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Today

◦ Unification theory

◦ Proof systems

◦ Open problems
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Unification theory
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Unification theory

Given two terms s and t, is there a substitution σ such that σs =E σt?

Applications: computer science, linguistics, . . .

In a logic L: A =E B is `L A↔ B.

The study of substitutions σ such that `L σA.

Dfn σ is a unifier of A iff ` σA.

Dfn τ 6 σ iff for some τ ′ for all atoms p: ` τ(p)↔ τ ′σ(p).

Dfn σ is a maximal unifier (mu) of A if among the unifiers of A it is
maximal.

Dfn A unifier σ of A is a mgu if τ 6 σ for all unifiers τ of A.

Dfn A set of unifiers is complete for A if all unifiers of A are less general
(6) than a unifier in the set.

Note Projective unifiers are most general unifiers.
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Unification types

Ex p has a mgu in any intermediate logic: σ(p) = >. In intermediate
logics, every consistent formula has a unifier.

Dfn A logic has unification type

unitary if every unifiable formula has a mgu;

finitary if it is not unitary and every unifiable formula has a finite
complete set of mus;

infinitary if it is not finitary and every unifiable formula has a finite or
infinite complete set of mus;

nullary if none of the above.
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Valuations and substitutions

Thm If vI (A) = 1, then σA
I is a mgu of A in CPC.

Cor CPC has unitary unification.
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No unitary unification

Note IPC does not have unitary unification.
Prf A = p ∨ ¬p has no mgu. For consider σ0 and σ1 where

σ0(p) = > σ0(q) = q σ1(p) = p σ1(q) = ⊥.

Neither σ0 6 σ1 nor σ1 6 σ0. So A has no mgu.
If τ is unifier of A, then because of the disjunction property `IPC τp or
`IPC ¬τp. Hence τ 6 σ0 or τ 6 σ1. Hence A has a finite set of mus:
{σ0, σ1}.
Note Many modal logics do not have unitary unification.
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Method of proof

Thm If there is a set of admissible rules R such that for every formula A
there is a finite set of projective formulas ΠA such that∨

ΠA `L A `RL ΠA,

then R is a basis for the admissible rules of L and L has finitary or
unitary unification.

Prf
Let for B ∈ ΠA, σB be its projective unifier and let C be the set of these
unifiers. If τ is a unifier of A, then it has to be a unifier of B for some
B ∈ ΠA. Therefore τ 6 σB , proving that C is complete. 2
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Intermediate and modal logics

Thm (Ghilardi)
The unification type of IPC, K4, S4, GL is finitary. In KC and S4.3 it is
unitary.

Thm (Dzik ’06)
All intermediate logics with unitary unification are extensions of KC. All
intermediate logics with finitary unification are extensions of the logic of
the fork. Similar for S4.3 in modal logic.

Thm (Marra & Spada ’11)
 Lukasiewicz logic has nullary unification type. Formulas do not have
finite projective approximations.
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Proof systems
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Proof systems

In many intermediate and modal logics admissibility is decidable.

Many intermediate and modal logics have a decent basis for their
admissible rules.

Can admissibility in these logics be captured by a decent proof system?

Yes: a sequent calculus to reason about rules consisting of sequents.
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Proof systems

Dfn A generalized sequent rule (gs-rule) is an expression

G .H,

where G and H are sets of sequents.

G .H is admissible if G |∼H, which is short for

{I (S) | S ∈ G} |∼{I (S) | S ∈ H}.

Aim:
A proof system GAL for gs-rules such that `GAL G .H iff G |∼ LH.
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Proof systems

Dfn For a modal logic L, GAL consists of (G3 a calculus for CPC):
Right Logical Rules

G . S1,H G . S2,H
G . S ,H

for every rule
S1 S2

S
of G3

Left Logical Rules

G,S1,S2 .H
G,S .H

for every rule
S1 S2

S
of G3

Visser Rules

G,S ,S1 .H . . . G,S ,Sn .H
G,S .H

if S
{S1, . . . ,Sn}

is a rule in the basis

and some other rules ...
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Proof systems

Thm GAK4, GAS4 and GAGL are sound and complete proof systems for
admissibility in K4, S4 and GL.

Cor Admissibility in K4, S4 and GL is decidable.
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Open problems: to (wish to) do
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Ways

Four approaches:

◦ characteristic

◦ categorical

◦ canonical

◦ syntactic
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Predicate logic

Dfn The language L consists of predicate and function symbols,
variables, the connectives ∧,∨,→,¬ and the quantifiers ∃,∀.

Possible requirements on substitutions:

A substitutions σ is a map from FL to FL that commutes with the
connectives and quantifiers and such that . . .

◦ σ(P(t1, . . . , tn)) = σ(P(x1, . . . , xn))[t1/x1, . . . , tn/xn];

◦ other requirements?
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Classical predicate logic

Thm The Skolem rule ∃xA(x , fx)/∃x∀yA(x , y) (f fresh) is admissible in
classical predicate logic.

Thm (Avigad ’03)
If a theory can code finite functions, then the Skolem rule cannot shorten
proofs more than polynomially.

Thm (Baaz & Hetzl & Weller ’12)
In the setting of sequent calculi and cut-free proofs, the Skolem rule
exponentially shortens proofs.
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Heyting Arithmetic

Thm (Iemhoff & Visser ’01)
The Visser rules form a basis for the propositional admissible rules of
Heyting Arithmetic.

Thm (Visser ’99)
Admssibility in Heyting Arithmetic is Π2-complete.

Ex An infinite admissible rule for Heyting Arithmetic:

Γ⇒ ∃xAx
{Γ⇒ At | t a term} ∪ {Γ⇒ A | A ∈ Γa}

(Γ implications only)
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Below transitivity

Thm (Jěrábek ’11) K has nullary unification.

p → 2p is admissibly saturated but not projective (not exact).
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It’s a small world?

All these other logics?
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Why

Provide meta-mathematical reasons for the admissibility of certain rules.
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Finis Finis

Finis Finis

Finis Finis

Finis

Finis Finis

Finis Finis

Finis Finis
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