get rid of this?

Demand more or Promise less

Ezra Schoen

Brouwer's fixed point theorem

Constructive variants

What choices do we make?

Weak Kőnig's lemma

If T is an infinite tree where every node has at most k children, then T has an infinite path.

Ezra Schoen Brouwer's Fixed Point Theorem ▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Brouwer's fixed point theorem

Constructive variants

What choices do we make?

Weak Kőnig's lemma

If T is an infinite tree where every node has at most k children, then T has an infinite path.

Fan theorem

◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

Ezra Schoen

Brouwer's fixed point theorem

Constructive variants

What choices do we make?

Weak Kőnig's lemma

If T is an infinite tree where every node has at most k children, then T has an infinite path.

Fan theorem (Roughly)

Ezra Schoen

Brouwer's fixed point theorem

Constructive variants 000000

What choices do we make?

Weak Kőnig's lemma

If T is an infinite tree where every node has at most k children, then T has an infinite path.

Fan theorem (Roughly)

If T is a tree where every node has at most k children, and there are no infinite paths in T, then T has finite depth $N < \omega$.

Ezra Schoen

Brouwer's fixed point theorem

Constructive variants 000000

Demand more: Isolated fixed points

Theorem (Tanaka, 2011)

If $f : \Delta^2 \to \Delta^2$ is uniformly continuous, and every fixed point is isolated, then f has a fixed point.

Idea: If all fixed points are isolated, then in every infinite path, there is a stage after which we never have to make a choice. So by the Fan theorem, there is some *uniform bound N* on the number of necessary choices.

Brouwer's fixed point theorem

Constructive variants

Promise less: Approximate fixed points

Theorem (Van Dalen, 2009)

If $f : \Delta^2 \to \Delta^2$ is *uniformly* continuous, then for every $\epsilon > 0$ there is an x with $|x - f(x)| < \epsilon$.

Idea: In a rainbow triangle, all the corners move in different directions. But they cannot be moved very far apart; so they must stay close to their original positions.

Ezra Schoen

proof

Sperner's lemma

Brouwer's fixed point theorem

イロト イボト イヨト イヨト

Constructive variants

2

Thank you for listening!

Ezra Schoen