
Theory and Applications of Craig Interpolants

Frank Wolter, University of Liverpool

Telavi
September, 2023

Craig Interpolation

A Craig interpolant of φ,ψ is a formula χ in the shared

signature of φ and ψ with φ |= χ |= ψ.

The Craig interpolation property (that Craig interpolants exist

whenever φ |= ψ) was shown for FO by Craig in the 1950s.

State of the Art in 2008 in Special Issue of Synthese:

Feferman, Väänänen: mathematical logic, in particular abstract
model theory

Demopoulos, M Friedman: Philosophy of Science

Tinelli, de Lavalette: Verification and modular software
specification

D’Agostino: modal and non-classical logic

van Benthem: fragments of FO and other aspects

1 / 26

Craig Interpolation

Workshop series iPRA ,

https://ipra-2022.bitbucket.io mostly work in

computer science:

verification (interpolation in SAT, QBF, and many weak

theories)

automated deduction (interpolants from resolution and

other proofs in FO)

databases (interpolants for query reformulation, generating

plans for query execution)

knowledge representation (modular knowledge bases,

query reformulation)
2 / 26

https://ipra-2022.bitbucket.io

My plan

Interpolants in propositional logic: uniform interpolants,

Beth definability, size of interpolants.

Craig interpolants in FO: uniform interpolants, separation,

failure on finite models.

Craig interpolation property (CIP) in modal logic: proofs of

CIP using bisimulations, computing uniform interpolants.

What to do without CIP? (Mainly for modal logics.)

3 / 26

Basic Definitions

Given formulas φ,ψ, a formula χ is called a Craig interpolant of

φ,ψ if

φ |= χ and χ |= ψ;

sig(χ) ⊆ sig(φ) ∩ sig(ψ).

In propositional logic, sig() = atom().

In propositional logic, if φ |= ψ, then there exists Craig

interpolant of φ,ψ. This property is called the Craig

interpolation property (CIP).
Examples.

p ∧ q1 |= q2 → p. Craig interpolant: p.

p ∧ ¬p |= q. Craig interpolant: ⊥. (Having constants for
true/false is important. Without CIP does not hold for formulas in
disjoint signatures).

4 / 26

Basic Definitions

Given formulas φ,ψ, a formula χ is called a Craig interpolant of

φ,ψ if

φ |= χ and χ |= ψ;

sig(χ) ⊆ sig(φ) ∩ sig(ψ).

In propositional logic, sig() = atom().

In propositional logic, if φ |= ψ, then there exists Craig

interpolant of φ,ψ. This property is called the Craig

interpolation property (CIP).

Examples.

p ∧ q1 |= q2 → p. Craig interpolant: p.

p ∧ ¬p |= q. Craig interpolant: ⊥. (Having constants for
true/false is important. Without CIP does not hold for formulas in
disjoint signatures).

4 / 26

Basic Definitions

Given formulas φ,ψ, a formula χ is called a Craig interpolant of

φ,ψ if

φ |= χ and χ |= ψ;

sig(χ) ⊆ sig(φ) ∩ sig(ψ).

In propositional logic, sig() = atom().

In propositional logic, if φ |= ψ, then there exists Craig

interpolant of φ,ψ. This property is called the Craig

interpolation property (CIP).
Examples.

p ∧ q1 |= q2 → p.

Craig interpolant: p.

p ∧ ¬p |= q. Craig interpolant: ⊥. (Having constants for
true/false is important. Without CIP does not hold for formulas in
disjoint signatures).

4 / 26

Basic Definitions

Given formulas φ,ψ, a formula χ is called a Craig interpolant of

φ,ψ if

φ |= χ and χ |= ψ;

sig(χ) ⊆ sig(φ) ∩ sig(ψ).

In propositional logic, sig() = atom().

In propositional logic, if φ |= ψ, then there exists Craig

interpolant of φ,ψ. This property is called the Craig

interpolation property (CIP).
Examples.

p ∧ q1 |= q2 → p. Craig interpolant: p.

p ∧ ¬p |= q.

Craig interpolant: ⊥. (Having constants for
true/false is important. Without CIP does not hold for formulas in
disjoint signatures).

4 / 26

Basic Definitions

Given formulas φ,ψ, a formula χ is called a Craig interpolant of

φ,ψ if

φ |= χ and χ |= ψ;

sig(χ) ⊆ sig(φ) ∩ sig(ψ).

In propositional logic, sig() = atom().

In propositional logic, if φ |= ψ, then there exists Craig

interpolant of φ,ψ. This property is called the Craig

interpolation property (CIP).
Examples.

p ∧ q1 |= q2 → p. Craig interpolant: p.

p ∧ ¬p |= q. Craig interpolant: ⊥. (Having constants for
true/false is important. Without CIP does not hold for formulas in
disjoint signatures). 4 / 26

Proof

QBF (quantified boolean formulas) are an extension of

propositional logic with quantifiers over propositional atoms:

φ,ψ = p | true | ¬φ | φ ∧ ψ | ∃p.φ

Satisfaction of φ under a valuation v into {0,1}, v |= φ, is

defined inductively as usual with

v |= ∃p.φ if there is v ′ that coincides with v for all atoms

except possibly p such that v ′ |= φ.

The signature sig(φ) is defined inductively as expected with

sig(∃p.φ) = sig(φ) \ {p}.

5 / 26

Proof

QBF (quantified boolean formulas) are an extension of

propositional logic with quantifiers over propositional atoms:

φ,ψ = p | true | ¬φ | φ ∧ ψ | ∃p.φ

Satisfaction of φ under a valuation v into {0,1}, v |= φ, is

defined inductively as usual with

v |= ∃p.φ if there is v ′ that coincides with v for all atoms

except possibly p such that v ′ |= φ.

The signature sig(φ) is defined inductively as expected with

sig(∃p.φ) = sig(φ) \ {p}.

5 / 26

Proof

QBF (quantified boolean formulas) are an extension of

propositional logic with quantifiers over propositional atoms:

φ,ψ = p | true | ¬φ | φ ∧ ψ | ∃p.φ

Satisfaction of φ under a valuation v into {0,1}, v |= φ, is

defined inductively as usual with

v |= ∃p.φ if there is v ′ that coincides with v for all atoms

except possibly p such that v ′ |= φ.

The signature sig(φ) is defined inductively as expected with

sig(∃p.φ) = sig(φ) \ {p}.

5 / 26

Proof

Assume φ |= ψ.

Let p = sig(φ) \ sig(ψ) and consider the QBF ∃p.φ.

Then sig(∃p.φ) = sig(φ) ∩ sig(ψ) and φ |= ∃p.φ |= ψ.

So ∃p.φ is a Craig interpolant of φ,ψ, but in QBF and not in

propositional logic.

As propositional logic is functionally complete there exists a

propositional formula χ with sig(χ) = sig(∃p.φ) such that

χ ≡ ∃p.φ. χ is as required.

Note: we have also proved that QBF trivially has CIP.

6 / 26

Proof

Assume φ |= ψ.

Let p = sig(φ) \ sig(ψ) and consider the QBF ∃p.φ.

Then sig(∃p.φ) = sig(φ) ∩ sig(ψ) and φ |= ∃p.φ |= ψ.

So ∃p.φ is a Craig interpolant of φ,ψ, but in QBF and not in

propositional logic.

As propositional logic is functionally complete there exists a

propositional formula χ with sig(χ) = sig(∃p.φ) such that

χ ≡ ∃p.φ. χ is as required.

Note: we have also proved that QBF trivially has CIP.

6 / 26

Proof

Assume φ |= ψ.

Let p = sig(φ) \ sig(ψ) and consider the QBF ∃p.φ.

Then sig(∃p.φ) = sig(φ) ∩ sig(ψ) and φ |= ∃p.φ |= ψ.

So ∃p.φ is a Craig interpolant of φ,ψ, but in QBF and not in

propositional logic.

As propositional logic is functionally complete there exists a

propositional formula χ with sig(χ) = sig(∃p.φ) such that

χ ≡ ∃p.φ. χ is as required.

Note: we have also proved that QBF trivially has CIP.

6 / 26

A few observations

Instead of ∃p.φ we could have also used ∀q.ψ for

q = sig(ψ) \ sig(φ).

(The formula equivalent to) ∃p.φ is the logically strongest

interpolant (it entails all others) and ∀q.ψ is the logically

weakest interpolant (it is entailed by all others).

(The formula equivalent to) ∃p.φ does not depend on ψ,

but only on p. So it works for any ψ′ with φ |= ψ′ and

p ∩ sig(ψ′) = ∅. These are also known as uniform

interpolants.

Note that QBF trivially always has uniform interpolants.

7 / 26

A few observations

Instead of ∃p.φ we could have also used ∀q.ψ for

q = sig(ψ) \ sig(φ).

(The formula equivalent to) ∃p.φ is the logically strongest

interpolant (it entails all others) and ∀q.ψ is the logically

weakest interpolant (it is entailed by all others).

(The formula equivalent to) ∃p.φ does not depend on ψ,

but only on p. So it works for any ψ′ with φ |= ψ′ and

p ∩ sig(ψ′) = ∅. These are also known as uniform

interpolants.

Note that QBF trivially always has uniform interpolants.

7 / 26

A few observations

Instead of ∃p.φ we could have also used ∀q.ψ for

q = sig(ψ) \ sig(φ).

(The formula equivalent to) ∃p.φ is the logically strongest

interpolant (it entails all others) and ∀q.ψ is the logically

weakest interpolant (it is entailed by all others).

(The formula equivalent to) ∃p.φ does not depend on ψ,

but only on p. So it works for any ψ′ with φ |= ψ′ and

p ∩ sig(ψ′) = ∅. These are also known as uniform

interpolants.

Note that QBF trivially always has uniform interpolants.

7 / 26

Implicit/Explicit Definability

Let Σ be a set of atoms and p ̸∈ Σ.

p is implicitly Σ-definable under φ if for any valuations v1, v2

satisfying φ:

v1(q) = v2(q) for all q ∈ Σ implies v1(p) = v2(p)

p is explicitly Σ-definable under φ if there exists ψ with

sig(ψ) ⊆ Σ such that φ |= p ↔ ψ.

Clearly explicit definability implies explicit definability. The

converse is called projective Beth definability property (BDP).

8 / 26

Implicit/Explicit Definability

Let Σ be a set of atoms and p ̸∈ Σ.

p is implicitly Σ-definable under φ if for any valuations v1, v2

satisfying φ:

v1(q) = v2(q) for all q ∈ Σ implies v1(p) = v2(p)

p is explicitly Σ-definable under φ if there exists ψ with

sig(ψ) ⊆ Σ such that φ |= p ↔ ψ.

Clearly explicit definability implies explicit definability. The

converse is called projective Beth definability property (BDP).

8 / 26

Implicit/Explicit Definability

Let Σ be a set of atoms and p ̸∈ Σ.

p is implicitly Σ-definable under φ if for any valuations v1, v2

satisfying φ:

v1(q) = v2(q) for all q ∈ Σ implies v1(p) = v2(p)

p is explicitly Σ-definable under φ if there exists ψ with

sig(ψ) ⊆ Σ such that φ |= p ↔ ψ.

Clearly explicit definability implies explicit definability. The

converse is called projective Beth definability property (BDP).

8 / 26

“Craig” implies “Beth”

Assume p is implicitly Σ-definable under φ. Let φ1 and φ2 be

obtained from φ by replacing symbols q not in Σ by copies q1

and q2, respectively. Then implicit definability implies

φ1 ∧ φ2 |= p1 ↔ p2

Hence

φ1 ∧ p1 |= φ2 → p2

Any interpolant χ of φ1 ∧ p1, φ2 → p2 is a Σ-definition of p

under φ.

9 / 26

“Craig” implies “Beth”

Assume p is implicitly Σ-definable under φ. Let φ1 and φ2 be

obtained from φ by replacing symbols q not in Σ by copies q1

and q2, respectively. Then implicit definability implies

φ1 ∧ φ2 |= p1 ↔ p2

Hence

φ1 ∧ p1 |= φ2 → p2

Any interpolant χ of φ1 ∧ p1, φ2 → p2 is a Σ-definition of p

under φ.

9 / 26

How large are Craig interpolants?

(Note: Define the size of a formula as the number of its

subformulas. So use the representation of a formula as a DAG,

not a tree.)

Closely linked to open questions in complexity theory (lots of

nice papers by Mundici in the 1980s):

It is hard to prove that interpolants are small (poly-size):

If interpolants have poly-size circuit descriptions, then every

problem in NP ∩ coNP has polynomial size circuits.

It is hard to prove that interpolants are large (not poly-size):

If there are no poly-size circuits computing interpolants, then

not every problem in NP has polynomial size circuits.

More is known if we ask for ∧,∨-interpolants.

10 / 26

How large are Craig interpolants?

(Note: Define the size of a formula as the number of its

subformulas. So use the representation of a formula as a DAG,

not a tree.)

Closely linked to open questions in complexity theory (lots of

nice papers by Mundici in the 1980s):

It is hard to prove that interpolants are small (poly-size):

If interpolants have poly-size circuit descriptions, then every

problem in NP ∩ coNP has polynomial size circuits.

It is hard to prove that interpolants are large (not poly-size):

If there are no poly-size circuits computing interpolants, then

not every problem in NP has polynomial size circuits.

More is known if we ask for ∧,∨-interpolants.

10 / 26

How large are Craig interpolants?

(Note: Define the size of a formula as the number of its

subformulas. So use the representation of a formula as a DAG,

not a tree.)

Closely linked to open questions in complexity theory (lots of

nice papers by Mundici in the 1980s):

It is hard to prove that interpolants are small (poly-size):

If interpolants have poly-size circuit descriptions, then every

problem in NP ∩ coNP has polynomial size circuits.

It is hard to prove that interpolants are large (not poly-size):

If there are no poly-size circuits computing interpolants, then

not every problem in NP has polynomial size circuits.

More is known if we ask for ∧,∨-interpolants.

10 / 26

How large are Craig interpolants?

(Note: Define the size of a formula as the number of its

subformulas. So use the representation of a formula as a DAG,

not a tree.)

Closely linked to open questions in complexity theory (lots of

nice papers by Mundici in the 1980s):

It is hard to prove that interpolants are small (poly-size):

If interpolants have poly-size circuit descriptions, then every

problem in NP ∩ coNP has polynomial size circuits.

It is hard to prove that interpolants are large (not poly-size):

If there are no poly-size circuits computing interpolants, then

not every problem in NP has polynomial size circuits.

More is known if we ask for ∧,∨-interpolants.

10 / 26

How large are Craig interpolants?

(Note: Define the size of a formula as the number of its

subformulas. So use the representation of a formula as a DAG,

not a tree.)

Closely linked to open questions in complexity theory (lots of

nice papers by Mundici in the 1980s):

It is hard to prove that interpolants are small (poly-size):

If interpolants have poly-size circuit descriptions, then every

problem in NP ∩ coNP has polynomial size circuits.

It is hard to prove that interpolants are large (not poly-size):

If there are no poly-size circuits computing interpolants, then

not every problem in NP has polynomial size circuits.

More is known if we ask for ∧,∨-interpolants.
10 / 26

∧,∨-Interpolants

Rather deep results on the size of interpolants are known,

however, if we consider interpolants in the language with

∧, ∨, ⊤, ⊥

simply called ∧,∨-interpolants.

Makes sense only if we know already that the interpolants are

monotone (if a truth value moves from 0 to 1, the truth value of

the formula cannot move from 1 to 0).

∧, ∨, ⊤, ⊥ are functionally complete for monotone functions.

11 / 26

No poly-size ∧,∨-uniform interpolants

Idea: define formula ∃q.Ck
n that says that a size n graph

encoded by atoms p = pij , i , j ∈ [n] has a clique of size k .

∃q.Ck
n is monotone, but

Theorem (Razborov 1985). No ∧,∨-formula equivalent to

∃q.Ck
n is of polynomial size.

A few more details...

12 / 26

No poly-size ∧,∨-uniform interpolants
Encode undirected graphs with n nodes [n] = {0,1, . . . ,n − 1} using
atoms p = pij , i , j ∈ [n], indicating an edge between i and j .
Using ‘helper symbols’ q = qiv , i ∈ [n], v ∈ [k], define Ck

n such that
∃q.Ck

n says ‘graph contains a k -clique’:

qiv says that i is the v th clique member, so we add∨
i∈[n]

qiv , for v ∈ [k]

(some i must be the v th clique member) and

¬qiv ∨ ¬qi′v , for i ̸= i ′

(not two i , i ′ can be the v th clique member) and

(qiv ∧ qi′v ′) → pi,i′

(i , i ′ are not both in clique if (i , i ′) ̸∈ E .)

13 / 26

No poly-size ∧,∨-uniform interpolants
Encode undirected graphs with n nodes [n] = {0,1, . . . ,n − 1} using
atoms p = pij , i , j ∈ [n], indicating an edge between i and j .
Using ‘helper symbols’ q = qiv , i ∈ [n], v ∈ [k], define Ck

n such that
∃q.Ck

n says ‘graph contains a k -clique’:

qiv says that i is the v th clique member, so we add∨
i∈[n]

qiv , for v ∈ [k]

(some i must be the v th clique member) and

¬qiv ∨ ¬qi′v , for i ̸= i ′

(not two i , i ′ can be the v th clique member) and

(qiv ∧ qi′v ′) → pi,i′

(i , i ′ are not both in clique if (i , i ′) ̸∈ E .)
13 / 26

No poly-size ∧,∨ Craig interpolants

Let ∃q.Ck
n say that graph encoded by p contains a k -clique.

Let ∃r.Dk
n say graph is k -colorable using ‘helper symbols’ r = rij ,

i ∈ [k], j ∈ [n] (rij says that j has color i). Then

Ck
n |= ¬Dk−1

n

Hence there is a ∧,∨-interpolant (using only the atoms p) which

separates the graphs with a k -clique from the (k − 1)-colorable

graphs.

Theorem (Alon and Boppana 1987). No ∧,∨-interpolant is of

poly-size.

14 / 26

No poly-size ∧,∨ Craig interpolants

Let ∃q.Ck
n say that graph encoded by p contains a k -clique.

Let ∃r.Dk
n say graph is k -colorable using ‘helper symbols’ r = rij ,

i ∈ [k], j ∈ [n] (rij says that j has color i). Then

Ck
n |= ¬Dk−1

n

Hence there is a ∧,∨-interpolant (using only the atoms p) which

separates the graphs with a k -clique from the (k − 1)-colorable

graphs.

Theorem (Alon and Boppana 1987). No ∧,∨-interpolant is of

poly-size.

14 / 26

No poly-size ∧,∨ Craig interpolants

Let ∃q.Ck
n say that graph encoded by p contains a k -clique.

Let ∃r.Dk
n say graph is k -colorable using ‘helper symbols’ r = rij ,

i ∈ [k], j ∈ [n] (rij says that j has color i). Then

Ck
n |= ¬Dk−1

n

Hence there is a ∧,∨-interpolant (using only the atoms p) which

separates the graphs with a k -clique from the (k − 1)-colorable

graphs.

Theorem (Alon and Boppana 1987). No ∧,∨-interpolant is of

poly-size.

14 / 26

Interpolants as tool for lower bounds of proof length

Proof system that admits construction of interpolants from

proofs in poly- time has feasible interpolation (Krajicek 1997).

Feasible interp. and large interpolants imply long proofs

Theorem. Resolution has feasible interpolation, even for

∧,∨-interpolants.

Corollary. Ck
n ,D

k−1
n has no polynomially bounded resolution

refutation. (Otherwise we obtain a polysize ∧,∨-interpolant).

Remark 1. For Frege systems feasible interpolation is open

(depends of cryptographic assumptions).

Remark 2. Relevance of feasible interpolation for model

checking first observed by McMillan 2005.

15 / 26

Interpolants as tool for lower bounds of proof length

Proof system that admits construction of interpolants from

proofs in poly- time has feasible interpolation (Krajicek 1997).

Feasible interp. and large interpolants imply long proofs

Theorem. Resolution has feasible interpolation, even for

∧,∨-interpolants.

Corollary. Ck
n ,D

k−1
n has no polynomially bounded resolution

refutation. (Otherwise we obtain a polysize ∧,∨-interpolant).

Remark 1. For Frege systems feasible interpolation is open

(depends of cryptographic assumptions).

Remark 2. Relevance of feasible interpolation for model

checking first observed by McMillan 2005.

15 / 26

Interpolants as tool for lower bounds of proof length

Proof system that admits construction of interpolants from

proofs in poly- time has feasible interpolation (Krajicek 1997).

Feasible interp. and large interpolants imply long proofs

Theorem. Resolution has feasible interpolation, even for

∧,∨-interpolants.

Corollary. Ck
n ,D

k−1
n has no polynomially bounded resolution

refutation. (Otherwise we obtain a polysize ∧,∨-interpolant).

Remark 1. For Frege systems feasible interpolation is open

(depends of cryptographic assumptions).

Remark 2. Relevance of feasible interpolation for model

checking first observed by McMillan 2005.

15 / 26

Interpolants as tool for lower bounds of proof length

Proof system that admits construction of interpolants from

proofs in poly- time has feasible interpolation (Krajicek 1997).

Feasible interp. and large interpolants imply long proofs

Theorem. Resolution has feasible interpolation, even for

∧,∨-interpolants.

Corollary. Ck
n ,D

k−1
n has no polynomially bounded resolution

refutation. (Otherwise we obtain a polysize ∧,∨-interpolant).

Remark 1. For Frege systems feasible interpolation is open

(depends of cryptographic assumptions).

Remark 2. Relevance of feasible interpolation for model

checking first observed by McMillan 2005.
15 / 26

First-order Logic: Craig’s Theorem

In the 1950s, Craig proved that FO has CIP: for any

FO-formulas φ,ψ with φ |= ψ there exists a formula χ with

sig(χ) ⊆ sig(φ) ∩ sig(ψ)

such that φ |= χ and χ |= ψ. Here sig(χ) is the set of relation

and function symbols in χ.

According to (Craig 2008), Craig first did not find this result very

interesting without additional constraints on the shape of χ.

According to (van Benthem 2008), Craig was even not

interested in Craig interpolation first, but in uniform

interpolation.
16 / 26

Craig’s Motivation from Philosophy (I guess)

Two assumptions (possibly unrealistic):

A significant part of physics can be formulated as a finitely

axiomatized first-order theory T .

The signature S of T can be partitioned into two sets

Stheory and Sobs of theoretical and observational terms.

Problem: Can we finitely axiomatize the observational content

of T without using theoretical terms?

In other words, does there exist a finite set Tobs such that

sig(Tobs) ⊆ Sobs;

T |= Tobs;

If T |= φ and sig(φ) ∩ Stheory = ∅, then Tobs |= φ.

17 / 26

Craig’s Motivation from Philosophy (I guess)

Two assumptions (possibly unrealistic):

A significant part of physics can be formulated as a finitely

axiomatized first-order theory T .

The signature S of T can be partitioned into two sets

Stheory and Sobs of theoretical and observational terms.

Problem: Can we finitely axiomatize the observational content

of T without using theoretical terms?

In other words, does there exist a finite set Tobs such that

sig(Tobs) ⊆ Sobs;

T |= Tobs;

If T |= φ and sig(φ) ∩ Stheory = ∅, then Tobs |= φ.

17 / 26

Craig’s Motivation from Philosophy (I guess)

Two assumptions (possibly unrealistic):

A significant part of physics can be formulated as a finitely

axiomatized first-order theory T .

The signature S of T can be partitioned into two sets

Stheory and Sobs of theoretical and observational terms.

Problem: Can we finitely axiomatize the observational content

of T without using theoretical terms?

In other words, does there exist a finite set Tobs such that

sig(Tobs) ⊆ Sobs;

T |= Tobs;

If T |= φ and sig(φ) ∩ Stheory = ∅, then Tobs |= φ.
17 / 26

Answer: No

Let T be axiomatized as

∀x A(x) → B(x), ∀x B(x) → ∃y (r(x , y) ∧ B(y))

and Stheory = {B}, Sobs = {r ,A}. There does not exist a Tobs

with the required properties because it would have to imply for

all n:

Tobs |= A(x0) → ∃x1 · · · ∃xn r(x0, x1) ∧ · · · r(xn−1, xn)

18 / 26

Uniform Interpolants

A formula χ is called a uniform interpolant for φ and Σ ⊆ sig(φ)

if it is an interpolant for φ,ψ whenever

φ |= ψ;

sig(φ) ∩ sig(ψ) ⊆ Σ;

in particular, sig(χ) ⊆ Σ.

A logic for which uniform interpolants exist for all φ,Σ has

uniform interpolation.

19 / 26

Uniform Interpolation

Theorem. FO does not have uniform interpolation.

Theorem. Second-order logic (SO) has uniform interpolation.

Proof. Given φ and Σ, take ∃X.φ were X = sig(φ) \ Σ.

Lots of research on uniform interpolants in knowledge

representation and reasoning (KR) for decidable fragments of

FO.

20 / 26

Uniform Interpolation

Theorem. FO does not have uniform interpolation.

Theorem. Second-order logic (SO) has uniform interpolation.

Proof. Given φ and Σ, take ∃X.φ were X = sig(φ) \ Σ.

Lots of research on uniform interpolants in knowledge

representation and reasoning (KR) for decidable fragments of

FO.

20 / 26

Uniform Interpolation

Theorem. FO does not have uniform interpolation.

Theorem. Second-order logic (SO) has uniform interpolation.

Proof. Given φ and Σ, take ∃X.φ were X = sig(φ) \ Σ.

Lots of research on uniform interpolants in knowledge

representation and reasoning (KR) for decidable fragments of

FO.

20 / 26

Intermezzo: KR and uniform interpolants

In KR, uniform interpolation of interest because theories T can

be very large (more than 300 000 axioms) but applications

often require its content for a small signature Σ only.

Example. T about medical terms, application about infectious

diseases. Compute uniform interpolant of T for Σ the set of

terms relevant for infectious diseases.

Typical KR languages do not enjoy uniform interpolation, but in

practice they still mostly exist. So work on deciding whether

uniform interpolants exists and computing it if it does.

T = {2u(A → B),2u(B → 3RB)}

21 / 26

Intermezzo: KR and uniform interpolants

In KR, uniform interpolation of interest because theories T can

be very large (more than 300 000 axioms) but applications

often require its content for a small signature Σ only.

Example. T about medical terms, application about infectious

diseases. Compute uniform interpolant of T for Σ the set of

terms relevant for infectious diseases.

Typical KR languages do not enjoy uniform interpolation, but in

practice they still mostly exist. So work on deciding whether

uniform interpolants exists and computing it if it does.

T = {2u(A → B),2u(B → 3RB)}

21 / 26

Intermezzo: KR and uniform interpolants

In KR, uniform interpolation of interest because theories T can

be very large (more than 300 000 axioms) but applications

often require its content for a small signature Σ only.

Example. T about medical terms, application about infectious

diseases. Compute uniform interpolant of T for Σ the set of

terms relevant for infectious diseases.

Typical KR languages do not enjoy uniform interpolation, but in

practice they still mostly exist. So work on deciding whether

uniform interpolants exists and computing it if it does.

T = {2u(A → B),2u(B → 3RB)}

21 / 26

Craig Interpolation as Separation

A class K of models is called elementary if it is the class of

models of an FO-sentence φ.

K is called pseudo-elementary if it is the class of models of

a second-order sentence ∃S⃗.φ, where φ is a FO-sentence.

(In order words: K is the class of reducts without

S⃗-interpretations of models of φ.)

Example: the class of models M = (D,AM , rm) in which for

each A-node d there is a sequence d = d0rMd1rMd2 · · · is

pseudo-elementary and not elementary.

22 / 26

Craig Interpolation as Separation

A class K of models is called elementary if it is the class of

models of an FO-sentence φ.

K is called pseudo-elementary if it is the class of models of

a second-order sentence ∃S⃗.φ, where φ is a FO-sentence.

(In order words: K is the class of reducts without

S⃗-interpretations of models of φ.)

Example: the class of models M = (D,AM , rm) in which for

each A-node d there is a sequence d = d0rMd1rMd2 · · · is

pseudo-elementary and not elementary.

22 / 26

Craig Interpolation as Separation

Craig Interpolation is equivalent to: for any disjoint

pseudo-elementary classes E+ and E− there exists a

separating elementary class S, i.e.,

E+ ⊆ S, E− ∩ S = ∅

23 / 26

Craig Interpolation as Separation

To prove the equivalence, assume

E+ = Mod(∃X1.φ1), E− = Mod(∃X2.φ2)

and E+ ∩ E− = ∅. Then

|= ∃X1.φ1 → ¬∃X2.φ2

which is equivalent to (assuming X1,X2 disjoint sets of relation

symbols)

|= φ1 → ¬φ2

Take a Craig interpolant ψ for φ1,¬φ2. Then

E+ ⊆ Mod(ψ), Mod(ψ) ∩ E− = ∅
24 / 26

Craig interpolation as FO = Σ1
1 ∩ Π1

1

In words: if

φ ≡ ∃X1.ψ1 and

φ ≡ ∀X2.ψ2

with ψ1, ψ2 FO

then φ is FO.

Proof. Direct consequence of above for E− complement of E+.

25 / 26

FO on finite models does not have CIP

Let φ<,A state

< is a strict linear order on the domain, A(x) holds at its

first node and then at exactly every second node, but not in

its final node. If M |= φ<,A, then |M| is even.

Let φ<′,A′ state

<′ is a strict linear order on the domain, A′(x) holds at its

first node and then at every second node, and in its final

node. If M |= φ<′,A′ , then |M| is odd.

Hence φ<,A |= ¬φ<′,A′ . There exists no Craig interpolant since

that would have to be true in exactly all models with an even

number of points.

26 / 26

FO on finite models does not have CIP

Let φ<,A state

< is a strict linear order on the domain, A(x) holds at its

first node and then at exactly every second node, but not in

its final node. If M |= φ<,A, then |M| is even.

Let φ<′,A′ state

<′ is a strict linear order on the domain, A′(x) holds at its

first node and then at every second node, and in its final

node. If M |= φ<′,A′ , then |M| is odd.

Hence φ<,A |= ¬φ<′,A′ . There exists no Craig interpolant since

that would have to be true in exactly all models with an even

number of points.

26 / 26

FO on finite models does not have CIP

Let φ<,A state

< is a strict linear order on the domain, A(x) holds at its

first node and then at exactly every second node, but not in

its final node. If M |= φ<,A, then |M| is even.

Let φ<′,A′ state

<′ is a strict linear order on the domain, A′(x) holds at its

first node and then at every second node, and in its final

node. If M |= φ<′,A′ , then |M| is odd.

Hence φ<,A |= ¬φ<′,A′ . There exists no Craig interpolant since

that would have to be true in exactly all models with an even

number of points.
26 / 26

