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One of the usual assumptions of multi-agent epistemic logic is that groups of agents are given exten-
sionally as sets of agents, membership in groups is common knowledge among all agents, and change in
membership implies change of identity of a group. This is not how we usually think of groups. We are
commonly reasoning in various contexts without knowing groups’ extensions—we might routinely refer
to groups such as “bot accounts”, “democrats”, or “correct processes”—and we do not settle for reducing
groups to their extensions either, as clearly they can change across the state space of a system, or possible
states of the world. Epistemic logics of intensional groups lift the assumptions above, by seeing groups
as given to us intensionally by a common property that may change its extension from world to world.

In their seminal work [6, 5], Grove and Halpern introduced a multi-agent epistemic logic where
groups are labeled by abstract names whose extensions can vary from world to world. The language
contains two types of modalities: Enϕ means that “everyone named n knows that ϕ ”, and Snϕ means
that “someone named n knows that ϕ ”. They further consider a natural extension of the basic framework
where names are replaced by formulas expressing structured group-defining concepts. Motivated mainly
by applications such as dynamic networks of processes, another framework where the agent set can vary
from state to state, have been developed in a form of term-modal logic. Introduced by [4], it builds upon
first order logic, indexing modalities by terms that can be quantified over. Epistemic logic with names
of [6] was in a sense seminal to the development of term-modal logic, and can be seen as its simple
decidable fragment (a closely related language of implicitly quantified modal logic was studied in [10]).

Grove and Halpern’s work is enjoying a recent resurgence of interest in the epistemic logic commu-
nity. [2] considers expansions with non-rigid versions of common and distributed knowledge. Humml
and Schröder [8] generalize Grove and Halpern’s approach to structured names represented by formulas
defining group membership, including e.g. formulas of the description logic ALC. Their abstract-group
epistemic logic (AGEL) contains a common knowledge modality as the only modality and, unlike in
[2, 6], their group names are rigid.

In this paper, we adopt the perspective that both “everyone labeled a knows” and “someone labeled
a knows” modalities form a minimal epistemic language for group knowledge where groups are under-
stood intensionally, and that their labels reflect their structured nature. We use languages built on top of
classical propositional language containing modalities [a],〈a] indexed by elements of an algebra of a
given signature of interest. As the main contribution, we set up a general framework for epistemic logics
for structured groups in terms of relational semantics involving an algebra of group labels to index (sets
of) relations in each world, show how some related logics can be modelled in such a way, generalize
relational frames in terms of two-sorted algebras involving propositions and groups, develop an alge-
braic duality and prove completeness of the minimal logic. The semantics can be seen as an interesting
version of monotone neighborhood frame semantics. We further discuss several examples of algebraic
signatures giving rise to interesting and useful variants of group structure.
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Frame semantics for structured groups Let Σ be an algebraic similarity type. A Σ-algebra is any
X = (X ,{oX | o ∈ Σ}). A relational Σ-frame is F = (W,R,G), where W ̸= /0 (“worlds”); R ⊆ 2W×W

(“agent relations”—the set of available agents); and G is a Σ-algebra with universe G ⊆ (2R)W (“group
intensions”). Sets f (w) ⊆ R corresponding to sets of agents can be seen as intensions of properties of
agents, representing the set of agents that possess the given property in w. Crucially, properties may
change their extensions from world to world.

Let Pr,Gr be denumerable sets of propositional variables and group variables respectively. For each
Σ, the Σ-language is two-sorted, the set of Σ-terms T mΣ, and the set of Σ-formulas FmΣ are defined by
the following grammar:

T mΣ : α := a ∈ Gr | o(α1, . . . ,αn) FmΣ : ϕ := p ∈ Pr | ¬ϕ | ϕ ∧ϕ | [α]ϕ | 〈α]ϕ.

Formulas [α]ϕ read as “Everyone in the group (given by) α knows that ϕ” and 〈α]ϕ read as “Someone
in the group (given by) α knows that ϕ”. The complex algebra of a relational Σ-frame F is F+ =
(F,G,[]+,〈]+) where F is the Boolean algebra of (all) subsets of W ; []+ and 〈]+ are functions of the
type 2W ×G → 2W such that for a ∈ G and P ⊆W :

[a]+P = {w | ∀r ∈ a(w) : r(w)⊆ P} 〈a]+P = {w | ∃r ∈ a(w) : r(w)⊆ P}

(where r(w) = {u | (w,u) ∈ r}). A model based on a Σ-frame F is M= (F,JK), where JK (the “interpre-
tation function”) is a homomorphism from T mΣ ∪FmΣ to F+, that is,

• Jo(α1, . . . ,αn)K = oG(Jα1K, . . . ,JαnK);
• J¬ϕK =W \ JϕK , Jϕ ∧ψK = JϕK∩ JψK , J[α]ϕK = [JαK]+JϕK , J〈α]ϕK = 〈JαK]+JϕK.

A formula ϕ is valid in a model M iff JϕKM =WM, and valid in a class of frames iff it is valid in each
model based on a frame in the class. Log(K) is the set of formulas valid in all frames in K.
Example 1. Epistemic logic with names [2]: Let N (“names”), A (“agents”) and W (“worlds”) be three
non-empty sets. A relational frame is (W,A,N,Q,µ), where Q : A → 2W×W and µ : N → (W → 2A).
Each relational frame gives rise to a relational /0-frame where R = {Qi | i ∈ A} and G = {µ#(n) | n ∈ N},
where µ#(n)(w) = {Qi | i ∈ µ(n)(w)}. Conversely, every relational /0-frame can be seen as a relational
frame where A = R, Q is the identity function on A, N = G and µ(g)(w) = G(w). Grove and Halpern [6]
consider a version of their framework where groups are referred to by means of formulas of a Boolean
language. A simplified version of this framework can be presented as an extension of the relational
frames above, if we require that N is a term algebra over terms in the signature ΣBA = { ,̄∧,∨}, and
that µ satisfies the following conditions (we use n,m as variables ranging over ΣBA-term to highlight the
relation to Grove and Halpern’s framework):

µ(n̄,w) =W \µ(n,w) µ(n∧m,w) = µ(n,w)∩µ(m,w) µ(n∨m,w) = µ(n,w)∪µ(m,w) .

Every relational frame of this kind gives rise to a relational ΣBA-frame. Conversely, every relational
ΣBA-model gives rise to a Boolean relational model: A = R, Q is the identity function on A, N is the term
algebra over ΣBA-terms and µ(n) = JnK.
Example 2. Humml and Schröder [8] consider a rigid common knowledge operator labeled by formulas
in a fixed agent language LAg over a fixed set Ag of agents, defining groups of agents by semantical
means of an agent model A. An AGEL frame is (W,A,∼) with a set ∼ of agent relations. The agent
language LAg determines a signature Σ, and the complex algebra A of the agent model A is a Σ-algebra
(it is the algebra on group propositions {JαKA ⊆ Ag | α ∈ LAg}). As the agent language conservatively
extends classical propositional logic, this algebra carries a boolean structure. It gives rise to a Σ-relational
frame where R =∼ and G is determined by A as G = {∼JαKA | α ∈ LAg} where ∼JαKA is the union of
relations of agents satisfying α (and G(w) is constant along all possible worlds).
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Logic An epistemic logic with structured intensional groups over Σ (a Σ-logic) is any set L ⊆ FmΣ such
that (for all α ∈ T mΣ)

1. L contains all substitution instances of classical tautologies and is closed under Modus Ponens;

2. L contains all formulas of the form (K)[α](ϕ → ψ)→ ([α]ϕ → [α]ψ) and is closed under the

Necessitation rule (Nec)
ϕ

[α]ϕ
;

3. L contains all formulas of the form ¬[α]⊥→ 〈α]⊤ and 〈α]ϕ ∧[α]ψ → 〈α](ϕ ∧ψ).

Theorem 1 (Completeness). The smallest Σ-logic is the set of Σ-formulas valid in all relational Σ-
models.

The relational Σ-frames can be alternatively seen as monotone neighborhood Σ-frames, if we understand
sets {r(w) | r ∈ a(w)} as core neighborhood sets [7, 9]. A similar perspective has recently been adopted in
[2], and also by [3] on a somebody-knows modality, previously studied by [1]. Neither of the approaches
in [7, 3] however includes both ∃∀ and ∀∀ types of modalities. The algebraic structure underlying
the labelling of groups needs to be captured additionally (e.g. morphisms of neighborhood Σ frames
additionally involve an algebraic homomorphism g : G → G′ which can be interpreted as allowing to
’rename’ the groups along frame morphisms in a structured way). The categories of relational Σ-frames
and neighborhood Σ-frames are equivalent.

Example 3 (JS-logic and distributed knowledge). One of the simplest forms of structure imposed on
groups of agents corresponds to taking unions of sets of agents. It is modelled by a semilattice structure
on the set of intensional groups, where the neutral element is an “inconsistent” intensional group that has
an empty extension in each world. A relational join-semilattice frame (relational js-frame) is a relational
ΣSL-frame where 0G(w) = /0 and ( f +G g)(w) = f (w)∪g(w). The join-semilattice logic is the smallest
ΣSL-logic that contains all formulas of the following forms:

⊤→ [0]ϕ (1)

〈0]ϕ →⊥ (2)

[α +β]ϕ ↔ [α]ϕ ∧[β]ϕ (3)

〈α +β]ϕ ↔ 〈α]ϕ ∨〈β]ϕ (4)

In the extensional setting, ϕ is distributed knowledge in a group iff it is satisfied in every world
accessible using the intersection of the relations in the group. The intersection of each non-empty subset
of a set of relations-agents X gives rise to a new relation-agent X ′, distributed knowledge in X then
corresponds to the “somebody knows” operator applied to X ′. The structure induced by distributed
knowledge in the intensional setting is that of relational closure js-frame, where ∩ is a unary closure
operator on G, and f∩

G
(w) = {r ∈ R | r(w) =

⋂
ri∈X ri(w) for some /0 ̸= X ⊆ f (w)}.

Further and on-going work Information about meta-beliefs (“i believes that j believes that ϕ”) is
crucial to many multi-agent scenarios. The question what is a reasonable notion of composition of
intensional groups (intensional sets of relations), is not immediate to answer. We have so far considered
an interesting version of intensional composition, which gives rise to an algebraic structure of right-unital
magmas ((M, ·,1) where · is a binary operation on M and 1 ∈ M such that x ·1 = x for all x ∈ M). Once
we have a working notion of composition, we may use the standard fixpoint construction to introduce
common knowledge. An additional topic for future work is the exploration of variants of the notion of
intensional composition. In particular, we are interested if there is a variant giving rise to a monoid
structure on intensional groups.
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