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Bisimulation based criterion for interpolant existence for

many modal logics;

Bisimulation based proof of CIP for many modal logics;
Computing (uniform) interpolants in exponential time for K;
Exponential lower bound for uniform interpolants for K;

Note on uniform interpolants for global consequence for K.
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Modal Logic

The language ML of modal logic:

0 =pi | T|-p|lpAp|Op

and Op = =O—pand L =—T.
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Modal Logic

The language ML of modal logic:

0 =pi | T|-p|lpAp|Op
and Op = =O—pand L =—T.

ML is interpreted in models M = (W, R, V), where (W, R) is a
Kripke frame with worlds W and an accessibility relation
R C W x W and Vis a valuation with V(p;) € W. Then
o M,w = p;iff we V(pj);
@ standard for Booleans, for instance M, w |= o A 9 if
M,w = pand M,w |= 9,
@ M,w = Cpifthereis v e W with wRv and M, v = .
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Modal Logic

We write ¢ = 1 (sometimes ¢ =k ) if for all pointed models
M, w:

M,w ¢ implies M, wkEqvy
If we restrict the class of Kripke frames to some class

corresponding to a modal logic L, then we write ¢ |=; ¢ if for all
models M = (W, R, V) with (W, R) |= L and worlds w:

M,w = implies M, w1

For instance,
@ L = S4 is the logic of all transitive and reflexive frames;

@ L = K4.3 is the logic of all linear frames.
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Interpolants in Modal Logic

A formula x is called a Craig interpolant of ¢, in L if
sig(x) < sig() N sig(¢) and

eELXFELY

L has the Craig interpolation property (CIP) if a Craig
interpolant of ¢, ¢» exists whenever ¢ =, 1.

4/26



A Criterion for Interpolant Existence for Compact
Modal logics

Let X be a finite signature.
Pointed models My, wy and Mo, w» are -indistinguishable,

My, wy =5 Mo, wo,

if My, wy = @ iff Mo, wa = ¢, for all formulas ¢ with sig(y) C X.
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A Criterion for Interpolant Existence for Compact
Modal logics

Let X be a finite signature.
Pointed models My, wy and Mo, w» are -indistinguishable,

My, wy =5 Mo, wo,

if My, wy = @ iff Mo, wa = ¢, for all formulas ¢ with sig(y) C X.

Theorem. The following conditions are equivalent for compact
=, any formulas ¢, 1) and ¥ = sig(y) N sig(v)):
@ there does not exist an interpolant of ¢, v in L;

@  and —) are satisfiable in X-indistinguishable models.
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Proof

“<" If p and —) are satisfiable in X-indistinguishable models,
then we have

o My, wy = ¢;
° Mo, Wy |= —);
e My, wy =5 Mo, wo.
Assume y is an interpolant in L of ¢, . Then from ¢ =/ x,

M, wy | x. By sig(x) C £, Mo, ws = x. This contradicts
Mo, wp = .
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Proof

“=" Assume no interpolant exists. Let

o™ = {x| ¢ ELx sig(x) € T}

By compactness ¢* [, 1. Take a model Mo, ws of o> U {—)}.
Let

th, = {x | sig(x) € =, Mz, w5 = x}

By compactness we find a model My, wy of t,E,z U{¢}. By
definition

My, wy =5 Mo, wo.

7126



Characterise =y: Bisimulations

Let X be a finite set of propositional atoms. Let
M; = (Wi, Ry, Vy) and M = (W2, Ry, Vo) be models.
Relation 8 C W; x W5 is a X_-bisimulation between M; and M-
if:
@ (wy,wp) € Bimplies wy € Vy(p) iff wo € Vo(p) forall p € ¥;
o If (wy,wp) € B and (wy, wy) € Ry, then there exists w; with
(wo, wy) € Ry and (w], wj) € (3; and vice versa.

0, * A~ 0,

R.l [,

[} .
\,j. . o~ DL
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Bisimulations

M, x; and Ms, xo are >-bisimilar, in symbols,
M, x1 ~x Mz, Xz,
if there exists a X-bisimulation g between M; and M, with

(x1,x2) € B.
Example

r‘.b P
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Bisimulation Characterisation

Theorem. For all finite outdegree/w-saturated models My, wy
and M., w» of the following are equivalent:

My, wy ~s Mo, wy  iff - My, wy =5 Mo, wp

The direction ‘=’ always holds.
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Criterion for Craig interpolant existence

We say that ¢ and v are satisfiable in X-bisimilar models if
there are pointed models

o M17W1 ):(;05
o Mo, ws =15

such that M1, Wy ~y Mg, Wo.
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Criterion for Craig interpolant existence

We say that ¢ and v are satisfiable in X-bisimilar models if
there are pointed models

° M17 Wi ): P;
o Mo, wz =9
such that M1, Wy ~xy Mg, Wo.

Theorem. The following conditions are equivalent for any L
determined by an FO-definable class of frames and formulas

¢, and ¥ = sig(p) Nsig(v):
@ there does not exist an interpolant of ¢, v in L

@ p and —) are satisfiable in X-bisimilar models.
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Criterion for CIP

Theorem. Let L be determined by an FO-definable class of
frames. Then L has CIP if for ¥ = sig(¢) N sig(z) the following
are equivalent

@ ¢ A ) is satisfiable

@ ¢ and —) are satisfiable in X-bisimilar models.
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Task. Construct from any ¥-bisimilar My, wy = ¢ and
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Criterion for CIP

Theorem. Let L be determined by an FO-definable class of
frames. Then L has CIP if for ¥ = sig(¢) N sig(z) the following
are equivalent

@ ¢ A ) is satisfiable

@ ¢ and —) are satisfiable in X-bisimilar models.

Task. Construct from any ¥-bisimilar My, wy = ¢ and
Mo, wo = =) asingle M,z = o A ).

Lots of research on algebraic reformulation (amalgamation of
algebras). We here discuss the ‘bisimulation product’ approach

introduced by Marx.
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Bisimulation products

Assume My = (Fy, V4) and M, = (F,, Vo) and B is a
Y -bisimulation between My and M, with (xq, X2) € 5.
The bisimulation product Mz = (Fg, V3) is defined by setting

Fs = (F1 x F2)i5

and by setting for the projections 7; : Fg — F;:
® Vs(p) = ;' (Vi(p)), for p € var(yp);

@ Vs(p) =3 ' (Va(p)), for p € var(y)
This is well defined for p € var(y) Nvar(vy).
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Bisimulation Products

The projections 7; : Mg — M; are then actually bisimulations
and so

® Mg, (x1,x2) = ¢ since My, x1 |= ¢;

o Mz, (x1,x2) = — since M, Xp = —p.
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Bisimulation Products

The projections 7; : Mg — M; are then actually bisimulations
and so

@ Mg, (x1,X2) | ¢ since My, X1 = ¢;

@ M;g, (x1,X2) =~ since Mz, xo = ).
Theorem. If L is determined by an FO-definable class of frames
closed under cartesian products and subframes, then L has
CIP.
This is the case for all L with frames defined by by universal
Horn sentences

VX(R(X) A -+ A R(X) — R(X))
Examples. K4, S4, S5, T.
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Counterexamples for closure under bisim products

Linear frames, transitive frames satisfying

VX,y(X:y\/R(X,y)\/R(y,X)),

are not preserved under bsimiluation products:

). ( VAN

(wv) (9,,v) (u,_v)

w tr

‘oul . V; L

(u( lvx)
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Uniform Interpolants

A formula x is called a uniform interpolant for ¢ and * C sig(¢)
if it is an interpolant for ¢, ) whenever

° v =1
@ sig(y) Nsig(v) € T
@ in particular, sig(x) C .
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Uniform Interpolants

A formula x is called a uniform interpolant for ¢ and X C sig(y)
if it is an interpolant for ¢, ) whenever

° v
@ sig(v) Nsig(y) € X
@ in particular, sig(x) C .

In contrast to Craig interpolants, uniform interpolants are
unique up to logical equivalence as they are the logically
strongest Craig interpolant.
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Uniform Interpolants

A formula x is called a uniform interpolant for ¢ and X C sig(y)
if it is an interpolant for ¢, ) whenever

° v
@ sig(v) Nsig(y) € X
@ in particular, sig(x) C .
In contrast to Craig interpolants, uniform interpolants are

unique up to logical equivalence as they are the logically
strongest Craig interpolant.

IX.p, X = sig(y) \ X, is a uniform interpolant in second-order
modal logic, but we cannot express it in modal logic.
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Uniform Interpolants and Bisimulation Quantifiers

For x C sig(y), let 3~x. be a formula with the truth condition
@ M,w = 3™x.¢ if exists M', w' with M, w ~gig(,)\x M', W'
and M, w' = .
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Uniform Interpolants and Bisimulation Quantifiers

For x C sig(y), let 3~x. be a formula with the truth condition
@ M,w = 3™x.¢ if exists M', w' with M, w ~gig(,)\x M', W'
and M, w' = .
It is called bisimulation quantifier and weakens second-order
quantification to quantification modulo a bisimulation. For
x = sig() \ sig(v):

—p AT X.pis sat iff there is no interpolant of ¢,
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Uniform Interpolants and Bisimulation Quantifiers

For x C sig(y), let 3~x. be a formula with the truth condition
@ M,w = 3™x.¢ if exists M', w' with M, w ~gig(,)\x M', W'
and M, w' = .
It is called bisimulation quantifier and weakens second-order
quantification to quantification modulo a bisimulation. For
x = sig(¢) \ sig():
—-p ANI™X.pissat iff thereis no interpolant of p,

Equivalently, 3~x.¢ is a uniform interpolant (if expressible):

@ I™X.p | v iff
@ there is an interpolant of ¢, v iff

o i |4 (by CIP).



Example for bisimulation quantifiers

Let
0 =<(pAX)AO(Pp A —X)

Then M, w |= 3x.¢ if w has at least two successors satisfying
p. This cannot be expressed in ML.

M, w = 3~ x.p if w has a successor satisfying p. This is
expressed by <p.
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Uniform Interpolants

Theorem =k has uniform interpolation. Uniform interpolants
can be constructed in exponential time.

The uniform interpolant for ¢ and X is equivalent to 3~X.y, for
x = sig(¢) \ L.
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Uniform Interpolants

Theorem =k has uniform interpolation. Uniform interpolants
can be constructed in exponential time.

The uniform interpolant for ¢ and X is equivalent to 3~X.y, for
x = sig(¢) \ L.

Example. ¢p is the uniform interpolant for &(p A x) A O(p A —x)
and ¥ = {p}
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Motivation for proof

For every propositional formula there exists an equivalent
formula in DNF. We can assume it takes the form
Y= \/ at;
iel
with each at; a satisfiable conjunction of literals.
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Motivation for proof

For every propositional formula there exists an equivalent
formula in DNF. We can assume it takes the form
Y= \/ ati
iel
with each at; a satisfiable conjunction of literals.
Then Ix.p = \/,., at;*, where at~* is obtained from at; by

dropping X.
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Motivation for proof

For every propositional formula there exists an equivalent
formula in DNF. We can assume it takes the form

Y= \/ ati

icl

with each at; a satisfiable conjunction of literals.
Then Ix.p = \/,., at;*, where at~* is obtained from at; by
dropping X.
Proof. Clearly 3x.¢ = /¢, at ™.
Conversely, assume v |= \/;, at™*. Take i € | with v |= at™™.

As at; is sat, we can expand v to v’ so that v’ |= at;. Hence
Vv E IX.p.
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Generalisation to ML

Let ¢ be a finite set of formulas. Set

vo= A\ oxro\/ x
XEP XEP

Formulas in disjunctive form are defined recursively by
=T |L|latAVD |V

with at a satisfiable conjunction of literals and ¢ formulas in

disjunctive form.
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Disjunctive Form

Theorem. [ten Cate et al. 2006] For every ML-formula one can
construct an equivalent ML-formula in disjunctive form in
exponential time.

Starting with negation normal form the crucial step is dealing
with conjunctions. Here use distributive law and for

OX1 A  AOXpADOXy A ADOXp = V{xiA N\ Xjli<n}
j<m
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Disjunctive Form

Theorem. [ten Cate et al. 2006] For every ML-formula one can
construct an equivalent ML-formula in disjunctive form in
exponential time.

Starting with negation normal form the crucial step is dealing

with conjunctions. Here use distributive law and for

OX1 A  AOXpADOXy A ADOXp = V{xiA N\ Xjli<n}
j<m

Now for ¢ in disjunctive form 3~X.o = ¢ * with o ~* obtained
from ¢ by dropping x.
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Exponential lower bound for uniform interpolants in K

Letx=xq,...,xpand p = p1, ..., pn. We define ¢ such that
3~X.p says that there is a successor world and

not all satisfiable types at of literals over p are realized in a

successor world.
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Exponential lower bound for uniform interpolants in K

Letx=xq,...,xpand p = p1, ..., pn. We define ¢ such that
3~X.p says that there is a successor world and

not all satisfiable types at of literals over p are realized in a
successor world.

Define
n

o= A 0x < 0x) A0\ (~(xi < p;)

i=1 i<n
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Exponential lower bound for uniform interpolants in K

Letx=xq,...,xpand p = p1, ..., pn. We define ¢ such that
3~X.p says that there is a successor world and

not all satisfiable types at of literals over p are realized in a
successor world.

Define
n

o= A 0x < 0x) A0\ (~(xi < p;)

i=1 i<n
So
OT A=(/\ ¢at)
at

is the uniform interpolant for ¢ and p.
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Exponential lower bound for uniform interpolant in K

Assume there is a uniform interpolant x with number of
subformulas < 2". Then

X =0T A=(/\ ¢at)
at

We can refute x in some M, w in which w has a successor. By
the finite model property proof for K there is M’, w with

o M wi x.

@ atleast one but < 2" successor nodes of w,
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Exponential lower bound for uniform interpolant in K

Assume there is a uniform interpolant x with number of
subformulas < 2". Then

X =0T A=(/\ ¢at)

at
We can refute x in some M, w in which w has a successor. By
the finite model property proof for K there is M’, w with
o M wi x.
@ at least one but < 2" successor nodes of w,

Then M’ does not realize some at in any successor of w. So
M, w = ST A =(A, <at). Contradiction.
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Size of Craig interpolants

It remains open whether one can prove an exponential lower
bound on the size of Craig interpolants, if the size of a formula
is the defined as the number of its subformulas.
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Size of Craig interpolants

It remains open whether one can prove an exponential lower
bound on the size of Craig interpolants, if the size of a formula
is the defined as the number of its subformulas.

If || is the number of symbols in ¢, we obtain an exponential
lower bound for Craig interpolants using, for instance,

Theorem [van Ditmarsch, lliev] In ML, V is exponentially more
succinct than <.
(Represent the witness formulas using abbreviations for V&.)
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Uniform interpolants for global consequence

Let » Fgio ¥ if
MEe = Mgy

We have seen that no uniform interpolant exists for

p=(A=B)AN(B—<CB), X={A}
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Uniform interpolants for global consequence

Let o Fgio ¢ if
MEe = Mgy

We have seen that no uniform interpolant exists for
o=(A—=B)AN(B—©B), ={A}

Theorem [Lutz and W, 2011] Uniform interpolant existence is
2ExpTime complete for the global consequence. If a uniform
interpolant exists, then there exists one of triple exponential
size.
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Uniform interpolants for global consequence

Let o Fgio ¢ if
MEe = Mgy

We have seen that no uniform interpolant exists for
o=(A—=B)AN(B—©B), ={A}

Theorem [Lutz and W, 2011] Uniform interpolant existence is
2ExpTime complete for the global consequence. If a uniform
interpolant exists, then there exists one of triple exponential
size.

Lots of work on computing uniform interpolants in description
logic using resolution-based methods (Schmidt, Koopmann and

others).
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