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1 Introduction
Presheaf categories encompass many mathematical structures and can be used to describe a
large variety of categories of graphs, such as multigraphs, reflexive graphs, symmetric graphs,
undirected graphs, hypergraphs [9, Example 43]. Presheaf categories are toposes [4], which
are categories that can be studied for their internal logic [5].

However, certain categories of graphs, such as simple graphs, are not toposes and thus
not presheaves. Simple graphs nonetheless form a quasitopos [10], which is a generalisation
of the notion of a topos [11]. We have recently shown that also simple fuzzy graphs form
a quasitopos [9], extending the method used in [10]. In the present abstract, we continue
this line of work and prove that partially simple graphs form a quasitopos. By partially
simple graph, we mean a graph with two sets of edges, one where parallel edges are allowed
and one where they are not. The method employed for those proofs uses the notions of a
topology on a topos, of density, and of separated elements [4, V.1]. We use the fact that the
elements that are separated with respect to a topology form a full subcategory which is a
quasitopos [3, Thm. 10.1].

Knowing when a category is a quasitopos is relevant in graph rewriting, for instance.
Recently, we have introduced the notion of a fuzzy presheaf, which consists of a presheaf
A ∈ SetIop

, where every element a ∈ A(i) for all i ∈ I has a membership value inside a
poset (L(i),⩽). This includes, for instance, the notion of weighted graphs. Given a small
category I, we have shown that when each (L(i),⩽) is a complete Heyting algebra, then the
category of fuzzy presheaves is a quasitopos [9]. Having a fuzzy structure lends itself well
for implementing relabelling of graphs [7, 8]. Furthermore, quasitoposes have been proposed
as a natural setting for non-linear rewriting [1]. They moreover provide a framework to
compare and unify algebraic graph rewriting formalisms [8, Theorem 73]. Being in an (rm-
adhesive) quasitopos also ensures that certain termination methods can be applied [6]. More
theoretically, a logic similar to intuitionistic logic can be studied inside quasitoposes [11,
Chapter 3].
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We recall briefly the definitions of a topos and a quasitopos. A cate-
gory is a topos if it admits all finite limits, has a subobject classifier, and
is cartesian closed. As a consequence of that, a topos also admits all finite
colimits and is locally cartesian closed. A quasitopos is required to have
all the aforementioned properties cited, with the sole difference of having
only a regular-subobject classifier Ω. This means that for all regular sub-
object m : A ↣ B there is a characteristic morphism χA : B → Ω such
that the square on the right is a pullback.

2 Logic and topologies
The category Graph consists of (multi)graphs and graph homomorphisms, and is the presheaf
category SetIop

for Iop = E Vs
t . A graph G consists of an edge set G(E), a vertex

set G(V ), and a source and a target function G(s), G(t) : G(E) → G(V ). In the same
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vein, we define BiColGraph, the category of graphs with edges partitioned into two sets. We
visualise this partition by using two colours: blue and red. It is the presheaf category for
Iop = E V E′s

t t′
s′

. The category Graph has the classifying object Ω described in
(1), see e.g. [10]. Analogously, BiColGraph has Ω described in (2).
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Let us recall the internal logic that lies in a topos [2, 5]. True : 1 → Ω is part of the
definition of a subobject classifier. Then, the logical connectives False : 1 → Ω, negation
¬ : Ω → Ω, conjunction, implication and disjunction ∧, ⇒, ∨ : Ω × Ω → Ω can all be defined
as characteristic functions of some morphisms, see e.g. [2, p.136-139].
Lemma 1. For the subobject classifier Ω in Graph, its edge
set Ω(E) and its vertex set Ω(V ) are Heyting algebras. Sim-
ilarly, for the subobject classifier Ω in BiColGraph, its edge
sets Ω(E) and Ω(E′), and its vertex set Ω(V ) are Heyting
algebras, and for Ω(E) and Ω(V ) they are the same as in
Graph. Their Hesse diagrams are shown on the right.
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Vigna [10] observed that the logical conjunction coincides with the meet of those Heyting
algebras. This is also true for the other logical connectives in both Graph and BiColGraph.
This in fact follows from a more general observation. The definition of Ω(i ∈ I) in a presheaf
SetIop

is the class of all subobjects of the presheaf y(i) where y is the Yoneda embedding.
Moreover, the class of subobjects of a presheaf form a Heyting algebra. The description of
this Heyting algebra is given in the proof of [4, I.8 Prop. 5] and coincide what the ones given
above in the case of Graph and BiColGraph.

A (Lawvere-Tierney) topology on a topos is a morphism j : Ω → Ω satisfying axioms
(1)-(3) below. A topology j induces a closure operator on the subobjects: given A0 ↣ A,
then A0 ↣ A is defined by χA0

..= j ◦ χA0 .

(1) j ◦ True = True, (2) j ◦ j = j, (3) j ◦ ∧ = ∧ ◦ (j × j).

There are exactly 4 topologies on Graph [10]. For each of them, we describe the closure
G of a subgraph G ⊆ H. The closure w.r.t. the discrete topology, j = idΩ, adds nothing:
G = G. The closure w.r.t. the closed topology for st, j = − ∨ st [5, p. 197], adds all vertices:
G = G∪H(V ). The closure w.r.t. the double negation topology, j = ¬¬ , adds all edges with
source and target already in G: G = G ∪

(
H(E) ∩ (V (G) × V (G))

)
. The closure w.r.t. the

trivial topology, j = TrueΩ ..= Ω !−→1 True−−→Ω, adds everything: G = H. Analogously, we obtain
the next lemma.

Lemma 2. There are 8 topologies in BiColGraph:

1. j1 = idΩ the discrete topology,
2. j2 is ¬¬ on E and id on E′,
3. j3 is id on E and ¬¬ on E′,
4. j4 = ¬¬ (on E and on E′),

5. j5 is − ∨ st on E and − ∨ s′t′ on E′,
6. j6 is − ∨ st on E and trivial on E′,
7. j7 is trivial on E and − ∨ s′t′ on E′,
8. j8 = TrueΩ is trivial (on E and on E′).

Proof. In BiColGraph, the terminal object 1 is · , and the image of True : 1 → Ω is
11 1′ . Because of (1), a topology j : Ω → Ω on BiColGraph must leave the image of

True untouched, i.e., j sends the vertex 1 and the edges 1 and 1′ to themselves. For the
vertex 0 ∈ Ω(V ), there are two choices.

The first choice is j(0) = 0. Then the edges 0, 0′, s, s′, t, t′ have no other choice than
to be sent to themselves, because their source and target are fixed. Only the edges st and
s′t′ remain to be mapped, each having two possible choices: for j(st) either st or 1, and for
j(s′t′) either s′t′ or 1′. That gives us the 4 topologies j1, j2, j3 and j4.
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The second choice is j(0) = 1. Then the edge 0 can be mapped to either st or 1. Similarly,
the edge 0′ can be mapped to either s′t′ or 1′. We will see that this determines the mapping
of the rest of the edges. That gives us the remaining 4 topologies j5, j6, j7 and j8. Let us
do the case of j5. We have j5(0) = st and j5(0′) = s′t′. Because j5 is idempotent by (2), st
and s′t′ must then be fixed points of j5, i.e., j5(st) = st and j5(s′t′) = s′t′. In general we
have that a ⩽ b in Ω implies j5(a) ⩽ j5(b) because by (2): j(a) = j(a ∧ b) = j(a) ∧ j(b). In
our case, we have 0 < s, t < st and both 0 and st have the same image. Therefore, s and
t must also have the same image, i.e., j5(s) = j5(t) = st. Similarly, j5(s′) = j5(t′) = s′t′.
This means that j5 is the topology closed for st and closed for s′t′.

Given a topology j on a topos, there is a notion of j-separated elements
and the result that j-separated elements form a full subcategory which
is a quasitopos [3, Thm. 10.1]. Let us recall the definitions needed. A
subobject A0 ↣ A is said to be j-dense if A0 = A [4, p. 221]. An
object B is called j-separated if for every j-dense subobject m : A0 ↣ A
and every morphism f : A0 → B there exists at most one factorisation
g : A → B of f through m [4, p. 223].
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In the case of Graph and of j = ¬¬ , having a ¬¬-dense subgraph A0 ⊆ A means that A0
contains all the vertices of A. Hence, a graph homomorphism f : A0 → B fixes the image
of all the vertices of A. The number of g : A → B factorising f then depends on how many
choices each edge of A has inside B. Therefore, B is ¬¬-separated if and only if B has no
parallel edges, i.e., is a simple graph (with loops allowed). By [3, Thm. 10.1], we thus have
that simple graphs form a quasitopos.

In BiColGraph, we obtain similar results using the topologies described in Lemma 2. B
is j2-separated if it has no parallel blue edges and is j3-separated if it has no parallel red
edges. Both cases are symmetric, as we can swap the colours. Such graphs, for which one of
the set of edges is simple, we call partially simple bicoloured graphs. Using again that
separated objects form a full subcategory which is a quasitopos [3, Thm. 10.1], we have the
following.

Theorem 3. Partially simple bicoloured graphs, i.e., bicoloured graphs where no parallel
edges are allowed for only one edge colour, form a quasitopos.

3 Conclusion
There are several directions for future work. We want to explore more topologies in other
presheaf categories, such as simplicial sets; as well in other non-presheaf toposes. By con-
sidering the subcategories of the separated elements of these topologies, more potentially
useful quasitoposes may arise.

This process of obtain new quasitoposes can also be done when starting from a quasitopos
(instead of starting from a topos). Indeed, we recalled the definition of a topology on a topos,
but there is also a slightly more general definition of a topology on a quasitopos [11, 41.1].
We used that definition to prove that the category of simple fuzzy graphs is a quasitopos [9,
Lemma 53]. It might moreover be the case that after having considered one topology and
having restricted ourselves to the separated elements, a new interesting topology might exist
on the quasitopos so obtained, motivating a re-separation for obtaining a second quasitopos.

Finally, one may wonder if the internal logic of the quasitopos obtained via separation
can be deduced from the internal logic of the (quasi)topos that we started with.
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