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Relational Databases for Logicians*

• Database schema ~ a finite relational signature. E.g., 

- {  PARTICIPANT(name, email, flight-nr),  FLIGHT(flight-nr, dept-time)  }
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• Database schema ~ a finite relational signature. E.g., 

- {  PARTICIPANT(name, email, flight-nr),  FLIGHT(flight-nr, dept-time)  }

• Database instance (of a given schema) ~ a finite structure.

• Database queries ~ logical formulas with free variables

- φ(x,y) = ∃z,u (PARTICIPANT(x,y,z) & FLIGHT(z, 3:00AM))

• Database constraints ~ logical sentences expressing structural properties

- ∀x,y,z,u (PARTICIPANT(x,y,z) → ∃t FLIGHT(z,t))

- ∀x,y,z (FLIGHT(x,y) & FLIGHT(x,z) → y=z) 

2

 *) an oversimplified picture.
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Query Languages

• Most important query languages 

- Conjunctive Queries (CQs):  !(x) = ∃y ("1(x,y) ∧ ... ∧ "n(x,y))

- Unions of Conjunctive Queries (UCQs): disjunctions of CQs.

- First-order Queries (~ SQL queries)

- Datalog (the least-fixpoint extension of UCQs)
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Query Languages

• Most important query languages 

- Conjunctive Queries (CQs):  !(x) = ∃y ("1(x,y) ∧ ... ∧ "n(x,y))

- Unions of Conjunctive Queries (UCQs): disjunctions of CQs.

- First-order Queries (~ SQL queries)

- Datalog (the least-fixpoint extension of UCQs)

• Most database queries in practice are CQs (a.k.a. SELECT-FROM-WHERE)

• UCQs form a “robustly decidable” fragment of FO logic.

- In particular, equivalence is decidable (NP-complete).
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Excursion: decidable fragments of FO

• Unions of Conjunctive queries:

- φ(x)  :=   R(x)  |  xi=xj   |   φ(x) ∧ φ(x)   | φ(x) v φ(x)   |  ∃y φ(x,y)

• The modal fragment:

- φ(x)  :=   P(x)   |   φ(x) ∧ φ(x)   |   ¬φ(x)   |   ∃y(Rxy ∧ φ(y))
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• Unions of Conjunctive queries:

- φ(x)  :=   R(x)  |  xi=xj   |   φ(x) ∧ φ(x)   | φ(x) v φ(x)   |  ∃y φ(x,y)

• The modal fragment:

- φ(x)  :=   P(x)   |   φ(x) ∧ φ(x)   |   ¬φ(x)   |   ∃y(Rxy ∧ φ(y))

• UNFO (Unary-Negation Fragment of FO) [tC & Segoufin 2011]

- φ(x)  :=   R(x)  |  xi=xj  | φ(x) ∧ φ(x)  | φ(x) v φ(x) | ¬φ(x) | ∃y φ(x,y)

• Further extension: GNFO (Guarded-Negation Fragment of FO) 
[Barany, tC & Segoufin 2011]
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Homomorphisms

• Conjunctive queries are intimately tied to homomorphisms.
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Homomorphisms

• Conjunctive queries are intimately tied to homomorphisms.

• Definition: 

- Let I and J be instances (i.e., finite structures) over the same schema. 
A homomorphism h: I → J is a map from the domain of I to the 
domain of J such that (a,b,c) ∈ RI implies (h(a),h(b),h(c)) ∈ RJ.
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Examples
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• Def: A query q is preserved by homomorphism if for all instances I and J and 
for all homomorphisms h:I → J, (a,b,c) ∈ q(I) implies (h(a),h(b),h(c)) ∈ q(J). 
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• Def: A query q is preserved by homomorphism if for all instances I and J and 
for all homomorphisms h:I → J, (a,b,c) ∈ q(I) implies (h(a),h(b),h(c)) ∈ q(J). 

• Thm. A first-order query is preserved by homomorphisms if and only if it is 
equivalent to a union of conjunctive queries [Rossman 2005].

- One of the few preservation theorems that hold over finite structures.
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The Homomorphism Quasi-Order

• We write I → J if there is a homomorphism h: I → J.

• Fix any relational schema S and let FinStr[S] be the 
finite structures (i.e., instances) over S. 

• (FinStr[S], →) is a quasi-order (reflexive and transitive). 

• Its structure has been extensively studied. We will 
make use of some beautiful results from this area.

9



Database Constraints

• Database constraints express structural properties of relations in a schema.
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Database Constraints

• Database constraints express structural properties of relations in a schema.

- ∀x,y,z,u (PARTICIPANT(x,y,z) → ∃t FLIGHT(z,t))

- ∀x,y,z (FLIGHT(x,y) & FLIGHT(x,z) → y=z) 

• Traditional uses of constraints:

- Schema design,   integrity control,   query optimization

• The most well-studied language for specifying constraints:

- Dependencies : ∀x ("1 ∧ ... ∧ "n → ∃y (#1 ∧ ... ∧ #n))

- Rich enough to express most database constraints in practice. 

- Unfortunately, basic tasks (e.g., entailment) are undecidable.
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Relational Databases for Logicians*

• Database schema ~ a finite relational signature. E.g., 

- {  PARTICIPANT(name, email, flight-nr),  FLIGHT(flight-nr, dept-time)  }

• Database instance (of a given schema) ~ a finite structure.

• Database queries ~ logical formulas with free variables
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The Data Interoperability Challenge

• Data-Interoperability: 

- Data may be distributed over different sources, using different schemas.

- Applications need to access all these data.
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The Data Interoperability Challenge

• Data-Interoperability: 

- Data may be distributed over different sources, using different schemas.

- Applications need to access all these data.

• How can we uniformly access and manipulate data across sources?

• Two examples of data interoperability tasks:

- Data Integration

- Data Exchange
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Data Exchange

Transform data structured under a source schemas into 
data structured under a target schema.

13

Source 
Schema  S 

  Target 
Schema  T

  

I
J

Σ



Data Integration

Query heterogeneous data in different sources via a virtual 
global schema

14

query q

I1

I2

I3

 S1

S2

  S3

(Virtual) Global 

Schema

T



Schema Mappings

• A schema mappings is a logical specification of the relationships 
between two database schemas. 

• Schema mappings are fundamental in the formalization data 
interoperability tasks such as data exchange and data integration.
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Schema Mappings

• A schema mappings is a logical specification of the relationships 
between two database schemas. 

• Schema mappings are fundamental in the formalization data 
interoperability tasks such as data exchange and data integration.

• Formally, a schema mapping is a triple M=(S,T,Σ), where

- S and T are schemas (the “source schema” and the “target schema”)

- $  is a collection of constraints involving the relations of S and T, 
specified in some schema mapping language (details to come). E.g., 
∀x,y,z(PARTICIPANT(x,y,z) → MAILINGLIST(x,y)).
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Schema Mapping Languages

• The choice of schema mapping language involves a compromise 
between expressive power and practical usability. 

- Allowing arbitrary FO sentences in $ would make the interesting problems 
undecidable.

• Two of the most important schema mapping specification languages:

- GLAV constraints.  These are dependencies ∀x (%(x) → ∃y !(x,y)) where
•  % is a conjunction of relational atomic formulas over the source schema 
•  ! is a conjunction of relational atomic formulas over the target schema.

- GAV constraints: special case of GLAV where the consequent is a single 
atomic formula (no existential quantification)

- LAV constraints: special case of GLAV where the antecedent is a single 
atomic formula.
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     Semantics of Schema Mappings 

 M = (S, T, Σ) schema mapping 
 with Σ a set of GLAV constraints.

 From a semantic point of view,  M can be identified with the set of all its 
positive data examples.

• Data Example: A pair (I,J) where I is a source instance and J is a target instance.
• Positive Data Example for M: a data example (I,J) such that (I,J) ⊨ $
• Negative Data Example for M: a data example (I,J) such that (I,J) ⊨ $
• If (I,J) is a positive data example for M, we say that J is a solution for I w.r.t. M.

     Sem(M) = { (I,J):  J is a solution for I w.r.t. M } 

Source  S   Target  T

  

J

$

I



Examples

• Consider the schema mapping M = ({E}, {F}, Σ), where 

- $ = {  E(x,y)  → ∃z (F(x,z) & F(z,y)) }

• Positive Data Examples (I,J)   (i.e., J a solution for I w.r.t. M)

- I = { E(1,2) }             J = { F(1,1), F(1,2) }

- I = { E(1,2) }             J = { F(1,xxx), F(xxx,2) }

- I = { E(1,2) }             J = { F(1,xxx), F(xxx,2), F(2,3) }                                                 

• Negative Data Examples (I,J)     (i.e., J not a solution for I w.r.t. M)

- I = { E(1,2) }             J = { F(1,3) }

- I = { E(1,2) }             J = { F(1,3), F(4,2) }

18



19

Data Exchange via a Schema Mapping
  

 Data Exchange via the schema mapping M = (S, T, Σ):
     Given a source instance I, construct a solution J for I.

 Difficulty: 
 Typically, there are multiple solutions
 Which one is the “best” to materialize?

Source 
Schema  S 

  Target 
Schema  T

  

I
J

Σ
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Data Exchange & Universal solutions

Fagin, Kolaitis, Miller, Popa (2003):

Identified and studied the concept of a universal solution in data 
exchange.

- A universal solution is a most general solution.

- A universal solution “represents” the entire space of solutions.
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Universal Solutions in Data Exchange

Allow two types of values in instances: constant values and (labelled) null 
values.

Definition (FKMP):  A solution J for I is universal if it has homomorphisms 
to all other solutions for I, where the homomorphism may only change the 
null values.

(thus, a universal solution is a “most general” solution).

Basic result (FKMP): Universal solutions can be constructed in PTIME (data 
complexity) using an algorithm called the chase.
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Universal Solutions in Data Exchange

Schema  S Schema  T

J

Σ

J1
J2

J3

   Universal Solution

    Solutions

h1 h2 h3
Homomorphisms

I



Data Integration

Query heterogeneous data in different sources via a virtual 
global schema
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query q
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query q

    Source 
schema S

(Virtual) 

Global Schema

T Σ

Source 
Instance I

Data Integration

Query heterogeneous data in different sources via a virtual 
global schema



Certain answers

• Let I be a source instance and let q be a target query (a query over T).

• Definition: certainM(q,I) = ⋂{q(J) | J solution of I w.r.t. M}

- Idea: certainM(q,I) contains the tuples that belong to the answer of q in 
all solutions of I.
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Certain answers

• Let I be a source instance and let q be a target query (a query over T).

• Definition: certainM(q,I) = ⋂{q(J) | J solution of I w.r.t. M}

- Idea: certainM(q,I) contains the tuples that belong to the answer of q in 
all solutions of I.

• If the query is a UCQ, then certainM(q,I) can be computed in PTIME.

- via universal solutions or via query rewriting
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Computing certain answers

• Theorem (Fagin, Kolaitis, Miller, Popa 2003): 

- Let J be a universal solution of I w.r.t. M. Then for every UCQ q, 
certainM(q,I) = q(J)↓

• Theorem (Abiteboul, Duschka 1998 ++) : 

- For every target UCQ q, there is a source UCQ q’ such that q’(I) = 
certainM(q,I). 
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Where to get your schema mapping

• Constructing a schema mapping is the first step in data exchange 
and data integration.



Where to get your schema mapping

• Constructing a schema mapping is the first step in data exchange 
and data integration.

• Common approach (Clio, HepToX, Microsoft mapping composer):

- derive a schema mapping from a schema matching (a collection 
of correspondences between attributes of the two schemas).

- The schema matching itself is obtained semi-automatically using 
schema matching techniques or by interaction with a user.

- NB: a schema matching does not uniquely determine a schema 
mapping.





Data Examples

• Using data examples in schema mapping design:

- Data examples can be used to illustrate a candidate schema mapping

- Deriving schema mappings from examples (learning problem)

• Labeled data examples: a data example (I,J) labeled as being

- positive -- meaning that J is a solution for I, 

- negative -- meaning that J is not a solution for I, or

- universal -- meaning J is a universal solution for I.

29



Uniquely Characterizing Data 
Examples

• A set E of labeled data examples uniquely characterizes a schema 
mapping M, within a class of schema mappings C, if 

- M fits all data examples in E.

- every schema mapping M’ ∈ C that fits all examples in E is logically 
equivalent to M.

30



• Let M be the schema mapping specified by the GLAV constraint  
∀x,y (E(x,y) → F(x,y)). 

• This is both a GAV schema mapping and a LAV schema mapping.

- The universal data example (I,J) with  I = { E(a,b) }, J = { F(a,b) } 
uniquely characterizes M w.r.t. the class of all LAV constraints.

- There is a finite set of universal examples that uniquely characterizes 
M w.r.t. the class of all GAV constraints.

- There is no finite set of universal examples that uniquely 
characterizes M w.r.t. the class of all GLAV constraints.

31
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• Problem: which GAV schema mappings are uniquely 
characterizable, by a finite set of labeled data examples, 
within the class of GAV schema mappings?

• The solution was obtained through an intimate connection 
with dualities in the homomorphism lattice.
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More about homomorphisms
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More about homomorphisms

• Fix a schema S. 

- When we speak of structures, we will mean finite structures over S.

- We will assume that S contains at least one non-unary relation 
symbol.

• Recall: (FinStr[S], →) is a quasi-order (reflexive and transitive).

• We can construct a partially ordered set (poset) by taking the 
homomorphic equivalence classes. 

• However, it turns out there is a nicer way to present this poset.
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The Core of a Structure 

• Definition:

- The core of a (finite) structure I, denoted core(I), is the smallest 
substructure of I that is homomorphically equivalent to I.

- A structure I is a core if I=core(I).
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• Theorem [Hell and Nesetril 1992]:
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The Core of a Structure 

• Definition:

- The core of a (finite) structure I, denoted core(I), is the smallest 
substructure of I that is homomorphically equivalent to I.

- A structure I is a core if I=core(I).

• Theorem [Hell and Nesetril 1992]:

- core(I) always exists and is unique up to isomorphism 

- I ⇄ J iff core(I) and core(J) are isomorphic.

• Corollary: 

- if I and J are cores and I ⇄ J then I and J are isomorphic.

- every ~-equivalence class has a unique (up to isomorphism) smallest 
representative which is a core.
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Examples

36



The Homomorphism Lattice.

• Let CoreStr[S] be the set of all non-isomorphic (finite) core 
structures over schema S. Then (CoreStr[S],→) is a poset, 
and in fact a lattice.
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The Homomorphism Lattice.

• Let CoreStr[S] be the set of all non-isomorphic (finite) core 
structures over schema S. Then (CoreStr[S],→) is a poset, 
and in fact a lattice.

• This lattice has been extensively studied. For example:

- Theorem [Pultr and Trnkova 1980]: Every countable poset is 
isomorphic to a suborder of (CoreStr[S],→)

37



•  →I    = {J : J → I } 
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•  →I    = {J : J → I } 

- Example (for graphs):   →K2  =  Class of 2-colorable graphs

•  I→     = {J: I → J}

- Example (for graphs):    K2→  =  Class of graphs with at least one edge.

• Note:

- →I defines a downward closed set in the homomorphism lattice.

- I→ defines an upward closed set in the homomorphism lattice.

- I↛ defines a downward closed set in the homomorphism lattice.

38



Simple Duality Pairs

• Definition:   Let D and F be two finite structures

- (F,D) is a duality pair if  →D  =  F↛ 

- In other words, for every structure I, I → D if and only if F ↛ I.

- In this case, we say that F is an obstruction for D.
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Simple Duality Pairs

• Definition:   Let D and F be two finite structures

- (F,D) is a duality pair if  →D  =  F↛ 

- In other words, for every structure I, I → D if and only if F ↛ I.

- In this case, we say that F is an obstruction for D.

• Example:

- For graphs,  (K2, K1) is a duality pair
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• Gallai-Hasse-Roy-Vitaver Theorem (~1965) for directed graphs:

- Let Tk be the linear order with k elements, Pk+1 be the path with k+1 
elements.  Then (Pk+1, Tk) is a duality pair, since for every directed 
graphs H,   H → Tk  if and only  if Pk+1 ↛ H.                        
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Duality Pairs

• Theorem (König 1936): A graph is 2-colorable if and only if it 

contains no cycle of odd length. In symbols, →K2  = ∩i≥0 (C2i+1↛).
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Duality Pairs

• Theorem (König 1936): A graph is 2-colorable if and only if it 

contains no cycle of odd length. In symbols, →K2  = ∩i≥0 (C2i+1↛).

• Definition: Let F and D be two sets of structures. We say that (F, D) 

is a duality pair if ∪D ∈ D (→D) = ∩F ∈ F( F↛). 

- In other words, for every structure I, tfae:

• There is a structure D in D such that I → D.

• For every structure F in F, we have F ↛ I.

- In this case, we say that F is an obstruction set for D.

41
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Duality Pair (F,D),where

F = {F1,F2,…}

D = {D1,D2,…}

“Desires”

“Frustrations”



Example

• Let F be the one-element cycle.  
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Example

• Let F be the one-element cycle.  

• Question: Is {F} an obstruction set for a finite set of structures?
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Example

• Let F be the one-element cycle.  

• Question: Is {F} an obstruction set for a finite set of structures?

- I.e., is there a duality pair of the form ({F},D) ? 

• No. This has to do with the fact that F contains a cycle.
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Acyclicity

• The incidence graph inc(A) of a structure A is the bipartite graph 
with

- nodes: the elements of A and the atomic facts (e.g., R(a1,...,an)) of A

- edges between elements and facts in which they occur
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Acyclicity

• The incidence graph inc(A) of a structure A is the bipartite graph 
with

- nodes: the elements of A and the atomic facts (e.g., R(a1,...,an)) of A

- edges between elements and facts in which they occur

• The structure A is acyclic if 

- Inc(A) is acyclic, and

- No element occurs twice in the the same fact.
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Characterization of Obstruction Sets

• Theorem (Foniok, Nešetřil, and Tardif 2008): 

- Let F be a finite set of homomorphically incomparable core 
structures. Tfae:

• F is an obstruction set of some finite set D  of structures.

• Each structure in F  is acyclic.

- Moreover, there is an algorithm that, given such a set F consisting 
of acyclic structures, computes a finite set D of structures such that 
(F, D) is a duality pair.
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Characterization of Obstruction Sets

• Theorem (Foniok, Nešetřil, and Tardif 2008): 

- Let F be a finite set of homomorphically incomparable core 
structures. Tfae:

• F is an obstruction set of some finite set D  of structures.

• Each structure in F  is acyclic.

- Moreover, there is an algorithm that, given such a set F consisting 
of acyclic structures, computes a finite set D of structures such that 
(F, D) is a duality pair.

• In particular, if F is the one-element cycle, then {F} is not an 
obstruction set of any finite set of structures.

45



Structures with Constant Symbols
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Structures with Constant Symbols

• The preceding theorem extends to structures with constant 
symbols when acyclicity is replaced by c-acyclicity.
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Structures with Constant Symbols

• The preceding theorem extends to structures with constant 
symbols when acyclicity is replaced by c-acyclicity.

• A structure with constant symbols is c-acyclic if 

- Every cycle in Inc(A) contains an element named by a constant 
symbol, and

- Only elements named by constant symbols may occur twice in the 
same fact.
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Back to Schema Mappings

• The canonical structure of a GAV constraint

            ∀x (ϕ1(x) ∧ ... ∧ ϕκ(x) → R(xi1,…,xim))

 is the structure with

- domain: the variables in x themselves

- atomic facts: '1(x), ..., '((x) 

- constant symbols c1,…,cm denoting xi1,…,xim 

47



Back to Schema Mappings

• The canonical structure of a GAV constraint

            ∀x (ϕ1(x) ∧ ... ∧ ϕκ(x) → R(xi1,…,xim))

 is the structure with

- domain: the variables in x themselves

- atomic facts: '1(x), ..., '((x) 

- constant symbols c1,…,cm denoting xi1,…,xim 
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• Theorem: Let M = (S, T, Σ) be a GAV schema mapping. Tfae:

- M is uniquely characterizable within the class of all GAV constraints.

- For every target relation symbol R, the set of the canonical structures 
of the GAV constraints in $ with R as their consequent is the 
obstruction set of some finite set D of structures.
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• Theorem: Let M = (S, T, Σ) be a GAV schema mapping. Tfae:

- M is uniquely characterizable within the class of all GAV constraints.

- For every target relation symbol R, the set of the canonical structures 
of the GAV constraints in $ with R as their consequent is the 
obstruction set of some finite set D of structures.

• Corollary: testing unique characterizability is NP-complete, and 
one can effectively construct a uniquely characterizing finite set of 
data examples if it exists. 
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Summary

• Schema mappings: a fundamental building block in the study of 
data-interoperability problems.

• Homomorphism dualities: a powerful tool from graph theory 
(with many applications in constraint satisfaction as well) 
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