Schema Mappings and
Data Examples

Balder ten Cate
UC Santa Cruz & LogicBlox

TbhbiLLC 2013 - Gudauri

Relational Databases for Logicians®

*) an oversimplified picture.

® Database schema ~ a finite relational signature. E.g.,

- { PARTICIPANT(name, email, flight-nr), FLIGHT(flight-nr, dept-time) |}

Relational Databases for Logicians®

*) an oversimplified picture.

® Database schema ~ a finite relational signature. E.g.,
- { PARTICIPANT(name, email, flight-nr), FLIGHT(flight-nr, dept-time) |}

® Database instance (of a given schema) ~ a finite structure.

Relational Databases for Logicians®

*) an oversimplified picture.

® Database schema ~ a finite relational signature. E.g.,
- { PARTICIPANT(name, email, flight-nr), FLIGHT(flight-nr, dept-time) |}
® Database instance (of a given schema) ~ a finite structure.

® Database queries ~ logical formulas with free variables

- &(xy) = 3z,u (PARTICIPANT(x,y,z) & FLIGHT(z, 3:00AM))

Relational Databases for Logicians®

*) an oversimplified picture.

® Database schema ~ a finite relational signature. E.g.,
- { PARTICIPANT(name, email, flight-nr), FLIGHT(flight-nr, dept-time) |}
® Database instance (of a given schema) ~ a finite structure.
® Database queries ~ logical formulas with free variables
- o®(xy) = 3z,u (PARTICIPANT(x,y,z) & FLIGHT(z, 3:00AM))
® Database constraints ~ logical sentences expressing structural properties

- wx,yzu (PARTICIPANT(x,y,z) = 3t FLIGHT(z,t))
- vxy,z (FLIGHT(x,y) & FLIGHT(x,z) = y=z)

AN %

3 b3

s

o 9 .

. R h s

» P s 3
” RE -

Edgar F. Codd (1923-2003)

Query Languages

® Most important query languages

- Conjunctive Queries (CQs): P(x) = 3y (a1(x,y) A ... A an(x,y))
-~ Unions of Conjunctive Queries (UCQs): disjunctions of CQs.
~ First-order Queries (~ SQL queries)

- Datalog (the least-fixpoint extension of UCQs)

Query Languages

® Most important query languages

- Conjunctive Queries (CQs): P(x) = 3y (a1(x,y) A ... A an(x,y))
-~ Unions of Conjunctive Queries (UCQs): disjunctions of CQs.
~ First-order Queries (~ SQL queries)

- Datalog (the least-fixpoint extension of UCQs)

® Most database queries in practice are CQs (a.k.a. SELECT-FROM-WHERE)

Query Languages

® Most important query languages

- Conjunctive Queries (CQs): P(x) = 3y (a1(x,y) A ... A an(x,y))
-~ Unions of Conjunctive Queries (UCQs): disjunctions of CQs.
~ First-order Queries (~ SQL queries)

- Datalog (the least-fixpoint extension of UCQs)

® Most database queries in practice are CQs (a.k.a. SELECT-FROM-WHERE)
® UCQs form a “robustly decidable” fragment of FO logic.

- In particular, equivalence is decidable (NP-complete).

Excursion: decidable fragments of FO

® Unions of Conjunctive queries:

- O(x) = Rx) | xi=x; | Oox)APx) | ¢lx)vdlx) | Iy dlxy)

® The modal fragment:

- o) = Plx) | dx)Adlx) | =dlx) | JyRxy A P(y))

Excursion: decidable fragments of FO

® Unions of Conjunctive queries:

- O(x) = Rx) | xi=x; | Oox)APx) | ¢lx)vdlx) | Iy dlxy)

® The modal fragment:

- o) = Plx) | dx)Adlx) | =dlx) | JyRxy A P(y))
® UNFO (Unary-Negation Fragment of FO) [tC & Segoufin 2011]

- o) = Rx) | xi=x; | ¢(x)AP(x) | d(x) vd(x) | =dp(x) | Jy d(x,y)

Excursion: decidable fragments of FO

® Unions of Conjunctive queries:
- d0) = R | xi=x | d@)AdE) | dE)vdr) | Iy dxy)
® The modal fragment:
- o) = P) | d)ADE) |) | FyRay A b))
® UNFO (Unary-Negation Fragment of FO) [tC & Segoufin 2011]
- o) = Rx) | xi=x; | ¢(x)AP(x) | d(x) vd(x) | =dp(x) | Jy d(x,y)

® Further extension: GNFO (Guarded-Negation Fragment of FO)
|[Barany, tC & Segoufin 2011]

Homomorphisms

® Conjunctive queries are intimately tied to homomorphisms.

Homomorphisms

® Conjunctive queries are intimately tied to homomorphisms.
® Definition:

- LetIand] be instances (i.e., finite structures) over the same schema.
A homomorphism h: I = Jis a map from the domain of I to the

domain of] such that (a,b,c) € Rl implies (h(a),h(b)h(c)) € RI.

Examples

Q——QQ<«<——Q«—0

® Def: A query qis preserved by homomorphism if for all instances I and J and
for all homomorphisms h:I = J, (a,b,c) € q(I) implies (h(a),h(b),h(c)) € q(J).

Def: A query q is preserved by homomorphism if for all instances I and J and
for all homomorphisms h:I = J, (a,b,c) € q(I) implies (h(a),h(b),h(c)) € q(J).

Thm. A first-order query is preserved by homomorphisms if and only if it is
equivalent to a union of conjunctive queries [Rossman 2005].

-~ One of the few preservation theorems that hold over finite structures.

The Homomorphism Quasi-Order

. Graphs and

We write [—] if there is a homomorphism h: I —7J. Homomorphisms

Fix any relational schema S and let FinStr[S] be the
finite structures (i.e., instances) over S. ‘]

(FinStr[S], —) is a quasi-order (reflexive and transitive).

l Jaroslay Nefetfil

[ts structure has been extensively studied. We will
make use of some beautiful results from this area.

Database Constraints

® Database constraints express structural properties of relations in a schema.

- vx,yzu (PARTICIPANT(x,y,z) = 3t FLIGHT(z,t))
- wx,yz (FLIGHT(x,y) & FLIGHT(x,z) = y=z)

10

Database Constraints

® Database constraints express structural properties of relations in a schema.

- vx,yzu (PARTICIPANT(x,y,z) = 3t FLIGHT(z,t))
- wx,yz (FLIGHT(x,y) & FLIGHT(x,z) = y=z)

® raditional uses of constraints:

-~ Schema design, integrity control, query optimization

10

Database Constraints

® Database constraints express structural properties of relations in a schema.

- vx,yzu (PARTICIPANT(x,y,z) = 3t FLIGHT(z,t))
- wx,yz (FLIGHT(x,y) & FLIGHT(x,z) = y=z)

® Traditional uses of constraints:
-~ Schema design, integrity control, query optimization
® The most well-studied language for specifying constraints:

- Dependencies: vx (@1 A ... Aan = 3y (B1 A ... ABn))

- Rich enough to express most database constraints in practice.

- Unfortunately, basic tasks (e.g., entailment) are undecidable.

10

Relational Databases for Logicians®

*) an oversimplified picture.

® Database schema ~ a finite relational signature. E.g.,
- { PARTICIPANT(name, email, flight-nr), FLIGHT(flight-nr, dept-time) |}
® Database instance (of a given schema) ~ a finite structure.
® Database queries ~ logical formulas with free variables
- o®(xy) = 3z,u (PARTICIPANT(x,y,z) & FLIGHT(z, 3:00AM))
® Database constraints ~ logical sentences expressing structural properties

- wx,yzu (PARTICIPANT(x,y,z) = 3t FLIGHT(z,t))
- vxy,z (FLIGHT(x,y) & FLIGHT(x,z) = y=z)

11

The Data Interoperability Challenge

® Data-Interoperability:

-~ Data may be distributed over different sources, using different schemas.

- Applications need to access all these data.

12

The Data Interoperability Challenge

® Data-Interoperability:

-~ Data may be distributed over different sources, using different schemas.

- Applications need to access all these data.

® How can we uniformly access and manipulate data across sources?

12

The Data Interoperability Challenge

® Data-Interoperability:

-~ Data may be distributed over different sources, using different schemas.

- Applications need to access all these data.
® How can we uniformly access and manipulate data across sources?
® Two examples of data interoperability tasks:

- Data Integration

- Data Exchange

12

Data Exchange

Transform data structured under a source schemas into
data structured under a target schema.

Source Target
Schema S Schema T

13

Data Integration

Query heterogeneous data in different sources via a virtual

global schema

/S S
I \
‘ 1 | ~ /(Virtual) Global |

/ S, /_ Schema
L
S5 query q

—

14

Schema Mappings

® A schema mappings is a logical specification of the relationships
between two database schemas.

® Schema mappings are fundamental in the formalization data
interoperability tasks such as data exchange and data integration.

15

Schema Mappings

A schema mappings is a logical specification of the relationships
between two database schemas.

Schema mappings are fundamental in the formalization data
interoperability tasks such as data exchange and data integration.

Formally, a schema mapping is a triple M=(S,T,Z), where

- Sand T are schemas (the “source schema” and the “target schema”)

—~ X is a collection of constraints involving the relations of S and T,

specified in some schema mapping language (details to come). E.g.,
vX,y,Z(PARTICIPANT(x,y,z) = MAILINGLIST(x,y)).

15

Schema Mapping Languages

® The choice of schema mapping language involves a compromise
between expressive power and practical usability.

- Allowing arbitrary FO sentences in X would make the interesting problems
undecidable.

® Two of the most important schema mapping specification languages:

- GLAV constraints. These are dependencies vx (dp(x) = 3y P(x,y)) where
* & isa conjunction of relational atomic formulas over the source schema
e 1 isa conjunction of relational atomic formulas over the target schema.

- GAV constraints: special case of GLAV where the consequent is a single
atomic formula (no existential quantification)

- LAV constraints: special case of GLAV where the antecedent is a single
atomic formula.

16

Semantics of Schema Mappings

= M=(5, T, X) schema mapping I]
Wlth Y a set Of GL AV constraints. e e

" From a semantic point of view, M can be identified with the set of all its
positive data examples.

e Data Example: A pair (I,]) where I is a source instance and] is a target instance.
® Positive Data Example for M: a data example (I,]) such that (I]) = =

® Negative Data Example for M: a data example (I,J) such that (I,]) = X
e If (I]) is a positive data example for M, we say that] is a solution for I w.r.t. M.

Sem(M) ={ (I]): Jis a solution for I w.r.t. M }

17

Examples

® Consider the schema mapping M = ({E}, {F}, Z), where
- X ={ Exy) =3z (FXxz)AF(zy)))

® Positive Data Examples (I,J) (i.e.,] a solution for I w.r.t. M)

- | = { E(llz) }] — { F(lll)/ F(llz) }
- I={E1,2)!}] = { F(1,xxx), F(xxx,2) }
- I={E1,2)}] ={ F(1,xxx), F(xxx,2), F(2,3) }

® Negative Data Examples (I,J) (i.e.,] not a solution for [w.r.t. M)

- I = { E(1,2) }]

{F(1,3), F(4,2) }

18

Data Exchange via a Schema Mapping
2

Source Target
Schema S Schema T

Data Exchange via the schema mapping M = (S, T, L):

Given a source instance I, construct a solution J for I.

= Typically, there are multiple solutions
® Which one is the “best” to materialize?

19

Data Exchange & Universal solutions

Fagin, Kolaitis, Miller, Popa (2003):

Identified and studied the concept of a universal solution in data
exchange.

- A universal solution is a most general solution.

-~ Auniversal solution “represents” the entire space of solutions.

20

Universal Solutions in Data Exchange

Allow two types of values in instances: constant values and (labelled) null
values.

Definition (FKMP): A solution J for I is universal if it has homomorphisms
to all other solutions for I, where the homomorphism may only change the
null values.

(thus, a universal solution is a “most general” solution).

Basic result (FKMP): Universal solutions can be constructed in PTIME (data
complexity) using an algorithm called the chase.

21

Universal Solutions in Data Exchange

.
*
.
.
L
.
.
*
.
*
.
*
*
*
*
*
’0
*

*
-
-
.
e
I
.
4,
",
LTy
Ty,

2

.
.
“““
. *
'y *
. *
. *

A
“““
'y *
“ ’0
** .

0..

'

.

ay
"a,
LN

*
.
IIIIIIIIIIII

] Universal Solution

Homomorphisms

*
.
.
.
.t
an®

Data Integration

Query heterogeneous data in different sources via a virtual

global schema

/S S
I \
‘ 1 | ~ /(Virtual) Global |

/ S, /_ Schema
L
S5 query q

—

23

Data Integration

Query heterogeneous data in different sources via a virtual

global schema

Source (Virtual)
schema S Global Schema

\\

Source
Instance I query q

w

24

Certain answers

® LetIbe a source instance and let q be a target query (a query over T).

® Definition: certainm(q,I) = f {q(J) | J solution of I w.r.t. M}

~ Idea: certainm(q,I) contains the tuples that belong to the answer of g in
all solutions of I.

25

Certain answers

® LetIbe a source instance and let q be a target query (a query over T).

® Definition: certainm(q,I) = f {q(J) | J solution of I w.r.t. M}

~ Idea: certainm(q,I) contains the tuples that belong to the answer of g in
all solutions of I.

® If the query is a UCQ, then certainm(qg,I) can be computed in PTIME.

- via universal solutions or via query rewriting

25

Computing certain answers

® Theorem (Fagin, Kolaitis, Miller, Popa 2003):

-~ Let] be a universal solution of I w.r.t. M. Then for every UCQ q,
certainm(q,I) = q(J),

® Theorem (Abiteboul, Duschka 1998 ++) :

- For every target UCQ q, there is a source UCQ q’ such that q'(I) =
certainm(q,]).

26

Where to get your schema mapping

® Constructing a schema mapping is the first step in data exchange
and data integration.

Where to get your schema mapping

® Constructing a schema mapping is the first step in data exchange
and data integration.

® Common approach (Clio, HepToX, Microsoft mapping composer):

derive a schema mapping from a schema matching (a collection
of correspondences between attributes of the two schemas).

The schema matching itself is obtained semi-automatically using
schema matching techniques or by interaction with a user.

NB: a schema matching does not uniquely determine a schema

mapping.

4 Clio
File Database Mappings Help

¢ source| € Target g Schema View | 2 queny| IEM.
| Source schemas Target schema company x grant x project
= X¥ expenseDB: Record -l = XY statisticsDB: Record]
= £ Set - = {9 Set -
- BH company: Record -~ Ef cityStatistics: Record
B> cid (stingrmeea__ - B ity (ring = city
B cname (stringrem, el | =) Set -
— B city (stringF="" \ = Q organization: Record
=) Set - ™ == @ cid (string) = cid
- HH grant: Record ==—t> f cname (sting) Ppm——
B cid (sving) = £ Set
B gid (stringr= - A funding: Record
B> amount (string > @ ogid (string = gid
B> project (string @ oo in)—y [=
= Set 7 B fad (sting) = Sk} ojact, amount cname, <
- B project: Record B recv (sing) -
B name (string) 5§ Set
B> year (sting = HH financial: Record

Data Examples

® Using data examples in schema mapping design:

- Data examples can be used to illustrate a candidate schema mapping

- Deriving schema mappings from examples (learning problem)

® Labeled data examples: a data example (I,]) labeled as being

- positive -- meaning that J is a solution for |,
- negative -- meaning that J is not a solution for I, or

- universal -- meaning] is a universal solution for I.

29

Uniquely Characterizing Data
Examples

® A set E of labeled data examples uniquely characterizes a schema
mapping M, within a class of schema mappings C, if

- M fits all data examples in E.

- every schema mapping M’ € C that fits all examples in E is logically
equivalent to M.

30

® Let M be the schema mapping specified by the GLAV constraint
vx,y (E(x,y) = F(xy)).

e This is both a GAV schema mapping and a LAV schema mapping.

—~ The universal data example (I,]) with I={E(a,b)},J={F(a,b) }
uniquely characterizes M w.r.t. the class of all LAV constraints.

— There is a finite set of universal examples that uniquely characterizes
M w.r.t. the class of all GAV constraints.

— There is no finite set of universal examples that uniquely
characterizes M w.r.t. the class of all GLAV constraints.

31

® Problem: which GAV schema mappings are uniquely
characterizable, by a finite set of labeled data examples,
within the class of GAV schema mappings?

® The solution was obtained through an intimate connection
with dualities in the homomorphism lattice.

33

More about homomorphisms

34

More about homomorphisms

® Fix aschemas.

- When we speak of structures, we will mean finite structures over S.

- We will assume that S contains at least one non-unary relation
symbol.

34

More about homomorphisms

® Fix aschemas.

- When we speak of structures, we will mean finite structures over S.

- We will assume that S contains at least one non-unary relation
symbol.

® Recall: (FinStr[S], —) is a quasi-order (reflexive and transitive).

34

More about homomorphisms

® Fix aschemas.

- When we speak of structures, we will mean finite structures over S.

- We will assume that S contains at least one non-unary relation
symbol.

® Recall: (FinStr[S], —) is a quasi-order (reflexive and transitive).

® We can construct a partially ordered set (poset) by taking the
homomorphic equivalence classes.

34

More about homomorphisms

® Fix aschemas.

- When we speak of structures, we will mean finite structures over S.

- We will assume that S contains at least one non-unary relation
symbol.

® Recall: (FinStr[S], —) is a quasi-order (reflexive and transitive).

® We can construct a partially ordered set (poset) by taking the
homomorphic equivalence classes.

® However, it turns out there is a nicer way to present this poset.

34

The Core of a Structure

® Definition:

- The core of a (finite) structure I, denoted core(I), is the smallest
substructure of I that is homomorphically equivalent to I.

- A structure I is a core if I=core(I).

35

The Core of a Structure

® Definition:

- The core of a (finite) structure I, denoted core(I), is the smallest
substructure of I that is homomorphically equivalent to I.

- A structure I is a core if I=core(I).
® Theorem [Hell and Nesetril 1992]:

- core(l) always exists and is unique up to isomorphism

- I 2]iff core(I) and core(]) are isomorphic.

35

The Core of a Structure

® Definition:

- The core of a (finite) structure I, denoted core(I), is the smallest
substructure of I that is homomorphically equivalent to I.

- A structure I is a core if I=core(I).
® Theorem [Hell and Nesetril 1992]:

- core(l) always exists and is unique up to isomorphism

- I 2]iff core(I) and core(]) are isomorphic.

® Corollary:

- ifIland] are cores and I 2 J then I and J are isomorphic.

- every ~-equivalence class has a unique (up to isomorphism) smallest

representative which is a core.
35

Examples

Q——QQ<«<——Q«—0

The Homomorphism Lattice.

® Let CoreStr[S] be the set of all non-isomorphic (finite) core
structures over schema S. Then (CoreStr[S],—) is a poset,
and in fact a lattice.

37

The Homomorphism Lattice.

Let CoreStr[S] be the set of all non-isomorphic (finite) core
structures over schema S. Then (CoreStr[S],—) is a poset,
and in fact a lattice.

This lattice has been extensively studied. For example:

-~ Theorem [Pultr and Trnkova 1980]: Every countable poset is
isomorphic to a suborder of (CoreStr[S],—)

37

= ={J:]—=1)

38

o 1 —:J—T]

- Example (for graphs): —K, = Class of 2-colorable graphs

38

o —I ={:]—=1Ij
- Example (for graphs): —K, = Class of 2-colorable graphs

¢ [—- ={JI—]]

38

o —I ={:]—=1Ij
- Example (for graphs): —K, = Class of 2-colorable graphs
o > —(:1-])

- Example (for graphs): K>— = Class of graphs with at least one edge.

38

o —I ={:]—=1Ij
- Example (for graphs): —K, = Class of 2-colorable graphs
o > —(:1-])

- Example (for graphs): K>— = Class of graphs with at least one edge.

38

o —I ={:]—=1Ij
- Example (for graphs): —K, = Class of 2-colorable graphs
o > —(:1-])

- Example (for graphs): K>— = Class of graphs with at least one edge.

® Note:

38

o —I ={:]—=1Ij
- Example (for graphs): —K, = Class of 2-colorable graphs
o > —(:1-])

- Example (for graphs): K>— = Class of graphs with at least one edge.

® Note:

- —Il defines a downward closed set in the homomorphism lattice.

38

o —I ={:]—=1Ij
- Example (for graphs): —K, = Class of 2-colorable graphs
o > —(:1-])

- Example (for graphs): K>— = Class of graphs with at least one edge.

® Note:

- —Il defines a downward closed set in the homomorphism lattice.

- I defines an upward closed set in the homomorphism lattice.

38

o —I ={:]—=1Ij
- Example (for graphs): —K, = Class of 2-colorable graphs
o > —(:1-])

- Example (for graphs): K>— = Class of graphs with at least one edge.

® Note:

- —Il defines a downward closed set in the homomorphism lattice.
- I defines an upward closed set in the homomorphism lattice.

-~ I+ defines a downward closed set in the homomorphism lattice.

38

Simple Duality Pairs

® Definition: Let D and F be two finite structures

- (ED)is a duality pair if =D = F»
-~ In other words, for every structure I, I — D if and only if F » 1.

— In this case, we say that F is an obstruction for D.

39

Simple Duality Pairs

® Definition: Let D and F be two finite structures

- (ED)is a duality pair if =D = F»
-~ In other words, for every structure I, I — D if and only if F » 1.

— In this case, we say that F is an obstruction for D.

® Example:

- For graphs, (K, K1) is a duality pair

39

® Gallai-Hasse-Roy-Vitaver Theorem (~1965) for directed graphs:

~ Let Tk be the linear order with k elements, Px:1 be the path with k+1
elements. Then (Px1, Tx) is a duality pair, since for every directed
graphs H, H — Ty if and only if Pii1 » H.

40

Duality Pairs

® Theorem (Konig 1936): A graph is 2-colorable if and only if it

contains no cycle of odd length. In symbols, =K, =iz (Cais1#).

41

Duality Pairs

Theorem (Konig 1936): A graph is 2-colorable if and only if it

contains no cycle of odd length. In symbols, =K, =iz (Cais1#).

Definition: Let F and D be two sets of structures. We say that (F, D)

is a duality pair if Upep (—=D) =g c p(F»).

~ In other words, for every structure I, tfae:
e There is a structure D in D such thatI — D.
 For every structure F in F, we have F » L.

~ In this case, we say that F is an obstruction set for D.

41

Duality Pair (F,D),where
P={F1,F2,...} Di Dz
D={D,D,,...} '

“Desires”

Fle ”

“Frustrations”

42

Example

»

® Let F be the one-element cycle.

43

Example

»

® Let F be the one-element cycle.
® Question: Is {F} an obstruction set for a finite set of structures?

- Le, is there a duality pair of the form ({F},D) ?

43

Example

'

® Let F be the one-element cycle.
® Question: Is {F} an obstruction set for a finite set of structures?
- Le, is there a duality pair of the form ({F},D) ?

® No. This has to do with the fact that F contains a cycle.

43

Acyclicity

® The incidence graph inc(A) of a structure A is the bipartite graph
with

- nodes: the elements of A and the atomic facts (e.g., R(ay,...,an)) of A

- edges between elements and facts in which they occur

44

Acyclicity

® The incidence graph inc(A) of a structure A is the bipartite graph
with

- nodes: the elements of A and the atomic facts (e.g., R(ay,...,an)) of A

- edges between elements and facts in which they occur
® The structure A is acyclic if

- Inc(A) is acyclic, and

- No element occurs twice in the the same fact.

44

Characterization of Obstruction Sets

® Theorem (Foniok, Nesetiil, and Tardif 2008):

~ Let F be a finite set of homomorphically incomparable core
structures. Ttae:

e Fis an obstruction set of some finite set D of structures.
e Each structure in F is acyclic.

- Moreover, there is an algorithm that, given such a set F consisting
of acyclic structures, computes a finite set D of structures such that
(F, D) is a duality pair.

45

Characterization of Obstruction Sets

® Theorem (Foniok, Nesetiil, and Tardif 2008):

~ Let F be a finite set of homomorphically incomparable core
structures. Ttae:

e Fis an obstruction set of some finite set D of structures.
e Each structure in F is acyclic.

- Moreover, there is an algorithm that, given such a set F consisting
of acyclic structures, computes a finite set D of structures such that
(F, D) is a duality pair.

® In particular, if F is the one-element cycle, then {F} is not an
obstruction set of any finite set of structures.

45

Structures with Constant Symbols

46

Structures with Constant Symbols

® The preceding theorem extends to structures with constant
symbols when acyclicity is replaced by c-acyclicity.

46

Structures with Constant Symbols

® The preceding theorem extends to structures with constant
symbols when acyclicity is replaced by c-acyclicity.

® A structure with constant symbols is c-acyclic if

- Every cycle in Inc(A) contains an element named by a constant
symbol, and

-~ Only elements named by constant symbols may occur twice in the
same fact.

46

Back to Schema Mappings

® The canonical structure of a GAV constraint
Vx ((Pl(x) Ao N (PK(X) — R(xi1, .. .,Xim))
is the structure with

— domain: the variables in x themselves
- atomic facts: @1(x), ..., px(x)

- constant symbols cy,...,cm denoting Xii, ..., Xim

47

Back to Schema Mappings

® The canonical structure of a GAV constraint
Vx ((Pl(x) Ao N (PK(X) — R(xi1, .. .,Xim))
is the structure with

— domain: the variables in x themselves
- atomic facts: @1(x), ..., px(x)

- constant symbols cy,...,cm denoting Xii, ..., Xim

® Example: Vxyz (E(x,y) A E(y,z) — R(x,z)) has canonical structure

47

Back to Schema Mappings

® The canonical structure of a GAV constraint
Vx ((Pl(x) Ao N (PK(X) — R(xi1, .. .,Xim))
is the structure with

— domain: the variables in x themselves
- atomic facts: @1(x), ..., px(x)

- constant symbols cy,...,cm denoting Xii, ..., Xim

® Example: Vxyz (E(x,y) A E(y,z) — R(x,z)) has canonical structure

E E
90— 0—> 0"

47

48

® Theorem: Let M = (S, T, X) be a GAV schema mapping. Tfae:

- Mis uniquely characterizable within the class of all GAV constraints.

- For every target relation symbol R, the set of the canonical structures
of the GAV constraints in X with R as their consequent is the
obstruction set of some finite set D of structures.

48

® Theorem: Let M = (S, T, X) be a GAV schema mapping. Tfae:

- Mis uniquely characterizable within the class of all GAV constraints.

- For every target relation symbol R, the set of the canonical structures
of the GAV constraints in X with R as their consequent is the
obstruction set of some finite set D of structures.

® Corollary: testing unique characterizability is NP-complete, and
one can effectively construct a uniquely characterizing finite set of
data examples if it exists.

48

Summary

® Schema mappings: a fundamental building block in the study of
data-interoperability problems.

® Homomorphism dualities: a powerful tool from graph theory
(with many applications in constraint satisfaction as well)

49

Main References

Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, Lucian Popa (2003)
Data Exchange: Semantics and Query Answering. ICDT 2003: 207-224

Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and Wang Chiew

Tan (2011). Characterizing schema mappings via data examples. ACM
Trans. Database Syst., 36(4):23

Pavol Hell and Jaroslav Nesetril (2004). Graphs and homomorphisms.

50

http://www.informatik.uni-trier.de/~ley/pers/hd/f/Fagin:Ronald.html
http://www.informatik.uni-trier.de/~ley/pers/hd/f/Fagin:Ronald.html
http://www.informatik.uni-trier.de/~ley/pers/hd/k/Kolaitis:Phokion_G=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/k/Kolaitis:Phokion_G=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Miller:Ren=eacute=e_J=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Miller:Ren=eacute=e_J=.html
http://www.informatik.uni-trier.de/~ley/db/conf/icdt/icdt2003.html#FaginKMP03
http://www.informatik.uni-trier.de/~ley/db/conf/icdt/icdt2003.html#FaginKMP03

