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Motivation

Words and structures in English
occur following some general laws

A distribution describes how often
they occur/probable they are

E. Zipf showed that in many cases
such distributions correspond to
power laws

Hypothesis

Quantifiers are power-law distributed
w.r.t. semantic complexity
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Motivation (ctd.) I

the total area of Europe is greater than 5,000,000 km2

the highest mountain in Peru is the Huascaran

the average height of men in France is 180 cm

less than one fifth of Brazilians like cricket

the product mass of atoms is finite

more than one third of MPs sit next to each other

most people procrastinate
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Motivation (ctd.) II

the total area of Europe is greater than 5,000,000 km2

the highest mountain in Peru is the Huascaran

the average height of men in France is 180 cm

less than one fifth of Brazilians like cricket

the product mass of atoms is finite

more than one third of MPs sit next to each other

most people procrastinate
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Motivation (ctd.) III

the total area of Europe is greater than 5,000,000 km2

the highest mountain in Peru is the Huascaran

the average height of men in France is 180 cm

less than one fifth of Brazilians like cricket

the product mass of atoms is finite

more than one third of MPs sit next to each other

most people procrastinate
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Motivation (ctd.) IV

the total area of Europe . .is . . . . . . .greater. . . . . .than . . . . . . . . . .5,000,000. . . . .km2

the highest mountain in Peru . .is . . . .the . . . . . . . . . . .Huascaran

the average height of men in France . .is . . . .180. . . .cm

less than one fifth of Brazilians . . . .like . . . . . . .cricket

the product mass of atoms .is. . . . . .finite

more than one third of MPs . . .sit . . . . .next . . .to . . . . . . . . . . .each other

most people . . . . . . . . . . . . .procrastinate
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English Generalized Quantifiers [BC80]

Definition (Generalized Quantifier)

Given I, a generalized quantifier Q of type (k1, . . . , kn) is a relation of tuples
(R1, . . . , Rn) s.t., for 1 ≤ i ≤ k, Ri ⊆ ∆ki .

English generalized quantifiers are realized by Dets and NPs

They state relations that hold over properties in a model

�no� = {(A,B) ⊆ ∆×∆ | A ∩B = ∅}
�every� = {(A,B) ⊆ ∆×∆ | A ⊆ B}

�at least k� = {(A,B) ⊆ ∆×∆ | #(A ∩B) ≥ k}
�some� = {(A,B) ⊆ ∆×∆ | A ∩B �= ∅}

FOL quantifiers of type (1,1)
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Proportional and Aggregate Quantifiers

�the number of� = {(A,B) ⊆ ∆×∆ | count(A) ∈ B}
�the average β of� = {(A,B) ⊆ ∆×∆ | avg(β(A)) ∈ B}

�the total β of� = {(A,B) ⊆ ∆×∆ | sum(β(A)) ∈ B}
�the β-est� = {(A,B) ⊆ ∆×∆ | argmax(β(A)) ∈ B}

�the product β of� = {(A,B) ⊆ ∆×∆ | prod(β(A)) ∈ B}

Aggregate quantifiers [Tho10] of type (1,1)

�most� = {(A,B) ⊆ ∆×∆ | #(A ∩B) ≥ #(A \B)}
�more than n/k of� = {(A,B) ⊆ ∆×∆ | #(A ∩B) ≥ n/k ·#(A)}

Proportional quantifiers of type (1,1)
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L-Expressibility

Definition (L-Expressibility)

A quantifier Q of type (k1, . . . , kn) is expressible in logic L iff there exists a
formula Q(R1, . . . , Rn), with Ri a relation symbol of arity ki, for 1 ≤ i ≤ k, such
that, for all models I,

Q = {(RI
1 , . . . , R

I
n) ⊆ ∆k1 × · · · ×∆kn | I |= Q(R1, . . . , Rn)}

�no� = {(AI , BI) ⊆ ∆×∆ | I |= ∀x(A(x) ⇒ ¬B(x))}

�some� = {(AI , BI) ⊆ ∆×∆ | I |= ∃x(A(x) ∧B(x))}

Q: Are proportional and aggregate quantifiers more expressive or complex than
FOL quantifiers?
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Expressiveness: argmin(·), argmax(·)

Theorem
If we consider ∆ ordered by ≤ then the functions argmin(·) and argmax(·) are
FOL-expressible

� Indeed, for all I,

I |= c ≈ argmax(P )
iff

I |= ∃!x∀y(P (x) ∧ P (y) ∧ x ≥ y ∧ x ≈ c)

Theorem
If we order the domain, the quantifier “the β-est” (and comparatives) is
FOL-expressible
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Expressiveness: count(·), sum(·),prod(·)

Theorem
If we consider Rat = (Q; +,×;≥) (ordered field of the reals) to hold, then:

1 prod(·) and avg(·) are definable in terms of sum(·) and count(·)
2 sum(·) is definable in terms of count(·)
3 the quantifier “most” is definable in terms of “the number of”

� Recall: �most�={(A,B ⊆ ∆×∆ | count(A ∩B)≥count(A \B)}

Theorem
Aggregate quantifiers are not FOL-expressible

� The generalized quantifier “most” is not FOL-expressible [BC80]
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Semantic Complexity [PH10]

Definition (Semantic Complexity)

Given model I, the semantic complexity of quantifier Q expressible by Q(A,B) is

defined as the cost of computing I, γ |= Q(A,B), for some γ ∈ ∆FV(Q(A,B))

Computational cost = computational complexity
We measure cost only in #(∆): data complexity

If data complexity:
1 is at most in P: Q tractable
2 lies beyond P: Q intractable

Remark

We consider the (simple) hierarchy: AC0 ⊆ L ⊆ P ⊆ NP-complete ⊆ NP
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Tractable Quantifier Complexity I

Quantifier D.C.

some AC0

every AC0

at least k AC0

more than k AC0

exactly k AC0

the α-est AC0

the total α of L
the number of L
the average α of L
the product α of L

most L
more than p/k of L

⇒ FOL quantifiers
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Tractable Quantifier Complexity II

Quantifier D.C.

some AC0

every AC0

at least k AC0

more than k AC0

exactly k AC0

the α-est AC0

the total α of L
the number of L
the average α of L
the product α of L

most L
more than p/k of L

⇒ Beyond FOL
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Ramsey Quantifiers [Szy10]

Definition (Ramseyfication)

The Ramseyfication of Q of type (1,1) is the quantifier of type (1,2)

RQ={(A,R)⊆∆×∆2 |existsX⊆A s.t.(A,X)∈Q and for allx, y∈X,(x, y)∈R}

“Says” that the As that fall under Q are R-connected

Are conveyed in English by the reciprocal NP “each other”

Can be used to express graph properties such as the existence of cliques

They are not FOL expressible
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Ramsey Quantifiers Example

more than one third of PMs sit next to each other

Most

FUL(R) = FUL(R∨)
LIN(R) = LIN(R∨) TOT (R) = TOT (R∨) R

FUL(R) = LIN(R)

R

R R∨

R R∨

R∨

R R

R R∨

R∨

R

model I1 model I2
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Ramsey Quantifiers [Szy10] (ctd.)

Quantifier D.C.

some + each other P
every + each other P

exactly k + each other P
most + each other P

at least k + each other NP-complete∗ (P)
at least k + each other NP-complete∗ (P)

more than k + each other NP-complete∗ (P)

more than p/k of + each other NP-complete
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Answer Time and Complexity [Szy09]

p < 0.05
p < 0.001
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Power Law Distributions [Bar09]

Definition (Power law)

We say that a random variable X of outcomes x1, . . . , xk follows a power law or
Zipf distribution if ≤ 20% of its outcomes concentrate ≥ 80% of its probability
mass. This relation is described by the equation:

P (x) ∼ b

rank(x)m

We want to know if quantifier distribution P (Q) is power-law correlated to
quantifier expressiveness/complexity:

P (Q) ∼ b

comp(Q)m
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Power Law Example
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Corpora

Corpus Size Domain Type

Brown 19,741 sentences Open (news) Declarative
Geoquery 364 questions Geographical Interrogative

Clinical ques. 12,189 questions Clinical Interrogative
TREC 2008 436 questions Open Interrogative

Remark

Corpora of different types and domains and approx. 1,000,000 words
(cumulatively)
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Power Laws and Log-Log Regressions

We can transform power laws to linear models via logarithmic scaling

y = b/xm

⇔

log10(y) = log10(b)−m · log10(x)

We can estimate b and m from a sample S via linear regression

If R2 coefficient is high ⇒ S power law distributed
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Quantifier Distribution (all)
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Ramsey Quantifier Distribution
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Test Statistics

skewness Recip. GQs GQs

skew. value 1.76 1.98

χ2-test Recip. GQs GQs

χ2 value 530.81 183815415173.11
p value, d.f. 1.78, 5 0.0, 13

R2-coeff. Recip. GQs GQs

Power law fr(Q) 36.00/rk(Q)0.82 2.88/rk(Q)4.52

R2 coeff. 0.47 0.81

Remark

Power laws of mean relative frequency

C. Thorne, J. Szymanik (KRDB, ILLC) Quantifier Distribution TbiLLC2013, Sep 26, Tbilisi 26 / 35



Conclusions

1 We have studied the distribution of FOL, proportional and aggregate
generalized quantifiers in corpora

2 It may seem that their distributions is skewed towards low complexity
quantifiers

3 The skewed distribution is consistent with cognitive experiments [BSS11]

4 We have considered if such distribution can be modeled by a power law
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Thank you :-)

http://www.inf.unibz.it/~cathorne
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Aggregations [Tho10]

Definition (Aggregation Function)

An aggregate function is a is a function that takes as argument a group G and
returns a number n ∈ Q, viz.,

count(G) sum(G) argmin(G)
avg(G) prod(G) argmax(G)

They require models with a ordered numerical domain N ⊆ ∆, with N a
finite subset of Q

The argument group G is built via, possibly, metric attributes β(·)
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Tractable Quantifiers

Theorem

The semantic (data) complexity of FOL quantifiers is in AC0

� Known result from FOL finite model theory

Theorem
The semantic (data) complexity of aggregate quantifiers (and proportional
quantifiers) is in L

� One can design a sound an complete algorithm Ansα(I, Q(A,B)) for solving
I |= Q(A,B) that runs in space O(log#(∆))
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Answering Aggregations (O(log#(∆)) Space)

1: procedure Ansα(Q(α(β(P ))), I)
2: ϕ(x)P ← Core(Q(α(β(P )))); � compute core
3: s ← 0; a ← 0; n ← 0; p ← 0; � initialize
4: for γ ∈ SatI(ϕ(x)) do � SatI(ϕ(x)) = {γ | I, γ |= ϕ(x)}
5: n ← n+ 1; s ← s+ β(γ(x)); � update 1
6: a ← s

n ; p ← p× β(γ(x)); � update 2
7: if α = count and Q(n) then � test 1
8: return true;
9: else

10: if α = avg and Q(a) then � test 2
11: return true;
12: else

13: if α = sum and Q(s) then � test 3
14: return true;
15: else

16: if α = prod and Q(p) then � test 4
17: return true;
18: end if

19: end if

20: end if

21: end if

22: end for

23: return false; � false if all tests fail
24: end procedure
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Linear Regression (Reminder)

A linear regression model has the form:

Y = ΘX

with parameters Θ = (m, b)T (a gradient and an intercept)

The least squares method infers from training sample S = {(xi, yi)}i∈[1,n] the
model whose parameters Θ∗:

Θ∗ = argmin
Θ

J(Θ) = argmin
Θ

n�

i=1

(yi −Θ(xi))
2

minimize square error

The R2 coefficient provides a measure of confidence in Y = Θ∗X:

R
2 =

V ar(Θ∗X)

V ar(Y )
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Ramsey and non-Ramsey (raw)

Corpus > k+ > p/k+ most+ some+ all+ < k+
recip recip recip recip recip recip

Brown 1 1 2 2 2 16
TREC 0 0 0 0 0 0
Geo 0 0 0 0 0 0

Clin. qs. 0 0 0 0 0 0
total 1 1 2 2 2 16

Corpus ≥k ≤k most >k >p/k recip.>k% sum cnt avg max,min all k some

Brown 192 4 1532 540 38 101 2 1 354 17 4368 202587 90811 81693
TREC 0 0 0 0 0 0 0 0 0 0 13 192 490 222
Geo 2 0 0 0 0 0 0 0 1 0 18 380 447 660

Clin. qs. 12 0 28 12 0 0 0 0 9 2 889 10712 11629 20780
total 206 4 1560 552 38 101 2 1 364 19 5288 213871103377103355
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