
Schema Mappings and
Data Examples

Balder ten Cate
UC Santa Cruz & LogicBlox

TbiLLC 2013 - Gudauri

1

Relational Databases for Logicians*

• Database schema ~ a finite relational signature. E.g.,

- { PARTICIPANT(name, email, flight-nr), FLIGHT(flight-nr, dept-time) }

2

 *) an oversimplified picture.

Relational Databases for Logicians*

• Database schema ~ a finite relational signature. E.g.,

- { PARTICIPANT(name, email, flight-nr), FLIGHT(flight-nr, dept-time) }

• Database instance (of a given schema) ~ a finite structure.

2

 *) an oversimplified picture.

Relational Databases for Logicians*

• Database schema ~ a finite relational signature. E.g.,

- { PARTICIPANT(name, email, flight-nr), FLIGHT(flight-nr, dept-time) }

• Database instance (of a given schema) ~ a finite structure.

• Database queries ~ logical formulas with free variables

- φ(x,y) = ∃z,u (PARTICIPANT(x,y,z) & FLIGHT(z, 3:00AM))

2

 *) an oversimplified picture.

Relational Databases for Logicians*

• Database schema ~ a finite relational signature. E.g.,

- { PARTICIPANT(name, email, flight-nr), FLIGHT(flight-nr, dept-time) }

• Database instance (of a given schema) ~ a finite structure.

• Database queries ~ logical formulas with free variables

- φ(x,y) = ∃z,u (PARTICIPANT(x,y,z) & FLIGHT(z, 3:00AM))

• Database constraints ~ logical sentences expressing structural properties

- ∀x,y,z,u (PARTICIPANT(x,y,z) → ∃t FLIGHT(z,t))

- ∀x,y,z (FLIGHT(x,y) & FLIGHT(x,z) → y=z)

2

 *) an oversimplified picture.

3

Edgar F. Codd (1923-2003)

Query Languages

• Most important query languages

- Conjunctive Queries (CQs): !(x) = ∃y ("1(x,y) ∧ ... ∧ "n(x,y))

- Unions of Conjunctive Queries (UCQs): disjunctions of CQs.

- First-order Queries (~ SQL queries)

- Datalog (the least-fixpoint extension of UCQs)

4

Query Languages

• Most important query languages

- Conjunctive Queries (CQs): !(x) = ∃y ("1(x,y) ∧ ... ∧ "n(x,y))

- Unions of Conjunctive Queries (UCQs): disjunctions of CQs.

- First-order Queries (~ SQL queries)

- Datalog (the least-fixpoint extension of UCQs)

• Most database queries in practice are CQs (a.k.a. SELECT-FROM-WHERE)

4

Query Languages

• Most important query languages

- Conjunctive Queries (CQs): !(x) = ∃y ("1(x,y) ∧ ... ∧ "n(x,y))

- Unions of Conjunctive Queries (UCQs): disjunctions of CQs.

- First-order Queries (~ SQL queries)

- Datalog (the least-fixpoint extension of UCQs)

• Most database queries in practice are CQs (a.k.a. SELECT-FROM-WHERE)

• UCQs form a “robustly decidable” fragment of FO logic.

- In particular, equivalence is decidable (NP-complete).

4

Excursion: decidable fragments of FO

• Unions of Conjunctive queries:

- φ(x) := R(x) | xi=xj | φ(x) ∧ φ(x) | φ(x) v φ(x) | ∃y φ(x,y)

• The modal fragment:

- φ(x) := P(x) | φ(x) ∧ φ(x) | ¬φ(x) | ∃y(Rxy ∧ φ(y))

5

Excursion: decidable fragments of FO

• Unions of Conjunctive queries:

- φ(x) := R(x) | xi=xj | φ(x) ∧ φ(x) | φ(x) v φ(x) | ∃y φ(x,y)

• The modal fragment:

- φ(x) := P(x) | φ(x) ∧ φ(x) | ¬φ(x) | ∃y(Rxy ∧ φ(y))

• UNFO (Unary-Negation Fragment of FO) [tC & Segoufin 2011]

- φ(x) := R(x) | xi=xj | φ(x) ∧ φ(x) | φ(x) v φ(x) | ¬φ(x) | ∃y φ(x,y)

5

Excursion: decidable fragments of FO

• Unions of Conjunctive queries:

- φ(x) := R(x) | xi=xj | φ(x) ∧ φ(x) | φ(x) v φ(x) | ∃y φ(x,y)

• The modal fragment:

- φ(x) := P(x) | φ(x) ∧ φ(x) | ¬φ(x) | ∃y(Rxy ∧ φ(y))

• UNFO (Unary-Negation Fragment of FO) [tC & Segoufin 2011]

- φ(x) := R(x) | xi=xj | φ(x) ∧ φ(x) | φ(x) v φ(x) | ¬φ(x) | ∃y φ(x,y)

• Further extension: GNFO (Guarded-Negation Fragment of FO)
[Barany, tC & Segoufin 2011]

5

Homomorphisms

• Conjunctive queries are intimately tied to homomorphisms.

6

Homomorphisms

• Conjunctive queries are intimately tied to homomorphisms.

• Definition:

- Let I and J be instances (i.e., finite structures) over the same schema.
A homomorphism h: I → J is a map from the domain of I to the
domain of J such that (a,b,c) ∈ RI implies (h(a),h(b),h(c)) ∈ RJ.

6

Examples

7

• Def: A query q is preserved by homomorphism if for all instances I and J and
for all homomorphisms h:I → J, (a,b,c) ∈ q(I) implies (h(a),h(b),h(c)) ∈ q(J).

8

• Def: A query q is preserved by homomorphism if for all instances I and J and
for all homomorphisms h:I → J, (a,b,c) ∈ q(I) implies (h(a),h(b),h(c)) ∈ q(J).

• Thm. A first-order query is preserved by homomorphisms if and only if it is
equivalent to a union of conjunctive queries [Rossman 2005].

- One of the few preservation theorems that hold over finite structures.

8

The Homomorphism Quasi-Order

• We write I → J if there is a homomorphism h: I → J.

• Fix any relational schema S and let FinStr[S] be the
finite structures (i.e., instances) over S.

• (FinStr[S], →) is a quasi-order (reflexive and transitive).

• Its structure has been extensively studied. We will
make use of some beautiful results from this area.

9

Database Constraints

• Database constraints express structural properties of relations in a schema.

- ∀x,y,z,u (PARTICIPANT(x,y,z) → ∃t FLIGHT(z,t))

- ∀x,y,z (FLIGHT(x,y) & FLIGHT(x,z) → y=z)

10

Database Constraints

• Database constraints express structural properties of relations in a schema.

- ∀x,y,z,u (PARTICIPANT(x,y,z) → ∃t FLIGHT(z,t))

- ∀x,y,z (FLIGHT(x,y) & FLIGHT(x,z) → y=z)

• Traditional uses of constraints:

- Schema design, integrity control, query optimization

10

Database Constraints

• Database constraints express structural properties of relations in a schema.

- ∀x,y,z,u (PARTICIPANT(x,y,z) → ∃t FLIGHT(z,t))

- ∀x,y,z (FLIGHT(x,y) & FLIGHT(x,z) → y=z)

• Traditional uses of constraints:

- Schema design, integrity control, query optimization

• The most well-studied language for specifying constraints:

- Dependencies : ∀x ("1 ∧ ... ∧ "n → ∃y (#1 ∧ ... ∧ #n))

- Rich enough to express most database constraints in practice.

- Unfortunately, basic tasks (e.g., entailment) are undecidable.

10

Relational Databases for Logicians*

• Database schema ~ a finite relational signature. E.g.,

- { PARTICIPANT(name, email, flight-nr), FLIGHT(flight-nr, dept-time) }

• Database instance (of a given schema) ~ a finite structure.

• Database queries ~ logical formulas with free variables

- φ(x,y) = ∃z,u (PARTICIPANT(x,y,z) & FLIGHT(z, 3:00AM))

• Database constraints ~ logical sentences expressing structural properties

- ∀x,y,z,u (PARTICIPANT(x,y,z) → ∃t FLIGHT(z,t))

- ∀x,y,z (FLIGHT(x,y) & FLIGHT(x,z) → y=z)

11

 *) an oversimplified picture.

The Data Interoperability Challenge

• Data-Interoperability:

- Data may be distributed over different sources, using different schemas.

- Applications need to access all these data.

12

The Data Interoperability Challenge

• Data-Interoperability:

- Data may be distributed over different sources, using different schemas.

- Applications need to access all these data.

• How can we uniformly access and manipulate data across sources?

12

The Data Interoperability Challenge

• Data-Interoperability:

- Data may be distributed over different sources, using different schemas.

- Applications need to access all these data.

• How can we uniformly access and manipulate data across sources?

• Two examples of data interoperability tasks:

- Data Integration

- Data Exchange

12

Data Exchange

Transform data structured under a source schemas into
data structured under a target schema.

13

Source
Schema S

 Target
Schema T

I
J

Σ

Data Integration

Query heterogeneous data in different sources via a virtual
global schema

14

query q

I1

I2

I3

 S1

S2

 S3

(Virtual) Global

Schema

T

Schema Mappings

• A schema mappings is a logical specification of the relationships
between two database schemas.

• Schema mappings are fundamental in the formalization data
interoperability tasks such as data exchange and data integration.

15

Schema Mappings

• A schema mappings is a logical specification of the relationships
between two database schemas.

• Schema mappings are fundamental in the formalization data
interoperability tasks such as data exchange and data integration.

• Formally, a schema mapping is a triple M=(S,T,Σ), where

- S and T are schemas (the “source schema” and the “target schema”)

- $ is a collection of constraints involving the relations of S and T,
specified in some schema mapping language (details to come). E.g.,
∀x,y,z(PARTICIPANT(x,y,z) → MAILINGLIST(x,y)).

15

Schema Mapping Languages

• The choice of schema mapping language involves a compromise
between expressive power and practical usability.

- Allowing arbitrary FO sentences in $ would make the interesting problems
undecidable.

• Two of the most important schema mapping specification languages:

- GLAV constraints. These are dependencies ∀x (%(x) → ∃y !(x,y)) where
• % is a conjunction of relational atomic formulas over the source schema
• ! is a conjunction of relational atomic formulas over the target schema.

- GAV constraints: special case of GLAV where the consequent is a single
atomic formula (no existential quantification)

- LAV constraints: special case of GLAV where the antecedent is a single
atomic formula.

16

17

 Semantics of Schema Mappings

 M = (S, T, Σ) schema mapping
 with Σ a set of GLAV constraints.

 From a semantic point of view, M can be identified with the set of all its
positive data examples.

• Data Example: A pair (I,J) where I is a source instance and J is a target instance.
• Positive Data Example for M: a data example (I,J) such that (I,J) ⊨ $
• Negative Data Example for M: a data example (I,J) such that (I,J) ⊨ $
• If (I,J) is a positive data example for M, we say that J is a solution for I w.r.t. M.

 Sem(M) = { (I,J): J is a solution for I w.r.t. M }

Source S Target T

J

$

I

Examples

• Consider the schema mapping M = ({E}, {F}, Σ), where

- $ = { E(x,y) → ∃z (F(x,z) & F(z,y)) }

• Positive Data Examples (I,J) (i.e., J a solution for I w.r.t. M)

- I = { E(1,2) } J = { F(1,1), F(1,2) }

- I = { E(1,2) } J = { F(1,xxx), F(xxx,2) }

- I = { E(1,2) } J = { F(1,xxx), F(xxx,2), F(2,3) }

• Negative Data Examples (I,J) (i.e., J not a solution for I w.r.t. M)

- I = { E(1,2) } J = { F(1,3) }

- I = { E(1,2) } J = { F(1,3), F(4,2) }

18

19

Data Exchange via a Schema Mapping

 Data Exchange via the schema mapping M = (S, T, Σ):
 Given a source instance I, construct a solution J for I.

 Difficulty:
 Typically, there are multiple solutions
 Which one is the “best” to materialize?

Source
Schema S

 Target
Schema T

I
J

Σ

20

Data Exchange & Universal solutions

Fagin, Kolaitis, Miller, Popa (2003):

Identified and studied the concept of a universal solution in data
exchange.

- A universal solution is a most general solution.

- A universal solution “represents” the entire space of solutions.

21

Universal Solutions in Data Exchange

Allow two types of values in instances: constant values and (labelled) null
values.

Definition (FKMP): A solution J for I is universal if it has homomorphisms
to all other solutions for I, where the homomorphism may only change the
null values.

(thus, a universal solution is a “most general” solution).

Basic result (FKMP): Universal solutions can be constructed in PTIME (data
complexity) using an algorithm called the chase.

22

Universal Solutions in Data Exchange

Schema S Schema T

J

Σ

J1
J2

J3

 Universal Solution

 Solutions

h1 h2 h3
Homomorphisms

I

Data Integration

Query heterogeneous data in different sources via a virtual
global schema

23

query q

I1

I2

I3

 S1

S2

 S3

(Virtual) Global

Schema

T

24

query q

 Source
schema S

(Virtual)

Global Schema

T Σ

Source
Instance I

Data Integration

Query heterogeneous data in different sources via a virtual
global schema

Certain answers

• Let I be a source instance and let q be a target query (a query over T).

• Definition: certainM(q,I) = ⋂{q(J) | J solution of I w.r.t. M}

- Idea: certainM(q,I) contains the tuples that belong to the answer of q in
all solutions of I.

25

Certain answers

• Let I be a source instance and let q be a target query (a query over T).

• Definition: certainM(q,I) = ⋂{q(J) | J solution of I w.r.t. M}

- Idea: certainM(q,I) contains the tuples that belong to the answer of q in
all solutions of I.

• If the query is a UCQ, then certainM(q,I) can be computed in PTIME.

- via universal solutions or via query rewriting

25

Computing certain answers

• Theorem (Fagin, Kolaitis, Miller, Popa 2003):

- Let J be a universal solution of I w.r.t. M. Then for every UCQ q,
certainM(q,I) = q(J)↓

• Theorem (Abiteboul, Duschka 1998 ++) :

- For every target UCQ q, there is a source UCQ q’ such that q’(I) =
certainM(q,I).

26

Where to get your schema mapping

• Constructing a schema mapping is the first step in data exchange
and data integration.

Where to get your schema mapping

• Constructing a schema mapping is the first step in data exchange
and data integration.

• Common approach (Clio, HepToX, Microsoft mapping composer):

- derive a schema mapping from a schema matching (a collection
of correspondences between attributes of the two schemas).

- The schema matching itself is obtained semi-automatically using
schema matching techniques or by interaction with a user.

- NB: a schema matching does not uniquely determine a schema
mapping.

Data Examples

• Using data examples in schema mapping design:

- Data examples can be used to illustrate a candidate schema mapping

- Deriving schema mappings from examples (learning problem)

• Labeled data examples: a data example (I,J) labeled as being

- positive -- meaning that J is a solution for I,

- negative -- meaning that J is not a solution for I, or

- universal -- meaning J is a universal solution for I.

29

Uniquely Characterizing Data
Examples

• A set E of labeled data examples uniquely characterizes a schema
mapping M, within a class of schema mappings C, if

- M fits all data examples in E.

- every schema mapping M’ ∈ C that fits all examples in E is logically
equivalent to M.

30

• Let M be the schema mapping specified by the GLAV constraint
∀x,y (E(x,y) → F(x,y)).

• This is both a GAV schema mapping and a LAV schema mapping.

- The universal data example (I,J) with I = { E(a,b) }, J = { F(a,b) }
uniquely characterizes M w.r.t. the class of all LAV constraints.

- There is a finite set of universal examples that uniquely characterizes
M w.r.t. the class of all GAV constraints.

- There is no finite set of universal examples that uniquely
characterizes M w.r.t. the class of all GLAV constraints.

31

32

J1

a b a b

a b a b

c d

e

c d

e

 I2 J2

I3 J3

I1

• Problem: which GAV schema mappings are uniquely
characterizable, by a finite set of labeled data examples,
within the class of GAV schema mappings?

• The solution was obtained through an intimate connection
with dualities in the homomorphism lattice.

33

More about homomorphisms

34

More about homomorphisms

• Fix a schema S.

- When we speak of structures, we will mean finite structures over S.

- We will assume that S contains at least one non-unary relation
symbol.

34

More about homomorphisms

• Fix a schema S.

- When we speak of structures, we will mean finite structures over S.

- We will assume that S contains at least one non-unary relation
symbol.

• Recall: (FinStr[S], →) is a quasi-order (reflexive and transitive).

34

More about homomorphisms

• Fix a schema S.

- When we speak of structures, we will mean finite structures over S.

- We will assume that S contains at least one non-unary relation
symbol.

• Recall: (FinStr[S], →) is a quasi-order (reflexive and transitive).

• We can construct a partially ordered set (poset) by taking the
homomorphic equivalence classes.

34

More about homomorphisms

• Fix a schema S.

- When we speak of structures, we will mean finite structures over S.

- We will assume that S contains at least one non-unary relation
symbol.

• Recall: (FinStr[S], →) is a quasi-order (reflexive and transitive).

• We can construct a partially ordered set (poset) by taking the
homomorphic equivalence classes.

• However, it turns out there is a nicer way to present this poset.

34

The Core of a Structure

• Definition:

- The core of a (finite) structure I, denoted core(I), is the smallest
substructure of I that is homomorphically equivalent to I.

- A structure I is a core if I=core(I).

35

The Core of a Structure

• Definition:

- The core of a (finite) structure I, denoted core(I), is the smallest
substructure of I that is homomorphically equivalent to I.

- A structure I is a core if I=core(I).

• Theorem [Hell and Nesetril 1992]:

- core(I) always exists and is unique up to isomorphism

- I ⇄ J iff core(I) and core(J) are isomorphic.

35

The Core of a Structure

• Definition:

- The core of a (finite) structure I, denoted core(I), is the smallest
substructure of I that is homomorphically equivalent to I.

- A structure I is a core if I=core(I).

• Theorem [Hell and Nesetril 1992]:

- core(I) always exists and is unique up to isomorphism

- I ⇄ J iff core(I) and core(J) are isomorphic.

• Corollary:

- if I and J are cores and I ⇄ J then I and J are isomorphic.

- every ~-equivalence class has a unique (up to isomorphism) smallest
representative which is a core.

35

Examples

36

The Homomorphism Lattice.

• Let CoreStr[S] be the set of all non-isomorphic (finite) core
structures over schema S. Then (CoreStr[S],→) is a poset,
and in fact a lattice.

37

The Homomorphism Lattice.

• Let CoreStr[S] be the set of all non-isomorphic (finite) core
structures over schema S. Then (CoreStr[S],→) is a poset,
and in fact a lattice.

• This lattice has been extensively studied. For example:

- Theorem [Pultr and Trnkova 1980]: Every countable poset is
isomorphic to a suborder of (CoreStr[S],→)

37

• →I = {J : J → I }

38

• →I = {J : J → I }

- Example (for graphs): →K2 = Class of 2-colorable graphs

38

• →I = {J : J → I }

- Example (for graphs): →K2 = Class of 2-colorable graphs

• I→ = {J: I → J}

38

• →I = {J : J → I }

- Example (for graphs): →K2 = Class of 2-colorable graphs

• I→ = {J: I → J}

- Example (for graphs): K2→ = Class of graphs with at least one edge.

38

• →I = {J : J → I }

- Example (for graphs): →K2 = Class of 2-colorable graphs

• I→ = {J: I → J}

- Example (for graphs): K2→ = Class of graphs with at least one edge.

38

• →I = {J : J → I }

- Example (for graphs): →K2 = Class of 2-colorable graphs

• I→ = {J: I → J}

- Example (for graphs): K2→ = Class of graphs with at least one edge.

• Note:

38

• →I = {J : J → I }

- Example (for graphs): →K2 = Class of 2-colorable graphs

• I→ = {J: I → J}

- Example (for graphs): K2→ = Class of graphs with at least one edge.

• Note:

- →I defines a downward closed set in the homomorphism lattice.

38

• →I = {J : J → I }

- Example (for graphs): →K2 = Class of 2-colorable graphs

• I→ = {J: I → J}

- Example (for graphs): K2→ = Class of graphs with at least one edge.

• Note:

- →I defines a downward closed set in the homomorphism lattice.

- I→ defines an upward closed set in the homomorphism lattice.

38

• →I = {J : J → I }

- Example (for graphs): →K2 = Class of 2-colorable graphs

• I→ = {J: I → J}

- Example (for graphs): K2→ = Class of graphs with at least one edge.

• Note:

- →I defines a downward closed set in the homomorphism lattice.

- I→ defines an upward closed set in the homomorphism lattice.

- I↛ defines a downward closed set in the homomorphism lattice.

38

Simple Duality Pairs

• Definition: Let D and F be two finite structures

- (F,D) is a duality pair if →D = F↛

- In other words, for every structure I, I → D if and only if F ↛ I.

- In this case, we say that F is an obstruction for D.

39

Simple Duality Pairs

• Definition: Let D and F be two finite structures

- (F,D) is a duality pair if →D = F↛

- In other words, for every structure I, I → D if and only if F ↛ I.

- In this case, we say that F is an obstruction for D.

• Example:

- For graphs, (K2, K1) is a duality pair

39

• Gallai-Hasse-Roy-Vitaver Theorem (~1965) for directed graphs:

- Let Tk be the linear order with k elements, Pk+1 be the path with k+1
elements. Then (Pk+1, Tk) is a duality pair, since for every directed
graphs H, H → Tk if and only if Pk+1 ↛ H.

40

Duality Pairs

• Theorem (König 1936): A graph is 2-colorable if and only if it

contains no cycle of odd length. In symbols, →K2 = ∩i≥0 (C2i+1↛).

41

Duality Pairs

• Theorem (König 1936): A graph is 2-colorable if and only if it

contains no cycle of odd length. In symbols, →K2 = ∩i≥0 (C2i+1↛).

• Definition: Let F and D be two sets of structures. We say that (F, D)

is a duality pair if ∪D ∈ D (→D) = ∩F ∈ F(F↛).

- In other words, for every structure I, tfae:

• There is a structure D in D such that I → D.

• For every structure F in F, we have F ↛ I.

- In this case, we say that F is an obstruction set for D.

41

42

Duality Pair (F,D),where

F = {F1,F2,…}

D = {D1,D2,…}

“Desires”

“Frustrations”

Example

• Let F be the one-element cycle.

43

Example

• Let F be the one-element cycle.

• Question: Is {F} an obstruction set for a finite set of structures?

- I.e., is there a duality pair of the form ({F},D) ?

43

Example

• Let F be the one-element cycle.

• Question: Is {F} an obstruction set for a finite set of structures?

- I.e., is there a duality pair of the form ({F},D) ?

• No. This has to do with the fact that F contains a cycle.

43

Acyclicity

• The incidence graph inc(A) of a structure A is the bipartite graph
with

- nodes: the elements of A and the atomic facts (e.g., R(a1,...,an)) of A

- edges between elements and facts in which they occur

44

Acyclicity

• The incidence graph inc(A) of a structure A is the bipartite graph
with

- nodes: the elements of A and the atomic facts (e.g., R(a1,...,an)) of A

- edges between elements and facts in which they occur

• The structure A is acyclic if

- Inc(A) is acyclic, and

- No element occurs twice in the the same fact.

44

Characterization of Obstruction Sets

• Theorem (Foniok, Nešetřil, and Tardif 2008):

- Let F be a finite set of homomorphically incomparable core
structures. Tfae:

• F is an obstruction set of some finite set D of structures.

• Each structure in F is acyclic.

- Moreover, there is an algorithm that, given such a set F consisting
of acyclic structures, computes a finite set D of structures such that
(F, D) is a duality pair.

45

Characterization of Obstruction Sets

• Theorem (Foniok, Nešetřil, and Tardif 2008):

- Let F be a finite set of homomorphically incomparable core
structures. Tfae:

• F is an obstruction set of some finite set D of structures.

• Each structure in F is acyclic.

- Moreover, there is an algorithm that, given such a set F consisting
of acyclic structures, computes a finite set D of structures such that
(F, D) is a duality pair.

• In particular, if F is the one-element cycle, then {F} is not an
obstruction set of any finite set of structures.

45

Structures with Constant Symbols

46

Structures with Constant Symbols

• The preceding theorem extends to structures with constant
symbols when acyclicity is replaced by c-acyclicity.

46

Structures with Constant Symbols

• The preceding theorem extends to structures with constant
symbols when acyclicity is replaced by c-acyclicity.

• A structure with constant symbols is c-acyclic if

- Every cycle in Inc(A) contains an element named by a constant
symbol, and

- Only elements named by constant symbols may occur twice in the
same fact.

46

Back to Schema Mappings

• The canonical structure of a GAV constraint

 ∀x (ϕ1(x) ∧ ... ∧ ϕκ(x) → R(xi1,…,xim))

 is the structure with

- domain: the variables in x themselves

- atomic facts: '1(x), ..., '((x)

- constant symbols c1,…,cm denoting xi1,…,xim

47

Back to Schema Mappings

• The canonical structure of a GAV constraint

 ∀x (ϕ1(x) ∧ ... ∧ ϕκ(x) → R(xi1,…,xim))

 is the structure with

- domain: the variables in x themselves

- atomic facts: '1(x), ..., '((x)

- constant symbols c1,…,cm denoting xi1,…,xim

• Example: ∀xyz (E(x,y) ∧ E(y,z) → R(x,z)) has canonical structure

47

Back to Schema Mappings

• The canonical structure of a GAV constraint

 ∀x (ϕ1(x) ∧ ... ∧ ϕκ(x) → R(xi1,…,xim))

 is the structure with

- domain: the variables in x themselves

- atomic facts: '1(x), ..., '((x)

- constant symbols c1,…,cm denoting xi1,…,xim

• Example: ∀xyz (E(x,y) ∧ E(y,z) → R(x,z)) has canonical structure

47

E E
c1 c2

48

• Theorem: Let M = (S, T, Σ) be a GAV schema mapping. Tfae:

- M is uniquely characterizable within the class of all GAV constraints.

- For every target relation symbol R, the set of the canonical structures
of the GAV constraints in $ with R as their consequent is the
obstruction set of some finite set D of structures.

48

• Theorem: Let M = (S, T, Σ) be a GAV schema mapping. Tfae:

- M is uniquely characterizable within the class of all GAV constraints.

- For every target relation symbol R, the set of the canonical structures
of the GAV constraints in $ with R as their consequent is the
obstruction set of some finite set D of structures.

• Corollary: testing unique characterizability is NP-complete, and
one can effectively construct a uniquely characterizing finite set of
data examples if it exists.

48

Summary

• Schema mappings: a fundamental building block in the study of
data-interoperability problems.

• Homomorphism dualities: a powerful tool from graph theory
(with many applications in constraint satisfaction as well)

49

Main References

• Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, Lucian Popa (2003)
Data Exchange: Semantics and Query Answering. ICDT 2003: 207-224

• Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and Wang Chiew
Tan (2011). Characterizing schema mappings via data examples. ACM
Trans. Database Syst., 36(4):23

• Pavol Hell and Jaroslav Nesetril (2004). Graphs and homomorphisms.

50

http://www.informatik.uni-trier.de/~ley/pers/hd/f/Fagin:Ronald.html
http://www.informatik.uni-trier.de/~ley/pers/hd/f/Fagin:Ronald.html
http://www.informatik.uni-trier.de/~ley/pers/hd/k/Kolaitis:Phokion_G=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/k/Kolaitis:Phokion_G=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Miller:Ren=eacute=e_J=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Miller:Ren=eacute=e_J=.html
http://www.informatik.uni-trier.de/~ley/db/conf/icdt/icdt2003.html#FaginKMP03
http://www.informatik.uni-trier.de/~ley/db/conf/icdt/icdt2003.html#FaginKMP03

