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What to do if a logic does not have Craig interpolation?

Assume L does not have CIP. Two options have been explored:

What does one have to add to the language of L to restore

the CIP? Is there a minimal extension?

Characterize when φ,ψ have an interpolant in L. How hard

is it to decide this? How to compute interpolants if they

exist?
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My Original Motivation from Supervised Learning

Consider a set E+ = {φ1(a1), . . . , φn(an)} of positive examples

and a set E− = {ψ1(b1), . . . , ψm(bm)} of negative examples.

For instance, these could be descriptions of drinks or dishes

one aims to classify.

Task. Find ‘informative’ formula χ in a signature Σ such that

φi(ai) |= χ(ai) for all i ≤ n;

ψi(bi) |= ¬χ(bi) for all i ≤ m.

The space of solutions can be reformulated as the set of all

interpolants of φ1(a1) ∨ . . . ∨ φn(an), ¬(ψ1(b1) ∨ . . . ∨ ψm(bm).

Suitable languages for this are DLs with nominals. These do

not have CIP unless undecidable (ten Cate 2005).
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Plan

No additional cost of interpolant existence for modal logic

of linear orders (K4.3)

No additional cost of interpolant existence for modal logic

of finite strict linear orders (GL.3)

Approach via formal languages to GL.3

Minimal temporal languages with CIP

Exponential additional cost of interpolant existence for:

modal logics with nominals, first-order S5, 2-variable

fragment, guarded fragment, weak K4.
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K4.3 (modal logic of linear orders)

Theorem [Maksimova] K4.3 does not enjoy CIP.

Let 2+χ = χ ∧2χ. Consider

φ = 3(p1 ∧3+¬q1) ∧2(p2 → 2+q1)

∃q1.φ says that p1 occurs before any occurrence of p2 (after

that anything can happen).

Let

¬ψ = 3(p2 ∧3+¬q2) ∧2(p1 → 2+q2).

∃q2.¬ψ says that p2 occurs before any occurrence of p1 (after

that anything can happen).

So ∃q1.φ |=K 4.3 ¬∃q2.¬ψ and so φ |=K 4.3 ψ.
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Criterion for Craig interpolant existence (yesterday)

φ = 3(p1 ∧3+¬q1) ∧2(p2 → 2+q1)

¬ψ = 3(p2 ∧3+¬q2) ∧2(p1 → 2+q2).

To show that in K4.3 there is no interpolant of φ,ψ we have to

find models M1, x1 and M2, x2 based on linear frames such that

for Σ = {p1,p2}:

M1, x1 |= φ;

M2, x2 |= ¬ψ;

that M1, x1 ∼Σ M2, x2.
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No interpolant of φ, ψ in K4.3

φ = 3(p1 ∧3+¬q1) ∧2(p2 → 2+q1)

¬ψ = 3(p2 ∧3+¬q2) ∧2(p1 → 2+q2).
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Deciding Interpolant Existence for K4.3

We show the following poly-size bisimilar model property:

Theorem. For any φ,ψ, if φ and ψ are satisfiable in Σ-bisimilar

models based on linear frames, then they are satisfiable in

poly-size Σ-bisimilar models based on linear frames.

Corollary. Interpolant existence is in coNP for K4.3.
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Descriptive frames

A general frame F = (W ,R,P) consists of a frame (W ,R) and

a set of internal sets P ⊆ 2W closed under the Booleans and

the operator

3F X = {x ∈ W | ∃y ∈ X xRy}.

F = (W ,R,P) is called descriptive if the following conditions

hold for any x , y ∈ W and any X ⊆ P:

(dif) x = y iff ∀X ∈ P (x ∈ X ↔ y ∈ X ),

(ref) xRy iff ∀X ∈ P (y ∈ X → x ∈ 3F X ),

(com) if X ⊆ P has the finite intersection property, that is,⋂
X ′ ̸= ∅ for every finite X ′ ⊆ X—then

⋂
X ̸= ∅.
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Interpolant Existence based on Descriptive Frames

A d-frame based model M = (W ,R,P,V ) consists of a

descriptive frame (W ,R,P) and a model (W ,R,V ) with

V (pi) ∈ P for all pi .

Theorem [Completeness] For every normal modal logic L, |=L is

determined by d-frame based models with underpinning

descriptive frames validating L.

Theorem. The following conditions are equivalent for any

normal modal logic L, formulas φ,ψ and Σ = sig(φ) ∩ sig(ψ):

there does not exist an interpolant for φ,ψ in L

φ and ¬ψ are satisfiable in Σ-bisimilar d-frame based

models with descriptive frames validating L.
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Back to poly-size bisimilar models for K4.3

Assume M1 = (W1,R1,P1,V1), M2 = (W2,R2,P2,V2) and

M1,w1 |= φ1, M2,w2 |= φ2

such that M1,w1 ∼Σ M2,w2.

(1) For i = 1,2, take wi and for χ ∈ sub(φi) a maximal point in

Wi satisfying χ (exist as we have descriptive frames). Let Vi be

the resulting sets.

(2) Take for w ∈ V1 ∪ V2 a maximal point in Wi satisfying the

same full Σ-type as w (all Σ-formulas true in w). Exist as we

have descriptive frames and by Σ-bisimilarity. The induced

models and Σ-bisimulation are as required.
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The modal logic of strict finite orders (GL.3)

Theorem [Kurucz, W, Zakharyaschev] Craig interpolant

existence is coNP-complete for all finite axiomatizable normal

extensions of K4.3.

We consider GL.3, the modal logic of strict finite orders

axiomatized by adding to K4.3 the Gödel-Löb axiom

2(2p → p) → 2p.

It is valid in a transitive frame (W ,R) iff the frame does not

contain and infinite ascending R-chain w0Rw1R · · · .
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GL.3 (Logic of finite strict linear orders)

φ = 3(p1 ∧3+¬q1) ∧2(p2 → 2+q1)

∃q1.φ says that p1 occurs before any occurrence of p2

¬ψ ≡ 3(p2 ∧3+¬q2) ∧2(p1 → 2+q2)

φ and ¬ψ can’t be satisfied {p1,p2}-bisimilar finite strict orders.
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Descriptive frames to the rescue

Consider Fk = (Wk ,Rk ,Pk ) with (Wk ,Rk ) depicted below and

Pk the boolean closure of singletons {n} and

Xi = {ai} ∪ {kn + i | n < ω}

for all i < k . Then F |= GL.3.

Observation Finite sequences of such frames and irreflexive

nodes validate GL.3. Call them basic GL.3-frames.
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{p1,p2}-bisimilar basic GL.3 frames

φ and ¬ψ satisfied in {p1,p2}-bisimilar basic GL.3 frames:
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coNP Upper Bound for Interpolant Existence in GL.3

Theorem For any φ,ψ,

if φ and ψ are satisfiable in Σ-bisimilar descriptive frames

validating GL.3,

then they are satisfiable in Σ-bisimilar basic GL.3 frames with

only polynomially many components.
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Different approach for LTL using algebraic techniques

Theorem [Henckell 1988, Place, Zeitoun 2016] For any disjoint

regular languages (of finite words), R1,R2, it is decidable (in

ExpTime) whether there exists an FO-definable language L

separating them:

R1 ⊆ L, R2 ∩ L = ∅

As regular languages are models of ∃q.φ1 and ∀q.φ2 with

φ1, φ2 in LTL (equivalently FO), this result states that interpolant

existence for LTL over strict finite orders is decidable.
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Minimal Language Extension of GL.3 with CIP

Let MSO denote monadic second-order logic over structures
F = (W ,R,pF

1 , . . .) with p1, . . . unary relation symbols corresponding
to propositional atoms.

Theorem [Gheerbrant and ten Cate 2009].
MSO is the smallest extension of ML over finite strict linear orders
with CIP.
Equivalently, the extension of ML with an operator for “next” and the
fixpoint operator µ is the smallest extension of ML with CIP over strict
finite orders.

Note. The notion of an “extension” has to be defined. An important

condition is closure on substitutions: roughly, if φ(p) ∈ L and ψ ∈ L,

then φ(ψ) ∈ L. Closure under negation is also used.
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Results for K4.3 not typical

The following are logics where interpolant existence is

approximately one exponential harder than entailment:

Guarded fragment and two-variable fragment [Jung and W

2021];

Modal logics with nominals [Artale et al. 2021];

One-variable fragment of first-order S5 [Kurucz, W,

Zakharyschev];

wK 4 = K ⊕33p → (p ∨3p), the logic of the derivative

operator [not yet published].

One can satisfy φ,ψ in Σ-bisimilar models only if they have at

least exponentially many Σ-bisimilar nodes.
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Illustration: Modal logic with nominals

We add to modal logic a countably infinite set of nominals

(denoted a,b, and so on), propositional atoms that have to be

interpreted as singletons. For simplicity we also add universal

role 2u.

Consider

φ = a ∧3a, ψ = b → 3b

Then M,w |= φ implies that wRw and so φ |= ψ but there is no

interpolant.

Theorem. Interpolant existence is 2ExpTime-complete.
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Why is Σ-bisimilarity hard?

p = p0, . . . ,pn−1 ̸∈ Σ used to encode counter up to 2n − 1 with

pi short for ‘the number encoded by p is i ’.

Let

φ = a ∧3a

ψ = p0 ∧
∧
(2u(pi → 2pi+1)

Σ-bisimilar models of φ and ψ:

a b
R

p1 p3
. . .

R R R R
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Upper bound: double exponential bisimilar models

When constructing finite models for modal logic, one can often

work with types t of subformulas of the given formula.

To construct model ensure that for all 3ψ ∈ t there is t ′ with

ψ ∈ t ′ such that t , t ′ coherent ({χ | 2χ ∈ t} ⊆ t ′).

Now, as we have to coordinate what happens on the R-chain,

work with

sets T of types satisfiable in Σ-bisimilar nodes

Ensure that for 3ψ ∈ t ∈ T there is t ′ ∈ T ′ with ψ ∈ t ′ ∈ T ′ and

for all s ∈ T exists s′ ∈ T ′ with s, s′ coherent.

Double exponentially many sets of sets of types 2EXPTIME
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wK4 = K4 ⊕33p → (p ∨3p)

The logic of the derivative operator on topological spaces,

introduced by Esakia (based on Tarski/McKinsey):

d(X ) is the set of all points x such that every

neighbourhood of x contains a point y ∈ X with y ̸= x .

Frames for wK4 satisfy

xRyRz ⇒ x = z ∨ xRz,

so are partial-orders of clusters of possibly irreflexive nodes.
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wK4 does not have CIP

Consider

φ = 33p ∧ ¬3p

Then M,w |= ∃p.φ iff M |= ∃y(wRyRw ∧ ¬(wRw))

ψ = q → 33q

Then M,w |= ∀q.ψ iff M |= ∃ywRyRw .

Hence wK4|= φ→ ψ.

But there is no interpolant.
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