Schema Mappings and Data Examples

Balder ten Cate UC Santa Cruz & LogicBlox

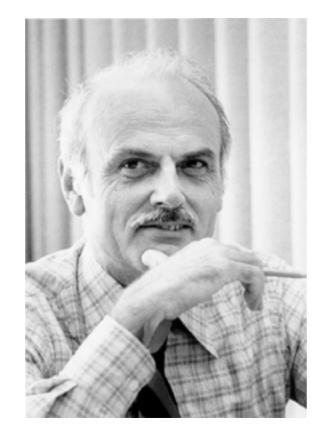
TbiLLC 2013 - Gudauri

- Database schema ~ a finite relational signature. E.g.,
 - { PARTICIPANT(name, email, flight-nr), FLIGHT(flight-nr, dept-time) }

- Database schema ~ a finite relational signature. E.g.,
 - { PARTICIPANT(name, email, flight-nr), FLIGHT(flight-nr, dept-time) }
- Database instance (of a given schema) ~ a finite structure.

- Database schema ~ a finite relational signature. E.g.,
 - { PARTICIPANT(name, email, flight-nr), FLIGHT(flight-nr, dept-time) }
- **Database instance** (of a given schema) ~ a finite structure.
- **Database queries** ~ logical formulas with free variables
 - $\phi(x,y) = \exists z, u \text{ (PARTICIPANT}(x,y,z) \& \text{FLIGHT}(z, 3:00\text{AM}))$

- Database schema ~ a finite relational signature. E.g.,
 - { PARTICIPANT(name, email, flight-nr), FLIGHT(flight-nr, dept-time) }
- **Database instance** (of a given schema) ~ a finite structure.
- **Database queries** ~ logical formulas with free variables
 - $\phi(x,y) = \exists z, u \text{ (PARTICIPANT}(x,y,z) \& \text{FLIGHT}(z, 3:00\text{AM}))$
- Database constraints ~ logical sentences expressing structural properties
 - $\forall x, y, z, u$ (PARTICIPANT(x, y, z) → $\exists t$ FLIGHT(z, t))
 - $\forall x, y, z \text{ (FLIGHT}(x, y) \& \text{FLIGHT}(x, z) \rightarrow y=z)$



Edgar F. Codd (1923-2003)

Query Languages

- Most important query languages
 - Conjunctive Queries (CQs): $\psi(\mathbf{x}) = \exists \mathbf{y} (\alpha_1(\mathbf{x}, \mathbf{y}) \land ... \land \alpha_n(\mathbf{x}, \mathbf{y}))$
 - Unions of Conjunctive Queries (UCQs): disjunctions of CQs.
 - First-order Queries (~ SQL queries)
 - Datalog (the least-fixpoint extension of UCQs)

Query Languages

- Most important query languages
 - Conjunctive Queries (CQs): $\psi(\mathbf{x}) = \exists \mathbf{y} (\alpha_1(\mathbf{x}, \mathbf{y}) \land ... \land \alpha_n(\mathbf{x}, \mathbf{y}))$
 - Unions of Conjunctive Queries (UCQs): disjunctions of CQs.
 - First-order Queries (~ SQL queries)
 - **– Datalog** (the least-fixpoint extension of UCQs)
- Most database queries in practice are CQs (a.k.a. SELECT-FROM-WHERE)

Query Languages

- Most important query languages
 - Conjunctive Queries (CQs): $\psi(\mathbf{x}) = \exists \mathbf{y} (\alpha_1(\mathbf{x}, \mathbf{y}) \land ... \land \alpha_n(\mathbf{x}, \mathbf{y}))$
 - Unions of Conjunctive Queries (UCQs): disjunctions of CQs.
 - First-order Queries (~ SQL queries)
 - **– Datalog** (the least-fixpoint extension of UCQs)
- Most database queries in practice are CQs (a.k.a. SELECT-FROM-WHERE)
- UCQs form a "robustly decidable" fragment of FO logic.
 - In particular, equivalence is decidable (NP-complete).

Excursion: decidable fragments of FO

- Unions of Conjunctive queries:
 - $\phi(\mathbf{x}) := R(\mathbf{x}) \mid x_i = x_j \mid \phi(x) \land \phi(x) \mid \phi(x) \lor \phi(x) \mid \exists y \phi(\mathbf{x}, y)$
- The modal fragment:
 - $\phi(x) := P(x) \mid \phi(x) \land \phi(x) \mid \neg \phi(x) \mid \exists y(Rxy \land \phi(y))$

Excursion: decidable fragments of FO

- Unions of Conjunctive queries:
 - $\phi(\mathbf{x}) := R(\mathbf{x}) \mid x_i = x_j \mid \phi(x) \land \phi(x) \mid \phi(x) \lor \phi(x) \mid \exists y \phi(\mathbf{x}, y)$
- The modal fragment:
 - $\phi(x) := P(x) \mid \phi(x) \land \phi(x) \mid \neg \phi(x) \mid \exists y(Rxy \land \phi(y))$
- UNFO (Unary-Negation Fragment of FO) [tC & Segoufin 2011]

 $- \phi(\mathbf{x}) := R(\mathbf{x}) \mid x_i = x_j \mid \phi(\mathbf{x}) \land \phi(\mathbf{x}) \mid \phi(\mathbf{x}) \lor \phi(\mathbf{x}) \mid \neg \phi(\mathbf{x}) \mid \exists y \phi(\mathbf{x}, y)$

Excursion: decidable fragments of FO

- Unions of Conjunctive queries:
 - $\phi(\mathbf{x}) := R(\mathbf{x}) \mid x_i = x_j \mid \phi(x) \land \phi(x) \mid \phi(x) \lor \phi(x) \mid \exists y \phi(\mathbf{x}, y)$
- The modal fragment:
 - $\phi(x) := P(x) \mid \phi(x) \land \phi(x) \mid \neg \phi(x) \mid \exists y(Rxy \land \phi(y))$
- UNFO (Unary-Negation Fragment of FO) [tC & Segoufin 2011]
 - $\phi(\mathbf{x}) := R(\mathbf{x}) \mid x_i = x_j \mid \phi(\mathbf{x}) \land \phi(\mathbf{x}) \mid \phi(\mathbf{x}) \lor \phi(\mathbf{x}) \mid \neg \phi(\mathbf{x}) \mid \exists y \phi(\mathbf{x}, y)$
- Further extension: GNFO (Guarded-Negation Fragment of FO) [Barany, tC & Segoufin 2011]

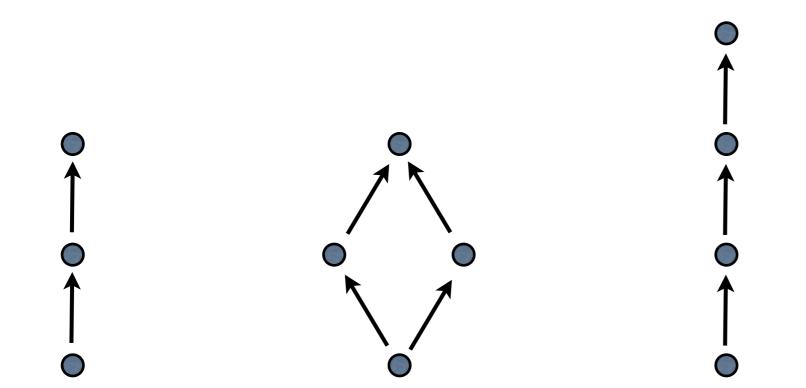
Homomorphisms

• Conjunctive queries are intimately tied to homomorphisms.

Homomorphisms

- Conjunctive queries are intimately tied to homomorphisms.
- Definition:
 - Let I and J be instances (i.e., finite structures) over the same schema. A homomorphism h: I → J is a map from the domain of I to the domain of J such that $(a,b,c) \in \mathbb{R}^{I}$ implies $(h(a),h(b),h(c)) \in \mathbb{R}^{J}$.

Examples



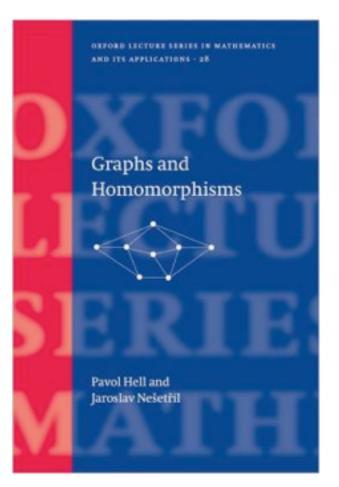
•

• **Def:** A query q is **preserved by homomorphism** if for all instances I and J and for all homomorphisms h:I \rightarrow J, (a,b,c) \in q(I) implies (h(a),h(b),h(c)) \in q(J).

- **Def:** A query q is preserved by homomorphism if for all instances I and J and for all homomorphisms h:I \rightarrow J, (a,b,c) \in q(I) implies (h(a),h(b),h(c)) \in q(J).
- **Thm.** A first-order query is preserved by homomorphisms if and only if it is equivalent to a union of conjunctive queries [Rossman 2005].
 - One of the few preservation theorems that hold over finite structures.

The Homomorphism Quasi-Order

- We write $I \rightarrow J$ if there is a homomorphism $h: I \rightarrow J$.
- Fix any relational schema S and let FinStr[S] be the finite structures (i.e., instances) over S.
- (FinStr[S], \rightarrow) is a quasi-order (reflexive and transitive).
- Its structure has been extensively studied. We will make use of some beautiful results from this area.



Database Constraints

- Database constraints express structural properties of relations in a schema.
 - $\forall x, y, z, u$ (PARTICIPANT(x, y, z) → $\exists t$ FLIGHT(z, t))
 - $\forall x, y, z \text{ (FLIGHT}(x, y) \& \text{FLIGHT}(x, z) \rightarrow y=z)$

Database Constraints

- Database constraints express structural properties of relations in a schema.
 - $\forall x, y, z, u$ (PARTICIPANT(x, y, z) → $\exists t$ FLIGHT(z, t))
 - $\forall x, y, z \text{ (FLIGHT}(x, y) \& \text{FLIGHT}(x, z) \rightarrow y=z)$
- Traditional uses of constraints:
 - Schema design, integrity control, query optimization

Database Constraints

- Database constraints express structural properties of relations in a schema.
 - $\forall x, y, z, u$ (PARTICIPANT(x, y, z) → $\exists t$ FLIGHT(z, t))
 - $\forall x, y, z \text{ (FLIGHT}(x, y) \& \text{FLIGHT}(x, z) \rightarrow y=z)$
- Traditional uses of constraints:
 - Schema design, integrity control, query optimization
- The most well-studied language for specifying constraints:
 - Dependencies : $\forall \mathbf{x} (\alpha_1 \land ... \land \alpha_n \rightarrow \exists \mathbf{y} (\beta_1 \land ... \land \beta_n))$
 - Rich enough to express most database constraints in practice.
 - Unfortunately, basic tasks (e.g., entailment) are undecidable.

- Database schema ~ a finite relational signature. E.g.,
 - { PARTICIPANT(name, email, flight-nr), FLIGHT(flight-nr, dept-time) }
- **Database instance** (of a given schema) ~ a finite structure.
- **Database queries** ~ logical formulas with free variables
 - $\phi(x,y) = \exists z, u \text{ (PARTICIPANT}(x,y,z) \& \text{FLIGHT}(z, 3:00\text{AM}))$
- Database constraints ~ logical sentences expressing structural properties
 - $\forall x, y, z, u$ (PARTICIPANT(x, y, z) → $\exists t$ FLIGHT(z, t))
 - $\forall x, y, z \text{ (FLIGHT}(x, y) \& \text{FLIGHT}(x, z) \rightarrow y=z)$

The Data Interoperability Challenge

- Data-Interoperability:
 - Data may be distributed over different sources, using different schemas.
 - Applications need to access all these data.

The Data Interoperability Challenge

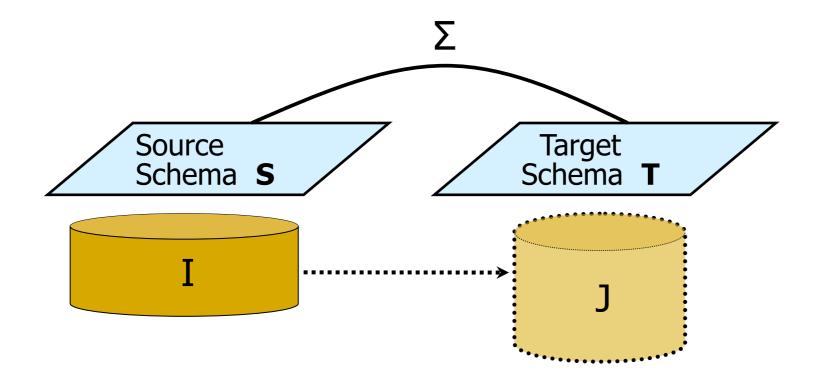
- Data-Interoperability:
 - Data may be distributed over different sources, using different schemas.
 - Applications need to access all these data.
- How can we uniformly access and manipulate data across sources?

The Data Interoperability Challenge

- Data-Interoperability:
 - Data may be distributed over different sources, using different schemas.
 - Applications need to access all these data.
- How can we uniformly access and manipulate data across sources?
- Two examples of data interoperability tasks:
 - Data Integration
 - Data Exchange

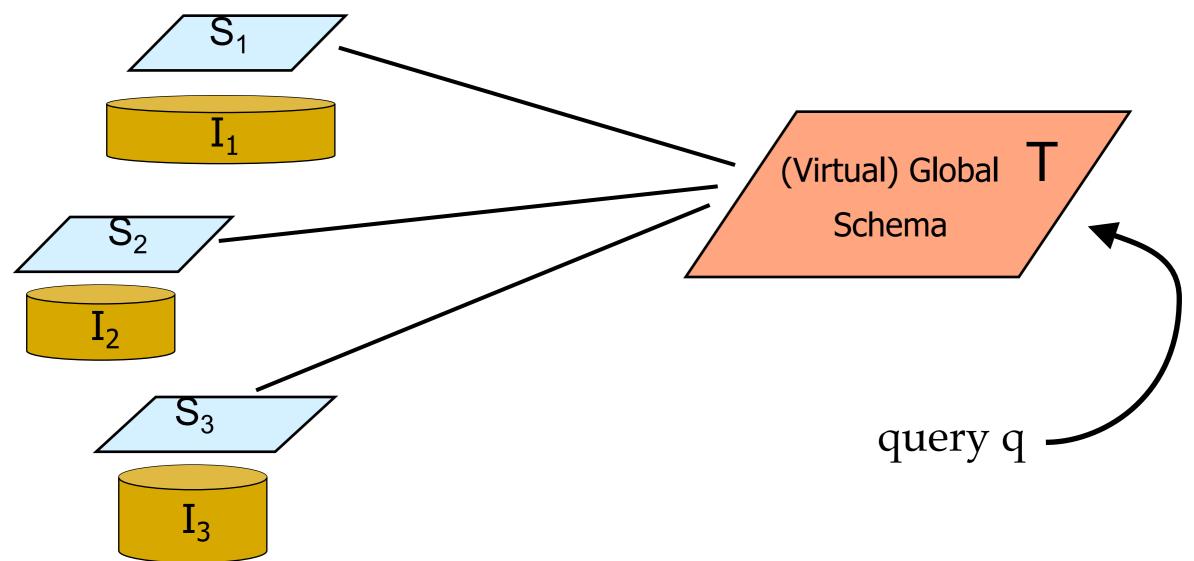
Data Exchange

Transform data structured under a source schemas into data structured under a target schema.



Data Integration

Query heterogeneous data in different sources via a virtual global schema



Schema Mappings

- A schema mappings is a logical specification of the relationships between two database schemas.
- Schema mappings are fundamental in the formalization data interoperability tasks such as data exchange and data integration.

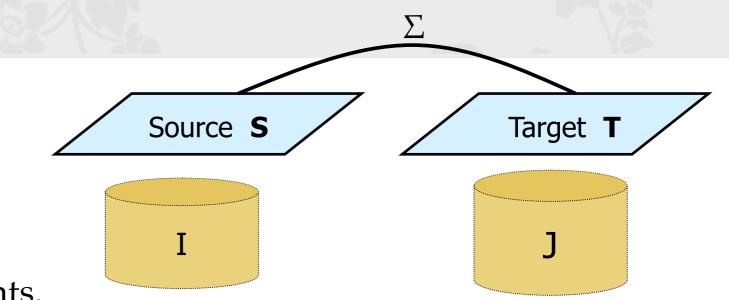
Schema Mappings

- A schema mappings is a logical specification of the relationships between two database schemas.
- Schema mappings are fundamental in the formalization data interoperability tasks such as data exchange and data integration.
- Formally, a schema mapping is a triple $M=(S,T,\Sigma)$, where
 - S and T are schemas (the "source schema" and the "target schema")
 - Σ is a collection of constraints involving the relations of S and T, specified in some schema mapping language (details to come). E.g., $\forall x, y, z$ (PARTICIPANT(x, y, z) \rightarrow MAILINGLIST(x, y)).

Schema Mapping Languages

- The choice of schema mapping language involves a compromise between expressive power and practical usability.
 - Allowing arbitrary FO sentences in Σ would make the interesting problems undecidable.
- Two of the most important schema mapping specification languages:
 - **– GLAV constraints**. These are dependencies $\forall x (\phi(x) \rightarrow \exists y \psi(x,y))$ where
 - ϕ is a conjunction of relational atomic formulas over the source schema
 - ψ is a conjunction of relational atomic formulas over the target schema.
 - **GAV constraints**: special case of GLAV where the consequent is a single atomic formula (no existential quantification)
 - LAV constraints: special case of GLAV where the antecedent is a single atomic formula.

Semantics of Schema Mappings



 M = (S, T, Σ) schema mapping with Σ a set of GLAV constraints.

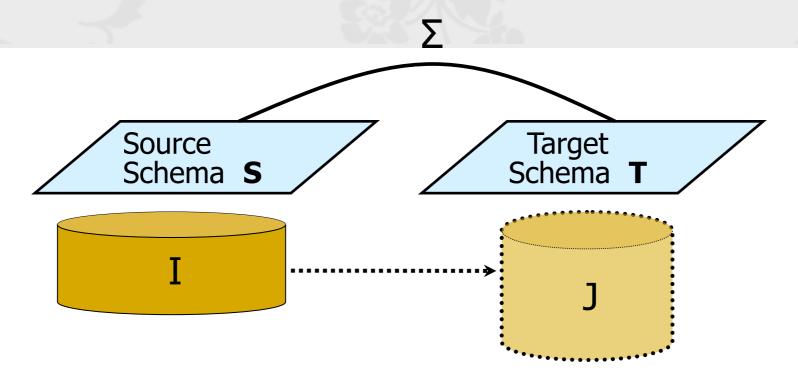
- From a semantic point of view, M can be identified with the set of all its positive data examples.
 - Data Example: A pair (I,J) where I is a source instance and J is a target instance.
 - Positive Data Example for M: a data example (I,J) such that $(I,J) \models \Sigma$
 - Negative Data Example for M: a data example (I,J) such that $(I,J) \models \Sigma$
 - If (I,J) is a positive data example for M, we say that J is a solution for I w.r.t. M.

```
Sem(M) = { (I,J): J is a solution for I w.r.t. M }
```

Examples

- Consider the schema mapping $M = (\{E\}, \{F\}, \Sigma)$, where
 - $\Sigma = \{ E(x,y) \rightarrow \exists z (F(x,z) \land F(z,y)) \}$
- Positive Data Examples (I,J) (i.e., J a solution for I w.r.t. M)
 - I = { E(1,2) } J = { F(1,1), F(1,2) }
 - $I = \{ E(1,2) \}$ $J = \{ F(1,xxx), F(xxx,2) \}$
 - $I = \{ E(1,2) \}$ $J = \{ F(1,xxx), F(xxx,2), F(2,3) \}$
- Negative Data Examples (I,J) (i.e., J not a solution for I w.r.t. M)
 - $I = \{ E(1,2) \}$ $J = \{ F(1,3) \}$
 - I = { E(1,2) } J = { F(1,3), F(4,2) }

Data Exchange via a Schema Mapping



Data Exchange via the schema mapping M = (S, T, Σ):
Given a source instance I, construct a solution J for I.

Difficulty:

- Typically, there are multiple solutions
- Which one is the "best" to materialize?

Data Exchange & Universal solutions

Fagin, Kolaitis, Miller, Popa (2003):

Identified and studied the concept of a **universal solution** in data exchange.

- A universal solution is a most general solution.
- A universal solution "represents" the entire space of solutions.

Universal Solutions in Data Exchange

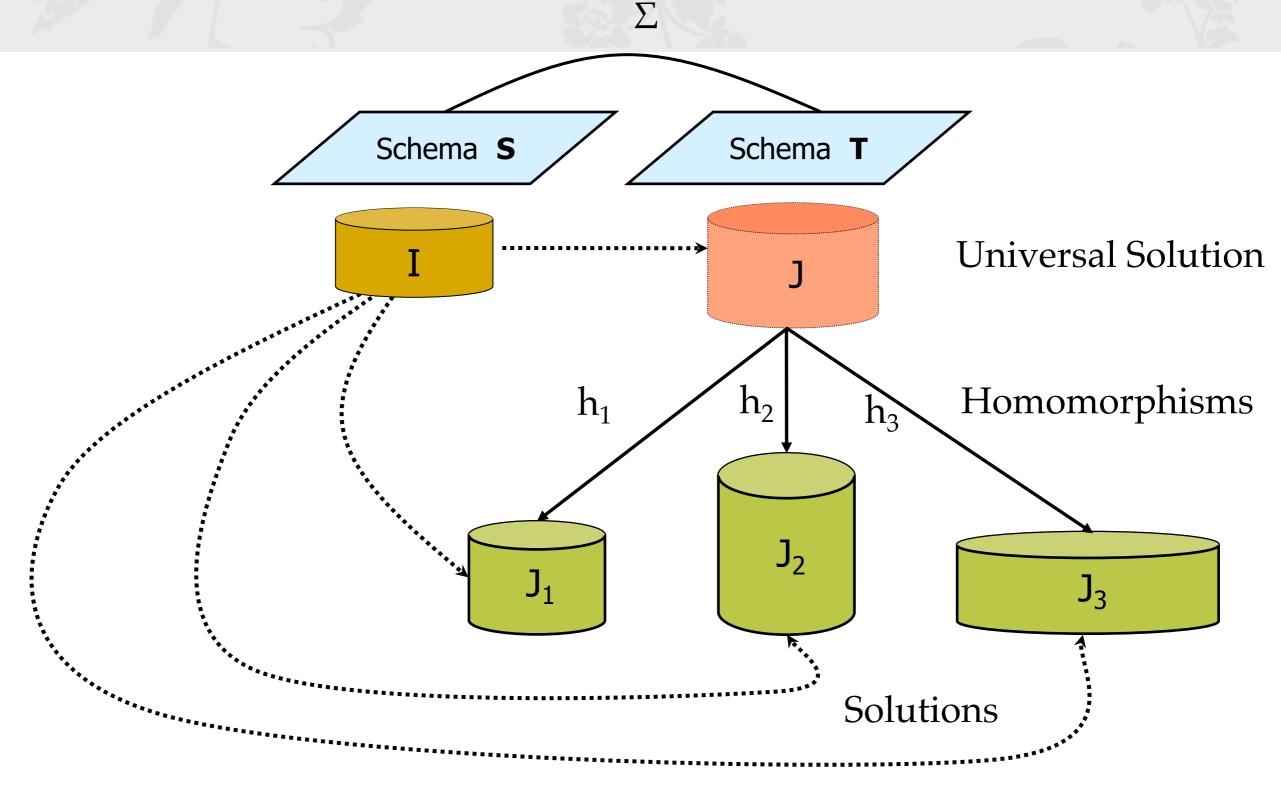
Allow two types of values in instances: **constant values** and (**labelled**) **null values**.

Definition (FKMP): A solution J for I is **universal** if it has homomorphisms to all other solutions for I, where the homomorphism may only change the null values.

(thus, a universal solution is a "most general" solution).

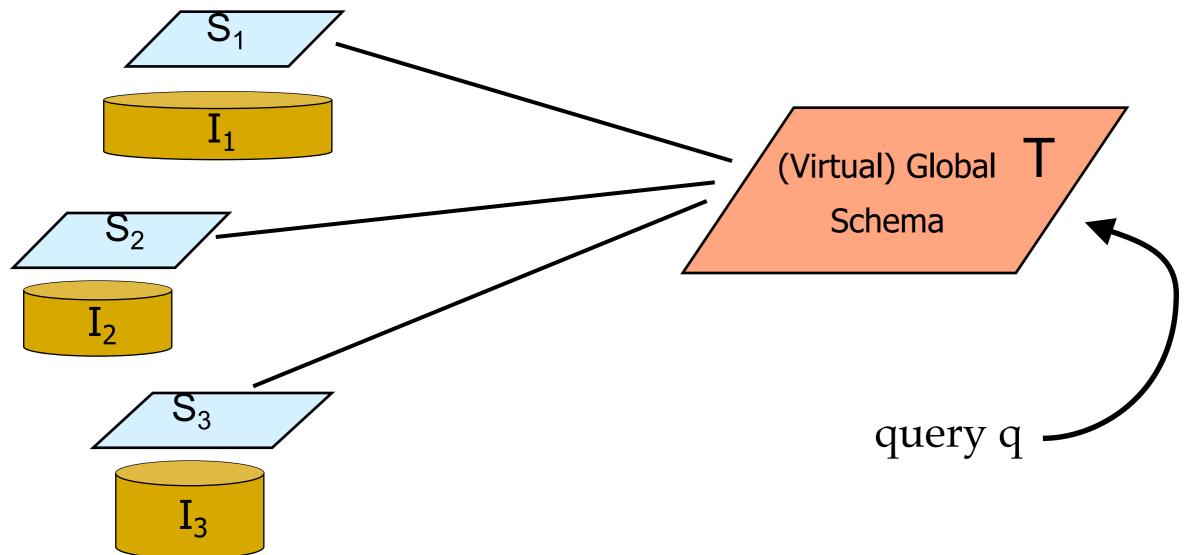
Basic result (FKMP): Universal solutions can be constructed in PTIME (data complexity) using an algorithm called the chase.

Universal Solutions in Data Exchange



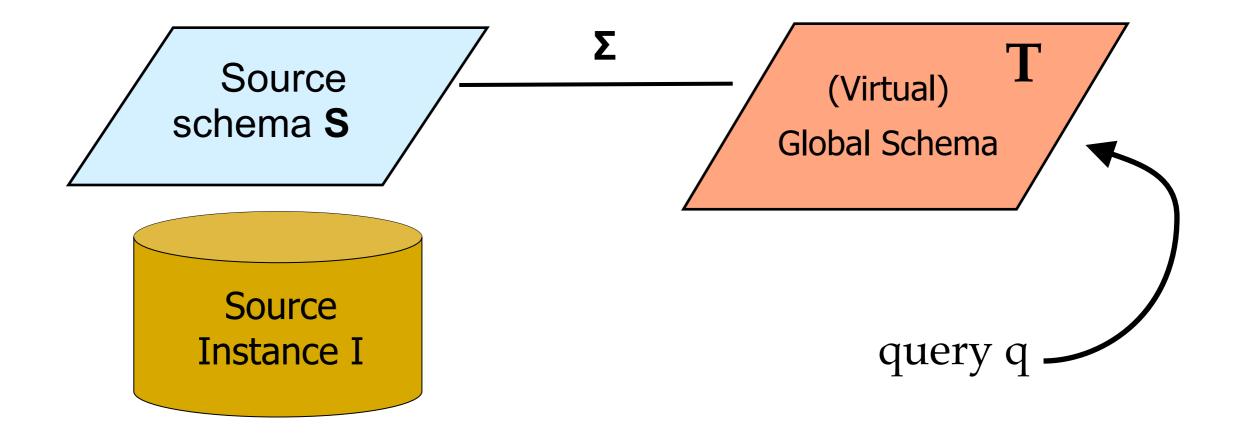
Data Integration

Query heterogeneous data in different sources via a virtual global schema



Data Integration

Query heterogeneous data in different sources via a virtual global schema



Certain answers

- Let I be a source instance and let q be a target query (a query over **T**).
- **Definition**: certain_M(q,I) = $\bigcap \{q(J) \mid J \text{ solution of } I \text{ w.r.t. } M\}$
 - Idea: certain_M(q,I) contains the tuples that belong to the answer of q in all solutions of I.

Certain answers

- Let I be a source instance and let q be a target query (a query over **T**).
- **Definition**: certain_M(q,I) = $\bigcap \{q(J) \mid J \text{ solution of } I \text{ w.r.t. } M \}$
 - Idea: certain_M(q,I) contains the tuples that belong to the answer of q in all solutions of I.
- If the query is a UCQ, then $\operatorname{certain}_{M}(q,I)$ can be computed in PTIME.
 - via universal solutions or via query rewriting

Computing certain answers

- **Theorem** (Fagin, Kolaitis, Miller, Popa 2003):
 - Let J be a universal solution of I w.r.t. **M**. Then for every UCQ q, certain_M(q,I) = $q(J)_{\downarrow}$

- **Theorem** (Abiteboul, Duschka 1998 ++):
 - For every target UCQ q, there is a source UCQ q' such that q'(I) = certain_M(q,I).

Where to get your schema mapping

• Constructing a schema mapping is the first step in data exchange and data integration.

Where to get your schema mapping

- Constructing a schema mapping is the first step in data exchange and data integration.
- **Common approach** (Clio, HepToX, Microsoft mapping composer):
 - derive a schema mapping from a schema matching (a collection of correspondences between attributes of the two schemas).
 - The schema matching itself is obtained semi-automatically using schema matching techniques or by interaction with a user.
 - NB: a schema matching does not uniquely determine a schema mapping.

😤 Clio		
File Database Mappings Help		
Source 🕼 Target 🗰 Schema View 🗞 Query IBM.		
Source schemas	Target schema	company x grant x project
- 40 -	statisticsDB: Record	-
B- Set ?	Set CityStatistics: Record	
company: Record	city (string)	= city
- B cname (string)	E Set ?	
city (string)	cid (string)	= cid
□- ∰ Set ? □- ∰ grant: Record	cid (string)	= cname
cid (string)	🖻 🗰 Set 🐣	
gid (string)	E- I funding: Record	
amount (string) project (string)	□ gid (string) gid (string) 	= gid = project
B- Set ?	faid (string)	= Sk185(project, amount, gid, cname, city, c
🖃 🌐 project: Record 🔪 🔪	recv (string) ?	
name (string)	Set financial: Record	
- B year (string)	aid (string)	= Sk185(project, amount, gid, cname,
	amount (string)	= amount
	date (string) ?	
	B- Set ? B- E project: Record	
	name (string)	= project
	year (string)	= year
		No File (*)

Data Examples

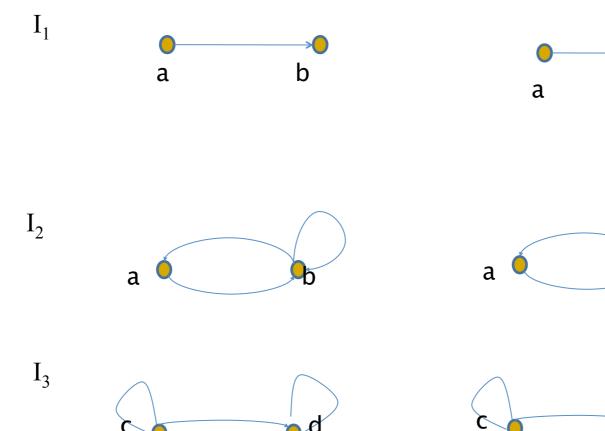
- Using data examples in schema mapping design:
 - Data examples can be used to illustrate a candidate schema mapping
 - **Deriving** schema mappings from examples (learning problem)

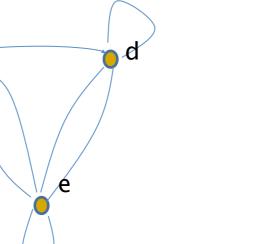
- Labeled data examples: a data example (I,J) labeled as being
 - **positive** -- meaning that J is a solution for I,
 - **negative** -- meaning that J is not a solution for I, or
 - **universal** -- meaning J is a universal solution for I.

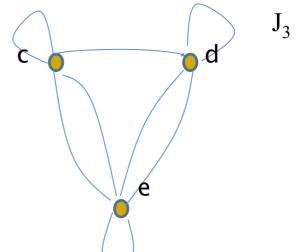
Uniquely Characterizing Data Examples

- A set E of labeled data examples **uniquely characterizes** a schema mapping M, within a class of schema mappings C, if
 - M fits all data examples in E.
 - every schema mapping $M' \in C$ that fits all examples in E is logically equivalent to M.

- Let M be the schema mapping specified by the GLAV constraint $\forall x, y (E(x,y) \rightarrow F(x,y)).$
 - This is both a GAV schema mapping and a LAV schema mapping.
 - The universal data example (I,J) with I = { E(a,b) }, J = { F(a,b) } uniquely characterizes M w.r.t. the class of all LAV constraints.
 - There is a finite set of universal examples that uniquely characterizes M w.r.t. the class of all GAV constraints.
 - There is no finite set of universal examples that uniquely characterizes M w.r.t. the class of all GLAV constraints.







 \mathbf{J}_1

b

h

 J_2

• **Problem**: which GAV schema mappings are uniquely characterizable, by a finite set of labeled data examples, within the class of GAV schema mappings?

• The solution was obtained through an intimate connection with dualities in the homomorphism lattice.

- Fix a schema S.
 - When we speak of structures, we will mean finite structures over S.
 - We will assume that S contains at least one non-unary relation symbol.

- Fix a schema S.
 - When we speak of structures, we will mean finite structures over S.
 - We will assume that S contains at least one non-unary relation symbol.
- Recall: (FinStr[S], \rightarrow) is a quasi-order (reflexive and transitive).

- Fix a schema S.
 - When we speak of structures, we will mean finite structures over S.
 - We will assume that S contains at least one non-unary relation symbol.
- Recall: (FinStr[S], \rightarrow) is a quasi-order (reflexive and transitive).
- We can construct a **partially ordered set** (poset) by taking the homomorphic equivalence classes.

- Fix a schema S.
 - When we speak of structures, we will mean finite structures over S.
 - We will assume that S contains at least one non-unary relation symbol.
- Recall: (FinStr[S], \rightarrow) is a quasi-order (reflexive and transitive).
- We can construct a partially ordered set (poset) by taking the homomorphic equivalence classes.
- However, it turns out there is a nicer way to present this poset.

The Core of a Structure

• Definition:

- The core of a (finite) structure I, denoted core(I), is the smallest substructure of I that is homomorphically equivalent to I.
- A structure I is a core if I=core(I).

The Core of a Structure

• Definition:

- The core of a (finite) structure I, denoted core(I), is the smallest substructure of I that is homomorphically equivalent to I.
- A structure I is a core if I=core(I).
- **Theorem** [Hell and Nesetril 1992]:
 - core(I) always exists and is unique up to isomorphism
 - $I \rightleftharpoons J$ iff core(I) and core(J) are isomorphic.

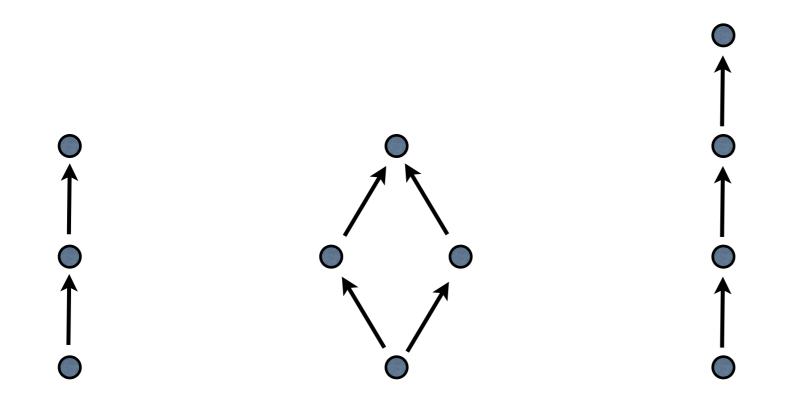
The Core of a Structure

• Definition:

- The core of a (finite) structure I, denoted core(I), is the smallest substructure of I that is homomorphically equivalent to I.
- A structure I is a core if I=core(I).
- **Theorem** [Hell and Nesetril 1992]:
 - core(I) always exists and is unique up to isomorphism
 - $I \rightleftharpoons J$ iff core(I) and core(J) are isomorphic.
- Corollary:
 - if I and J are cores and I \rightleftharpoons J then I and J are isomorphic.
 - every ~-equivalence class has a unique (up to isomorphism) smallest representative which is a core.

Examples

•



The Homomorphism Lattice.

Let CoreStr[S] be the set of all non-isomorphic (finite) core structures over schema S. Then (CoreStr[S],→) is a poset, and in fact a lattice.

The Homomorphism Lattice.

- Let CoreStr[S] be the set of all non-isomorphic (finite) core structures over schema S. Then (CoreStr[S],→) is a poset, and in fact a lattice.
- This lattice has been extensively studied. For example:
 - Theorem [Pultr and Trnkova 1980]: Every countable poset is isomorphic to a suborder of (CoreStr[S],→)

• \rightarrow I = {J : J \rightarrow I }

- \rightarrow I = {J : J \rightarrow I }
 - Example (for graphs): $\rightarrow K_2$ = Class of 2-colorable graphs

- \rightarrow I = {J : J \rightarrow I }
 - Example (for graphs): $\rightarrow K_2$ = Class of 2-colorable graphs
- $\bullet \quad I {\twoheadrightarrow} \quad = \{J \colon I {\twoheadrightarrow} J\}$

- $\rightarrow I = \{J : J \rightarrow I\}$
 - Example (for graphs): $\rightarrow \mathbf{K}_2 = \text{Class of 2-colorable graphs}$
- $I \rightarrow = \{J: I \rightarrow J\}$
 - Example (for graphs): $K_2 \rightarrow$ = Class of graphs with at least one edge.

- $\rightarrow I = \{J : J \rightarrow I\}$
 - Example (for graphs): $\rightarrow \mathbf{K}_2 = \text{Class of 2-colorable graphs}$
- $I \rightarrow = \{J: I \rightarrow J\}$
 - Example (for graphs): $K_2 \rightarrow$ = Class of graphs with at least one edge.

- \rightarrow I = {J : J \rightarrow I }
 - Example (for graphs): $\rightarrow \mathbf{K}_2 = \text{Class of 2-colorable graphs}$
- $I \rightarrow = \{J: I \rightarrow J\}$
 - Example (for graphs): $K_2 \rightarrow$ = Class of graphs with at least one edge.

• Note:

- $\rightarrow I = \{J : J \rightarrow I\}$
 - Example (for graphs): $\rightarrow K_2 = Class of 2$ -colorable graphs
- $I \rightarrow = \{J: I \rightarrow J\}$
 - Example (for graphs): $K_2 \rightarrow$ = Class of graphs with at least one edge.

- Note:
 - \rightarrow I defines a downward closed set in the homomorphism lattice.

- \rightarrow I = {J : J \rightarrow I }
 - Example (for graphs): $\rightarrow K_2 = Class of 2$ -colorable graphs
- $I \rightarrow = \{J: I \rightarrow J\}$
 - Example (for graphs): $K_2 \rightarrow$ = Class of graphs with at least one edge.

- Note:
 - \rightarrow I defines a downward closed set in the homomorphism lattice.
 - $I \rightarrow$ defines an upward closed set in the homomorphism lattice.

- \rightarrow I = {J : J \rightarrow I }
 - Example (for graphs): $\rightarrow \mathbf{K}_2 = \text{Class of 2-colorable graphs}$
- $I \rightarrow = \{J: I \rightarrow J\}$
 - Example (for graphs): $K_2 \rightarrow$ = Class of graphs with at least one edge.

- Note:
 - \rightarrow I defines a downward closed set in the homomorphism lattice.
 - $I \rightarrow$ defines an upward closed set in the homomorphism lattice.
 - I→ defines a downward closed set in the homomorphism lattice.

Simple Duality Pairs

- **Definition**: Let D and F be two finite structures
 - (F,D) is a duality pair if $\rightarrow D = F \Rightarrow$
 - In other words, for every structure I, $I \rightarrow D$ if and only if $F \not\rightarrow I$.
 - In this case, we say that F is an obstruction for D.

Simple Duality Pairs

- **Definition**: Let D and F be two finite structures
 - (F,D) is a duality pair if $\rightarrow D = F \rightarrow$
 - In other words, for every structure I, I \rightarrow D if and only if F \rightarrow I.
 - In this case, we say that F is an obstruction for D.
- Example:
 - For graphs, $(\mathbf{K}_2, \mathbf{K}_1)$ is a duality pair

- **Gallai-Hasse-Roy-Vitaver Theorem** (~1965) for directed graphs:
 - Let \mathbf{T}_k be the linear order with k elements, \mathbf{P}_{k+1} be the path with k+1 elements. Then $(\mathbf{P}_{k+1}, \mathbf{T}_k)$ is a duality pair, since for every directed graphs H, $H \rightarrow \mathbf{T}_k$ if and only if $\mathbf{P}_{k+1} \not\rightarrow H$.

Duality Pairs

• **Theorem** (König 1936): A graph is 2-colorable if and only if it contains no cycle of odd length. In symbols, $\rightarrow \mathbf{K}_2 = \bigcap_{i\geq 0} (\mathbf{C}_{2i+1})$.

Duality Pairs

- **Theorem** (König 1936): A graph is 2-colorable if and only if it contains no cycle of odd length. In symbols, $\rightarrow \mathbf{K}_2 = \bigcap_{i\geq 0} (\mathbf{C}_{2i+1})$.
- **Definition**: Let *F* and *D* be two sets of structures. We say that (*F*, *D*) is a duality pair if $\bigcup_{D \in D} (\rightarrow D) = \bigcap_{F \in F} (F \neq F)$.
 - In other words, for every structure I, tfae:
 - There is a structure D in *D* such that $I \rightarrow D$.
 - For every structure F in F, we have F \Rightarrow I.
 - In this case, we say that F is an obstruction set for D.

Duality Pair (*F*,*D*), where "Desires" $D_{1}D_{2}$ $\boldsymbol{F} = \{F_{1\prime}F_{2\prime}\ldots\}$ $D = \{D_{1'}, D_{2'}, ...\}$ $U_i(F_i \rightarrow)$ $\rightarrow Di$) F "Frustrations"

Example

• Let F be the one-element cycle.

Example

- Let F be the one-element cycle.
- **Question**: Is {F} an obstruction set for a finite set of structures?
 - I.e., is there a duality pair of the form ({F},D)?

Example

- Let F be the one-element cycle.
- **Question**: Is {F} an obstruction set for a finite set of structures?
 - I.e., is there a duality pair of the form ({F},D)?
- No. This has to do with the fact that F contains a cycle.

Acyclicity

- The incidence graph inc(A) of a structure A is the bipartite graph with
 - nodes: the elements of A and the atomic facts (e.g., R(a₁,...,a_n)) of A
 - edges between elements and facts in which they occur

Acyclicity

- The incidence graph inc(A) of a structure A is the bipartite graph with
 - nodes: the elements of A and the atomic facts (e.g., R(a₁,...,a_n)) of A
 - edges between elements and facts in which they occur
- The structure A is acyclic if
 - Inc(A) is acyclic, and
 - No element occurs twice in the the same fact.

Characterization of Obstruction Sets

- **Theorem** (Foniok, Nešetřil, and Tardif 2008):
 - Let *F* be a finite set of homomorphically incomparable core structures. Tfae:
 - *F* is an obstruction set of some finite set *D* of structures.
 - Each structure in *F* is acyclic.
 - Moreover, there is an algorithm that, given such a set *F* consisting of acyclic structures, computes a finite set *D* of structures such that (*F*, *D*) is a duality pair.

Characterization of Obstruction Sets

- **Theorem** (Foniok, Nešetřil, and Tardif 2008):
 - Let *F* be a finite set of homomorphically incomparable core structures. Tfae:
 - *F* is an obstruction set of some finite set *D* of structures.
 - Each structure in *F* is acyclic.
 - Moreover, there is an algorithm that, given such a set *F* consisting of acyclic structures, computes a finite set *D* of structures such that (*F*, *D*) is a duality pair.
- In particular, if F is the one-element cycle, then {F} is not an obstruction set of any finite set of structures.

Structures with Constant Symbols

Structures with Constant Symbols

• The preceding theorem extends to structures with constant symbols when acyclicity is replaced by c-acyclicity.

Structures with Constant Symbols

- The preceding theorem extends to structures with constant symbols when acyclicity is replaced by c-acyclicity.
- A structure with constant symbols is **c-acyclic** if
 - Every cycle in Inc(A) contains an element named by a constant symbol, and
 - Only elements named by constant symbols may occur twice in the same fact.

Back to Schema Mappings

• The canonical structure of a GAV constraint

$$\forall \mathbf{x} (\varphi_1(\mathbf{x}) \land ... \land \varphi_{\kappa}(\mathbf{x}) \rightarrow R(x_{i1}, ..., x_{im}))$$

is the structure with

- domain: the variables in x themselves
- atomic facts: $\varphi 1(x)$, ..., $\varphi \kappa(x)$
- constant symbols c₁,...,c_m denoting x_{i1},...,x_{im}

Back to Schema Mappings

• The canonical structure of a GAV constraint

 $\forall \mathbf{x} (\varphi_1(\mathbf{x}) \land ... \land \varphi_{\kappa}(\mathbf{x}) \rightarrow R(x_{i1},...,x_{im}))$

is the structure with

- domain: the variables in x themselves
- atomic facts: $\varphi 1(x)$, ..., $\varphi \kappa(x)$
- constant symbols c₁,...,c_m denoting x_{i1},...,x_{im}
- **Example**: $\forall xyz (E(x,y) \land E(y,z) \rightarrow R(x,z))$ has canonical structure

Back to Schema Mappings

• The canonical structure of a GAV constraint

$$\forall \mathbf{x} (\varphi_1(\mathbf{x}) \land ... \land \varphi_{\kappa}(\mathbf{x}) \rightarrow R(x_{i1}, ..., x_{im}))$$

is the structure with

- domain: the variables in x themselves
- atomic facts: $\varphi 1(x)$, ..., $\varphi \kappa(x)$
- constant symbols c₁,...,c_m denoting x_{i1},...,x_{im}
- **Example**: $\forall xyz (E(x,y) \land E(y,z) \rightarrow R(x,z))$ has canonical structure

$$c_1 \bigcirc \xrightarrow{E} \oslash \xrightarrow{E} \oslash \overset{C_2}{\longrightarrow} \bigcirc \overset{C_2}{\longrightarrow} \odot \overset{C_2}{\longrightarrow} \bigcirc \overset{C_2}{\longrightarrow} \odot \overset{C_2}{\longrightarrow} \overset{C_2}$$

- **Theorem**: Let $M = (S, T, \Sigma)$ be a GAV schema mapping. Tfae:
 - M is uniquely characterizable within the class of all GAV constraints.
 - For every target relation symbol R, the set of the canonical structures of the GAV constraints in Σ with R as their consequent is the obstruction set of some finite set D of structures.

- **Theorem**: Let $M = (S, T, \Sigma)$ be a GAV schema mapping. Tfae:
 - M is uniquely characterizable within the class of all GAV constraints.
 - For every target relation symbol R, the set of the canonical structures of the GAV constraints in Σ with R as their consequent is the obstruction set of some finite set D of structures.
- **Corollary**: testing unique characterizability is NP-complete, and one can effectively construct a uniquely characterizing finite set of data examples if it exists.

Summary

- Schema mappings: a fundamental building block in the study of data-interoperability problems.
- Homomorphism dualities: a powerful tool from graph theory (with many applications in constraint satisfaction as well)

Main References

Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, Lucian Popa (2003)
Data Exchange: Semantics and Query Answering. ICDT 2003: 207-224

 Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and Wang Chiew Tan (2011). Characterizing schema mappings via data examples. ACM Trans. Database Syst., 36(4):23

• Pavol Hell and Jaroslav Nesetril (2004). Graphs and homomorphisms.