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What to do if a logic does not have Craig interpolation?

Assume L does not have CIP. Two options have been explored:

@ What does one have to add to the language of L to restore
the CIP? Is there a minimal extension?

@ Characterize when ¢, ¢ have an interpolant in L. How hard
is it to decide this? How to compute interpolants if they
exist?
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My Original Motivation from Supervised Learning

Consider aset ET = {p1(ay), ..., en(an)} of positive examples
and aset E- = {¢1(b1),...,¥m(bm)} of negative examples.
For instance, these could be descriptions of drinks or dishes
one aims to classify.
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My Original Motivation from Supervised Learning

Consider aset E™ = {p1(ay),...,pn(an)} of positive examples
and aset E- = {¢1(b1),...,¥m(bm)} of negative examples.
For instance, these could be descriptions of drinks or dishes
one aims to classify.

Task. Find ‘informative’ formula x in a signature X such that

@ yi(a) E x(a)foralli<n,
@ i(bj) = —x(bj) forall i < m.
The space of solutions can be reformulated as the set of all

interpolants of p1(at) V...V en(an), ~(¢¥1(b1) V...V om(bm).
Suitable languages for this are DLs with nominals. These do
not have CIP unless undecidable (ten Cate 2005).
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@ No additional cost of interpolant existence for modal logic

of linear orders (K4.3)

@ No additional cost of interpolant existence for modal logic
of finite strict linear orders (GL.3)

@ Approach via formal languages to GL.3
@ Minimal temporal languages with CIP

@ Exponential additional cost of interpolant existence for:
modal logics with nominals, first-order S5, 2-variable
fragment, guarded fragment, weak K4.
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K4.3 (modal logic of linear orders)

Theorem [Maksimova] K4.3 does not enjoy CIP.
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K4.3 (modal logic of linear orders)

Theorem [Maksimova] K4.3 does not enjoy CIP.

Let Oty = x A Oy. Consider

=01 ANOT=g1) AO(p2 — Ot )

3gy.¢ says that py occurs before any occurrence of p» (after
that anything can happen).
Let

) = O(P2 A OT ) AD(py — O gp).
3g..— says that p, occurs before any occurrence of p; (after
that anything can happen).
S0 3g1.¢ Fka.3 ~3q2.—¢ and s0 ¢ [=k4.3 .
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Criterion for Craig interpolant existence (yesterday)

¢ =O(p1 AOT2q1) AD(p2 — 0" qy)
—) = O(po A OT=ge) A T(py — Ot ).

To show that in K4.3 there is no interpolant of ¢, ¢ we have to
find models My, x; and M,, x> based on linear frames such that

for ¥ = {p1, p2}:
° Ih417 X1 F: ©s
o Mo, xo =),

o that My, xq ~x My, Xo.
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No interpolant of ¢, ¢ in K4.3

©=0(p1 AOT=g1) AD(p2 — Ot qy)
—) = O(p2 A OToqe) AD(pr — O ).
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No interpolant of ¢, ¢ in K4.3

©=0(p1 AOT=g1) AD(p2 — Ot qy)
—) = O(p2 A OToqe) AD(pr — O ).

®°
X!
=W
\
o)
0
~

/
X O—>8>>0—® ° -

-~

;)

7%? l/ ~ N Bz

P‘{if;z X.IZ /')2
Mm% 2 L m,

6/23



Deciding Interpolant Existence for K4.3

We show the following poly-size bisimilar model property:

Theorem. For any ¢, ¥, if ¢ and 1 are satisfiable in X-bisimilar
models based on linear frames, then they are satisfiable in
poly-size X -bisimilar models based on linear frames.

7/23



Deciding Interpolant Existence for K4.3

We show the following poly-size bisimilar model property:

Theorem. For any ¢, ¥, if ¢ and 1 are satisfiable in X-bisimilar
models based on linear frames, then they are satisfiable in
poly-size X -bisimilar models based on linear frames.

Corollary. Interpolant existence is in coNP for K4.3.
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Descriptive frames

A general frame F = (W, R, P) consists of a frame (W, R) and
a set of internal sets P C 2% closed under the Booleans and
the operator

OF X ={x e W |3y e XxRy}.

F = (W, R, P) is called descriptive if the following conditions
hold for any x,y € W and any X C P:
(dify x =y iffvX e P(x € X + y € X),
(refy xRy iffvX € P(y € X — x € OF X),
(com) if X C P has the finite intersection property, that is,
N X’ # 0 for every finite X’ C X—then N X # 0.
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Interpolant Existence based on Descriptive Frames

A d-frame based model M = (W, R, P, V) consists of a
descriptive frame (W, R, P) and a model (W, R, V) with
V(pi) € P for all p;.
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determined by d-frame based models with underpinning
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Interpolant Existence based on Descriptive Frames

A d-frame based model M = (W, R, P, V) consists of a
descriptive frame (W, R, P) and a model (W, R, V) with
V(pi) € P for all p;.

Theorem [Completeness] For every normal modal logic L, =, is
determined by d-frame based models with underpinning
descriptive frames validating L.

Theorem. The following conditions are equivalent for any
normal modal logic L, formulas ¢, and X = sig(y) N sig(v):
@ there does not exist an interpolant for ¢, v in L
@ ¢ and —) are satisfiable in X-bisimilar d-frame based

models with descriptive frames validating L.
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Back to poly-size bisimilar models for K4.3

Assume M1 = (W1, R1, P1, V1), M2 = (Wg, RQ, P2, V2) and

My, wy f= @1, Mo, ws = o

such that M1, wy ~s Mo, ws.
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the resulting sets.
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Back to poly-size bisimilar models for K4.3

Assume M1 = (W1, R1,P1, V1), M2 = (WQ, RQ, /:’27 V2) and

My, wy f= @1, Mo, ws = o

such that M1, wy ~s Mo, ws.

(1) For i =1,2, take w; and for x € sub(y;) a maximal point in
W; satisfying x (exist as we have descriptive frames). Let V; be
the resulting sets.

(2) Take for w € V4 U Vo a maximal point in W; satisfying the
same full X-type as w (all X-formulas true in w). Exist as we
have descriptive frames and by X -bisimilarity. The induced

models and X-bisimulation are as required.
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The modal logic of strict finite orders (GL.3)

Theorem [Kurucz, W, Zakharyaschev] Craig interpolant
existence is coNP-complete for all finite axiomatizable normal
extensions of K4.3.
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The modal logic of strict finite orders (GL.3)

Theorem [Kurucz, W, Zakharyaschev] Craig interpolant
existence is coNP-complete for all finite axiomatizable normal
extensions of K4.3.

We consider GL.3, the modal logic of strict finite orders
axiomatized by adding to K4.3 the Gddel-Léb axiom

0(Bp — p) — Op.

It is valid in a transitive frame (W, R) iff the frame does not
contain and infinite ascending R-chain woRw{R - - -.
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GL.3 (Logic of finite strict linear orders)

= O(p1 AOT=g1) AD(p2 — 07 gy)
3q1.p says that p; occurs before any occurrence of po
) = O(P2 A OTqe) AD(py — 07 qp)

v and — can’t be satisfied {p;, p2 }-bisimilar finite strict orders.

p1 sz, ‘ B X;T Pz

P2 %52 \?;zz Pt

7?/? :,/ /<\‘ 21‘7?2

Py ?7(? XET Pz
m % g LT m,
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Descriptive frames to the rescue

Consider Fy = (W, Rk, Px) with (Wj, Rx) depicted below and
Py the boolean closure of singletons {n} and

Xi={a}u{kn+i|n<w}

for all i < k. Ther

RS R e 1
T ! 0

13/23



Descriptive frames to the rescue

Consider Fy = (W, Rk, Px) with (Wj, Rx) depicted below and
Py the boolean closure of singletons {n} and

Xi={a}U{kn+i|n<w}
for all i < k. Ther

RS R e 1
T ! 0

Observation Finite sequences of such frames and irreflexive

nodes validate GL.3. Call them basic GL.3-frames.
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{p1, p=}-bisimilar basic GL.3 frames

v and —) satisfied in {py, p2}-bisimilar basic GL.3 frames:
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coNP Upper Bound for Interpolant Existence in GL.3

Theorem For any ¢, v,

if ¢ and v are satisfiable in X-bisimilar descriptive frames
validating GL.3,

then they are satisfiable in -bisimilar basic GL.3 frames with

only polynomially many components.
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Different approach for LTL using algebraic techniques

Theorem [Henckell 1988, Place, Zeitoun 2016] For any disjoint
regular languages (of finite words), Ry, Ro, it is decidable (in
ExpTime) whether there exists an FO-definable language L
separating them:

Ry CL, RoNnL=10
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Different approach for LTL using algebraic techniques

Theorem [Henckell 1988, Place, Zeitoun 2016] For any disjoint
regular languages (of finite words), Ry, Ro, it is decidable (in
ExpTime) whether there exists an FO-definable language L
separating them:

RiCL RnL=0

As regular languages are models of 3q.¢4 and Vq.y2 with
1, p2 in LTL (equivalently FO), this result states that interpolant
existence for LTL over strict finite orders is decidable.
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Minimal Language Extension of GL.3 with CIP

Let MSO denote monadic second-order logic over structures
F=(W,R,pf,...)with p;,... unary relation symbols corresponding
to propositional atoms.
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Minimal Language Extension of GL.3 with CIP

Let MSO denote monadic second-order logic over structures
F=(W,R,pf,...)with p;,... unary relation symbols corresponding
to propositional atoms.

Theorem [Gheerbrant and ten Cate 2009].

MSO is the smallest extension of ML over finite strict linear orders
with CIP.

Equivalently, the extension of ML with an operator for “next” and the
fixpoint operator p is the smallest extension of ML with CIP over strict
finite orders.
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Minimal Language Extension of GL.3 with CIP

Let MSO denote monadic second-order logic over structures
F=(W,R,pf,...)with p;,... unary relation symbols corresponding
to propositional atoms.

Theorem [Gheerbrant and ten Cate 2009].

MSO is the smallest extension of ML over finite strict linear orders
with CIP.

Equivalently, the extension of ML with an operator for “next” and the
fixpoint operator p is the smallest extension of ML with CIP over strict
finite orders.

Note. The notion of an “extension” has to be defined. An important
condition is closure on substitutions: roughly, if ¢(p) € £ and ¢ € L,

then ¢(y) € L. Closure under negation is also used.
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Results for K4.3 not typical

The following are logics where interpolant existence is
approximately one exponential harder than entailment:
@ Guarded fragment and two-variable fragment [Jung and W
2021];
@ Modal logics with nominals [Artale et al. 2021];
@ One-variable fragment of first-order S5 [Kurucz, W,
Zakharyschev];
0 WK4 =Ko OOp — (pV <p), the logic of the derivative
operator [not yet published].
One can satisfy ¢, ¢ in -bisimilar models only if they have at

least exponentially many X-bisimilar nodes.
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lllustration: Modal logic with nominals

We add to modal logic a countably infinite set of nominals
(denoted a, b, and so on), propositional atoms that have to be
interpreted as singletons. For simplicity we also add universal
role O,.
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Consider
p=anoa, Y=b—Cb

Then M, w |= ¢ implies that wRw and so ¢ |= v but there is no
interpolant.
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lllustration: Modal logic with nominals

We add to modal logic a countably infinite set of nominals
(denoted a, b, and so on), propositional atoms that have to be
interpreted as singletons. For simplicity we also add universal
role O,.

Consider
p=anoa, Y=b—Cb

Then M, w |= ¢ implies that wRw and so ¢ |= v but there is no
interpolant.

Theorem. Interpolant existence is 2ExpTime-complete.
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Why is X-bisimilarity hard?

P=po,...,Pn-1 € X used to encode counter up to 2" — 1 with
p; short for ‘the number encoded by p is /.
Let

@ p=anca
® b = po A A(Bu(Pi = OPi+1)
¥ -bisimilar models of ¢ and :

a b P1 P3

R < — 00— - .-

R R R R
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Upper bound: double exponential bisimilar models

When constructing finite models for modal logic, one can often
work with types t of subformulas of the given formula.
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Now, as we have to coordinate what happens on the R-chain,
work with

sets T of types satisfiable in X-bisimilar nodes

Ensure that for &1 € t € T thereis t/ € T withy € ¢/ € T’ and
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Upper bound: double exponential bisimilar models

When constructing finite models for modal logic, one can often
work with types t of subformulas of the given formula.

To construct model ensure that for all O € t there is t' with
¢ € t such that t, ¢’ coherent ({x | Oy € t} C t').

Now, as we have to coordinate what happens on the R-chain,
work with

sets T of types satisfiable in X-bisimilar nodes

Ensure that for &1 € t € T thereis t/ € T withy € ¢/ € T’ and
for all s € T exists s’ € T’ with s, s’ coherent.

Double exponentially many sets of sets of types 2EXPTIME
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wWK4 = K4 @ OOp — (pVv Op)

The logic of the derivative operator on topological spaces,
introduced by Esakia (based on Tarski/McKinsey):

@ d(X) is the set of all points x such that every
neighbourhood of x contains a point y € X with y # x.
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wWK4 = K4 @ OOp — (pVv Op)

The logic of the derivative operator on topological spaces,
introduced by Esakia (based on Tarski/McKinsey):

@ d(X) is the set of all points x such that every
neighbourhood of x contains a point y € X with y # x.

Frames for wK4 satisfy

XRyRz = x = zV xRz,

so are partial-orders of clusters of possibly irreflexive nodes.
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wK4 does not have CIP

Consider
p=200p AP

Then M, w |= 3p.¢ iff M |= 3y(wRyRw A =(wRw))
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wK4 does not have CIP

Consider
p=200p AP

Then M, w |= 3p.¢ iff M |= 3y(wRyRw A =(wRw))

Yv=q—00q

Then M, w = vq.¢ iff M = JywRyRw.
Hence wK4E ¢ — 1.
But there is no interpolant.
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