
Matching and Generalization Modulo Proximity and Tolerance?

Temur Kutsia and Cleo Pau

RISC, Johannes Kepler University Linz, Austria

Abstract. Proximity relations are fuzzy binary relations satisfying fuzzy reflexivity and symmetry properties. Tolerance,
which is a reflexive and symmetric (and not necessarily transitive) relation, can be also seen as a crisp version of proximity.
We study two fundamental symbolic computation algorithms for proximity and tolerance relations: matching and anti-
unification, and briefly characterize their properties.

Preliminaries

Background. Proximity relations are reflexive and symmetric fuzzy binary relations. They generalize
similarity relations, which are a fuzzy version of equivalences. The crisp counterpart of proximity is toler-
ance, which generalizes the standard equivalence relation by dropping the transitivity property. Proximity
relations help to represent fuzzy information in situations where similarity is not adequate.

Unification and anti-unification are two fundamental operations for many areas of symbolic computa-
tion. Unification aims at computing a most specific common instance of given logical expressions, while
anti-unification, a technique dual to unification, computes their least general generalization. Both tech-
niques have been studied for equivalence relations both in crisp and fuzzy settings. Syntactic and equa-
tional unification is surveyed, e.g., in [3], for syntactic and equational anti-unification see, e.g., [2,4,7,8].
Unification and anti-unification modulo similarity have been investigated, e.g., in [1, 9].

On the other hand, there are very few works on unification and anti-unification modulo proximity and
tolerance. In [5], the authors introduced the notion of proximity-based unification and used it in fuzzy
logic programming under a certain restriction imposed on the proximity relation. In [6], we reported the
first results on proximity-based anti-unification with the same restriction.

In this paper we consider the general case: anti-unification for a proximity relation without any re-
striction. We develop an algorithm which computes a compact representation of the set of least general
generalizations. The algorithm directly extends to tolerance relations. A potential application includes,
e.g., an extension of software code clone detection methods by treating certain mismatches as similar.

Anti-unification is closely related to matching, which is a special case of unification. Generalizations
(whose computation is the goal of anti-unification) are supposed to match the original terms. We show
that, in general, matching problems with proximity or tolerance relations might have finitely many incom-
parable solutions, but we also come up with an algorithm which computes a compact representation of
the set of solutions. Unlike anti-unification, where the solution set is represented by several incomparable
representations, for matching problems we always have a single answer.

Proximity and tolerance relations. We define basic notions about proximity relations following [5]. A
binary fuzzy relation on a set S is a mapping from S×S to the real interval [0, 1]. IfR is a fuzzy relation
on S and λ is a number 0 ≤ λ ≤ 1, then the λ-cut ofR on S, denotedRλ, is an ordinary (crisp) relation
on S defined asRλ := {(s1, s2) | R(s1, s1) ≥ λ}. In the role of T-norm ∧ we take the minimum.

A fuzzy relation R on a set S is called a proximity relation on S iff it is reflexive and symmetric.
The λ-cut of a proximity relation on S is a tolerance (i.e., a reflexive and symmetric) relation on S. The
proximity class of level λ of s ∈ S (a λ-class of s) is a set pc(s,R, λ) = {s′ | R(s, s′) ≥ λ}. When R
and λ are fixed, we simply write pc(s). a
? Supported by Austrian Science Fund (FWF) under project 28789-N32.



2 T. Kutsia and C. Pau

Terms. Given two disjoint sets of variables V and fixed arity function symbols F , terms over F and V
are defined as usual, by the grammar t := x | f(t1, . . . , tn), where x ∈ V and f ∈ F is n-ary. The set of
terms over V and F is denoted by T (F ,V). We denote variables by x, y, z, arbitrary function symbols by
f, g, h, constants by a, b, c, and terms by s, t, r. Below we will need the notation for finite sets of function
symbols, whose all elements have the same arity. They will be denoted by bold face letters.

Extended terms or, shortly, X-terms over F and V , are defined by the grammar t := x | f(t1, . . . , tn),
where f 6= ∅ contains funitely many function symbols of arity n. Hence, X-terms differ from the standard
ones by permitting finite non-empty sets of n-ary function symbols in place of n-ary function symbols.
Variables are used in X-terms in the same way as in standard terms. We denote the set of X-terms over F
and V by Text(F ,V), and use also bold face letters for its elements. The head of an (X)-term is defined as
head(x) := x, head(f(t1, . . . , tn)) := f , and head(f(t1, . . . , tn)) := f . The set of terms represented by
an X-term t, denoted by τ(t), is defined as τ(x) := {x}, τ(f(t1, . . . , tn)) := {f(t1, . . . , tn) | f ∈ f , ti ∈
τ(ti), 1 ≤ i ≤ n}. We also define the intersection operation for X-terms, denoted by t u s:

– t u s = ∅, if τ(head(t)) ∩ τ(head(s)) = ∅. x u x = x for all x ∈ V .
– t u s = (f ∩ g)(t1 u s1, . . . , tn u sn), n ≥ 0, if f ∩ g 6= ∅ and ti u si 6= ∅ for all 1 ≤ i ≤ n, where
t = f(t1, . . . , tn) and t = g(s1, . . . , sn). Otherwise t u s = ∅.

Substitutions over T (F ,V) (resp. over Text(F ,V) are mappings from variables to terms (resp. to X-
terms), where all but finitely many variables are mapped to themselves. The symbols σ, ϑ, ϕ are used for
term substitutions, and σ,ϑ, ϕ for X-term substitutions. The identity substitution is denoted by Id . We
use the usual set notation for substitutions, writing, e.g., σ as σ = {x 7→ σ(x) | x 6= σ(x)}. The set of
substitutions represented by an X-term substitution σ is the set τ(σ) := {σ | σ(x) ∈ σ(x) for all x ∈ V}.

Proximity relations over terms and substitutions. Each proximity relation R we consider in this paper
obeys the following restrictions: (a) It is defined on F ∪ V; (b) R(f, g) = 0 if arity(f) 6= arity(g); (c)
R(f, x) = 0 if f ∈ F and x ∈ V , (d)R(x, y) = 0 for x 6= y andR(x, x) = 1 for all x, y ∈ V . We extend
such a relation R to terms: (i) R(s, t) := 0 if R(head(s), head(t)) = 0. (ii) R(s, t) := 1 if s = t and
s, t ∈ V . (iii)R(s, t) := R(f, g) ∧R(s1, t1) ∧ · · · ∧ R(sn, tn), if s = f(s1, . . . , sn), t = g(t1, . . . , tn).

Two terms s and t are (R, λ)-close to each other, written s 'R,λ t, if R(s, t) ≥ λ. We say that s
is (R, λ)-more general than t (or t is an (R, λ)-instance of s) and write s �R,λ t, if there exists a term
substitution σ such that sσ 'R,λ t. (We say that σ is an (R, λ)-matcher of s to t.) This relation can be
defined for term substitutions as well: σ �R,λ ϑ iff there exists ϕ such that xσϕ 'R,λ xϑ for all x. The
strict part of �R,λ is denoted by ≺R,λ.

A term r is called an (R, λ)-least general generalization ((R, λ)-lgg) of t and s iff r is (R, λ)-more
general than t and s and there is no r′ such that r ≺R,λ r

′ and r′ is (R, λ)-more general than t and s.
Given a term t, R, and λ, the (R, λ)-proximity class of t is an X-term pc(t,R, λ), defined as

pc(x,R, λ) := {x} and pc(f(t1, . . . , tn),R, λ) := pc(f,R, λ)(pc(t1,R, λ), . . . ,pc(tn,R, λ))

Theorem 1. GivenR, λ, t and s, each r ∈ pc(t,R, λ) u pc(s,R, λ) is (R, λ)-close both to t and to s.

Matching and anti-unification problems and algorithms

Matching and anti-unification problem for terms are formulated as follows: GivenR, λ, s, t, find (R, λ)-
matcher of s to t (the matching problem) or an (R, λ)-lgg of s and t (the anti-unification problem).
Below we develop algorithms to solve these problems. Each of them have finitely many solutions. It is
important to mention that instead of computing all the solutions to the problems, we will be aiming at
computing their compact representations in the form of X-substitutions (for matching) and X-terms (for
generalization). Hence, our algorithms will solve the following reformulated version of the problems:



Matching and Generalization Modulo Proximity and Tolerance 3

matching anti-unification
Given: R, λ, s, t R, λ, s, t

Find: an X-substitution σ such that each σ ∈ τ(σ) is an X-term r such that each r ∈ τ(r) is
an (R, λ)-matcher of s to t an (R, λ)-lgg of s and t

Such a reformulation will help us to compute a single X-substitution instead of multiple matchers, and
fewer X-lggs compared to lggs. Moreover, if we restrict ourselves to linear lggs (i.e., those with a single
occurrence of generalization variables), then also here we get a single answer.

GivenR, λ, s, and t (where t does not contain variables), to solve an (R, λ)-matching problem s� t,
we create the initial pair {s � t}; ∅ and apply the rules given below. They work on pairs M ;S, where
M is a set of matching problems, and S is the set of semi-solved equations of the form x ≈ t. The rules
transform pairs as long as possible, returning either ⊥ (indicating failure), or the pair ∅;S (indicating
success). In the latter case, each variable occurs in S at most once and from S one can obtain an X-
substitution {x 7→ t | x ≈ t ∈ S}. We call it the computed X-substitution. The rules are as follows (the
notation for overlined expressions expn abbreviates the sequence exp1, . . . , expn):

Decomposition: {f(tn)� g(sn)} ]M ;S =⇒M ∪ {ti � si};S, where n ≥ 0 andR(f, g) ≥ λ.
Clash: {f(ti)� g(si} ]M ; S =⇒ ⊥, whereR(f, g) < λ.

Elimination: {x� t} ]M ;S =⇒M ;S ∪ {x ≈ pc(t)}.
Combination: ∅; {x ≈ t1, x ≈ t2} ] S =⇒ ∅;S ∪ {x ≈ t1 u t2}, if t1 u t2 6= ∅.
Inconsistency: ∅; {x ≈ t1, x ≈ t2} ] S =⇒ ⊥, if t1 u t2 = ∅.

Theorem 2. Given an (R, λ)-matching problem s� t, the matching algorithm terminates and computes
an X-substitution σ such that τ(σ) contains all (R, λ)-matchers of s to t.

GivenR and λ, and two terms s in t, to solve an (R, λ)-anti-unification problem between s and t, we
create the anti-unification triple (AUT) x : pc(s) , pc(t) where x is a fresh variable. Then we put it in
the initial tuple {x : pc(s) , pc(t)}; ∅;x, and apply the rules given below. They work on triplesM ;S; r,
where A is a set of AUTs to be solved, S is the set consisting of AUTs already solved (the store), and r is
the generalization X-term computed so far. The rules transform such triples in all possible ways as long
as possible, returning ∅;S; r. In this case, we call r the computed X-term. The rules are as follows:

Decompose: {x : f(tn) , g(sn)} ] A; S; r =⇒ {yn : tn , sn} ∪ A; S; {x 7→ (f ∩ g)(yn)}(r),
where n ≥ 0 and f ∩ g 6= ∅.

Solve: {x : t , s} ] A; S; r =⇒ A; {x : t , s} ∪ S; r, if head(t) ∩ head(s) = ∅.
Merge: ∅; {x1 : t1 , s1, x2 : t2 , s2} ] S; r =⇒ ∅; {x1 : t , s} ∪ S; {x2 7→ x1}(r),

if t = t1 u t2 6= ∅ and s = s1 u s2 6= ∅.

Note that Merge can be applied in different ways, which might lead to multiple X-lggs.

Theorem 3. Given R, λ, s, and t, the described anti-unification algorithm terminates and computes X-
terms r1, . . . , rn, n ≥ 1, such that ∪ni=1τ(r) contains all lggs of s and t.

To compute linear generalizations, we do not need the Merge rule. In this case the anti-unification
algorithm returns a single X-term r such that τ(r) contains all linear lggs of s and t.



4 T. Kutsia and C. Pau

References
1. H. Aı̈t-Kaci and G. Pasi. Fuzzy unification and generalization of first-order terms over similar signatures. In F. Fioravanti and J. P. Gal-

lagher, editors, Logic-Based Program Synthesis and Transformation - 27th International Symposium, LOPSTR 2017, Revised Selected
Papers, volume 10855 of Lecture Notes in Computer Science, pages 218–234. Springer, 2017.

2. M. Alpuente, S. Escobar, J. Espert, and J. Meseguer. A modular order-sorted equational generalization algorithm. Inf. Comput., 235:98–
136, 2014.

3. F. Baader and W. Snyder. Unification theory. In J. A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning (in 2
volumes), pages 445–532. Elsevier and MIT Press, 2001.

4. A. Baumgartner and T. Kutsia. A library of anti-unification algorithms. In E. Fermé and J. Leite, editors, Logics in Artificial Intelligence
- 14th European Conference, JELIA 2014, volume 8761 of Lecture Notes in Computer Science, pages 543–557. Springer, 2014.

5. P. Julián-Iranzo and C. Rubio-Manzano. Proximity-based unification theory. Fuzzy Sets and Systems, 262:21–43, 2015.
6. T. Kutsia and C. Pau. Proximity-based generalization. In M. Ayala Rincón and P. Balbiani, editors, Proceedings of the 32nd International

Workshop on Unification, UNIF 2018, 2018.
7. G. D. Plotkin. A note on inductive generalization. Machine Intel., 5(1):153–163, 1970.
8. J. C. Reynolds. Transformational systems and the algebraic structure of atomic formulas. Machine Intel., 5(1):135–151, 1970.
9. M. I. Sessa. Approximate reasoning by similarity-based SLD resolution. Theor. Comput. Sci., 275(1-2):389–426, 2002.

A Examples

Example 1. Let R(g1, g2) = R(a1, a2) = 0.5, R(g1, h1) = R(g2, h1) = 0.6, R(g1, h2) = R(a1, b) =
0.7,R(g2, h2) = R(a2, b) = 0.8. Let f(x, x)� f(g1(a1), g2(a2)) be an (R, λ)-matching problem. Then
the matching algorithm returns the following answers for different values of λ:

0 < λ ≤ 0.5 : {x 7→ {g1, g2, h1, h2}({a1, a2, b})}. 0.5 < λ ≤ 0.6 : {x 7→ {h1, h2}({b})}.
0.6 < λ ≤ 0.7 : {x 7→ {h2}({b})}. 0.7 < λ ≤ 1 : ⊥.

Example 2. Let R(f, g) = 0.7, R(a1, a) = R(a2, a) = R(b1, b) = R(b2, b) = 0.5, R(a2, a′) =
R(a3, a′) = R(b2, b′) = R(b3, b′) = 0.6. Let s = f(a1, a2, a3) and t = g(b1, b2, b3). Then the anti-
unification algorithm run ends with the following store-(R, λ)-lgg pairs for different values of λ:

0 < λ ≤ 0.5 : store1 = {x1 : {a} , {b}, x3 : {a3, a′} , {b3, b′}}, X-lgg1 = {f, g}(x1, x1, x3).
store2 = {x1 : {a1, a} , {b1, b}, x2 : {a′} , {b′}}, X-lgg2 = {f, g}(x1, x2, x2).

0.5 < λ ≤ 0.6 : store = {x1 : {a1} , {b1}, x2 : {a′} , {b′}}, X-lgg = {f, g}(x1, x2, x2).
0.6 < λ ≤ 0.7 : store = {x1 : {a1} , {b1}, x2 : {a2} , {b2}, X-lgg = {f, g}(x1, x2, x3).

x3 : {a3} , {b3}},
0.7 < λ ≤ 1 : store = {x : {f(a1, a2, a3)} , g(b1, b2, b3)}, X-lgg = x.

The store tells us how to obtain terms which are (R, λ)-close to the original terms. For instance, when
0 < λ ≤ 0.5, the store tells us that for any substitution σ from the set τ({x1 7→ {a}, x3 7→ {a3, a′}}),
each of the instances of lggs σ(f(x1, x1, x3)) and σ(g(x1, x1, x3)) will be (R, λ)-close to the original term
s, i.e., σ(f(x1, x1, x3)) 'R,λ s and σ(g(x1, x1, x3)) 'R,λ s. Similarly, from the same store we read that
for any ϑ ∈ τ({x1 7→ {b}, x3 7→ {b3, b′}}), we have ϑ(f(x1, x1, x3)) 'R,λ t and ϑ(g(x1, x1, x3)) 'R,λ t.

For linear generalizations, we will get one answer for each fixed λ, which happens to be the same for
all λ′s up to 0.7: {f, g}(x1, x2, x3). The corresponding stores and the remaining case are given below:

0 < λ ≤ 0.5 : store = {x1 : {a1, a} , {b1, b}, x2 : {a2, a, a′} , {b2, b, b′}, x3 : {a3, a′} , {b3, b′}}.
0.5 < λ ≤ 0.6 : store = {x1 : {a1} , {b1}, x2 : {a2, a′} , {b2, b′}, x3 : {a3, a′} , {b3, b′}}.
0.6 < λ ≤ 0.7 : store = {x1 : {a1} , {b1}, x2 : {a2} , {b2}, x3 : {a3} , {b3}}.
0.7 < λ ≤ 1 : store = {x : {f(a1, a2, a3)} , g(b1, b2, b3)}, X-lgg = x.


