Rules of Inference

Lecture 2 Wednesday, September 25

Rosalie lemhoff Utrecht University, The Netherlands

TbiLLC 2013 Gudauri, Georgia, September 23-27, 2013

Today

- Examples
- Bases
- Approximations
- Projective formulas

Derivable and admissible

Dfn Given a set of rule schemes \mathcal{R} , $\vdash^{\mathcal{R}}$ is the smallest consequence relation that extends \vdash and which rules contain Ru(\mathcal{R}).

For a rule R, \vdash^R is short for \vdash^R , where \mathcal{R} consists of the rule scheme (R, Sub), for Sub being the set of all substitutions.

Dfn Γ/Δ is *derivable* in L iff $\Gamma \vdash_{\mathsf{L}} \Delta$.

Dfn $R = \Gamma/\Delta$ is admissible in L ($\Gamma \vdash_L \Delta$) iff Thm(\vdash_L) = Thm(\vdash_L^R). Thm For single-conclusion consequence relations:

 $\Gamma \vdash_{\mathsf{L}} A$ iff for all substitutions $\sigma: \vdash_{\mathsf{L}} \bigwedge \sigma \Gamma$ implies $\vdash_{\mathsf{L}} \sigma A$.

Thm For multi-conclusion c.r.'s with the disjunction property:

 $\Gamma \vdash_{\mathsf{L}} \Delta$ iff for all substitutions $\sigma \colon \vdash_{\mathsf{L}} \bigwedge \sigma \Gamma$ implies $\vdash_{\mathsf{L}} \sigma A$ for some $A \in \Delta$.

Examples

Classical logic

Thm Classical propositional logic CPC is structurally complete, i.e. all admissible rules of \vdash_{CPC} are (strongly) derivable.

Intuitionistic logic

Thm The Harrop or Kreisel-Putnam Rule

$$\frac{\neg A \to B \lor C}{(\neg A \to B) \lor (\neg A \to C)}$$
 HR

is admissible but not derivable in IPC, as

$$(\neg A \rightarrow B \lor C) \rightarrow (\neg A \rightarrow B) \lor (\neg A \rightarrow C)$$

is not derivable in IPC. The same holds for Heyting Arithmetic. Thm (Prucnal '79) HR is admissible in any intermediate logic. Thm The *disjunctive Harrop Rule*

$$\frac{\{\neg A \to B \lor C\}}{\{(\neg A \to B), (\neg A \to C)\}}$$
 HR

is admissible in intermediate logics with the disjunction property.

Thm (Buss & Mints & Pudlak '01) HR does not shorten proofs more than polynomially.

Intuitionistic logic

Thm (Prucnal '79) The Harrop or Kreisel-Putnam Rule

$$\frac{\neg A \to B \lor C}{(\neg A \to B) \lor (\neg A \to C)}$$
 HR

is admissible in any intermediate logic.

Prf If $\vdash_{L} \neg A \rightarrow B \lor C$, then $\vdash_{L} \neg \sigma A \rightarrow \sigma B \lor \sigma C$, where $\sigma = \sigma_{I}^{\neg A}$ for some valuation v_{I} that satisfies $\neg A$ (if $\neg A$ is inconsistent, the statement is trivial).

As $\vdash_{CPC} \neg \sigma A$, also $\vdash_{L} \neg \sigma A$ by Glivenko's theorem. Hence $\vdash_{L} \sigma B \lor \sigma C$. Therefore $\vdash_{L} (\neg A \rightarrow B) \lor (\neg A \rightarrow C)$.

Thm (Minari & Wroński '88) For A a Harrop formula, the rule

$$\frac{A \to B \lor C}{(A \to B) \lor (A \to C)}$$

is admissible in any intermediate logic.

Decidability

Decidability

Thm (Rybakov '80's) \succ_{IPC} , \succ_{K4} , \succ_{S4} , \succ_{GL} are decidable.

Thm (Chagrov '92) There are decidable logics in which admissibility is undecidable.

Thm (Rybakov & Odintsov & Babenyshev '00's) Admissibility is decidable in many modal and temporal logics.

Thm (Jeřábek '07)

In IPC and many transitive modal logics admissibility is coNEXP-complete.

Bases

Bases

Note If $A \sim B$, then $A \wedge C \sim B \wedge C$.

To describe all admissible rules of a logic the notion of basis is used.

Dfn A set of rules \mathcal{R} derives a rule Γ/Δ in L iff $\Gamma \vdash_{\mathsf{L}}^{\mathcal{R}} \Delta$.

Dfn \mathcal{R} is a *basis* for the admissible rules of L iff the rules in \mathcal{R} are admissible in L and all admissible rules of L are derivable from \mathcal{R} in L:

$$\succ_{\mathsf{L}} = \vdash_{\mathsf{L}}^{\mathcal{R}}$$
.

Dfn A basis is *independent* if no proper subset of it is a basis. It is *weakly independent* if no finite subset of it is a basis.

Thm (Rybakov 80's)

There is no finite basis for the admissible rules of IPC.

Sequents

In the description of bases it is convenient to use sequents instead of formulas.

Dfn A sequent is of the form $\Gamma \Rightarrow \Delta$ where Γ and Δ are finite sets of formulas. Its interpretation $I(\Gamma \Rightarrow \Delta)$ is $\bigwedge \Gamma \rightarrow \bigvee \Delta$.

With a formula A the sequent \Rightarrow A is associated.

We sometimes write $\vdash S$ instead of $\vdash I(S)$.

For a set of sequents S, I(S) denotes $\bigwedge_{S \in S} I(S)$.

Dfn An implication $A \rightarrow B$ is *atomic* if A and B are atoms. A sequent $(\Gamma \Rightarrow \Delta)$ is *irreducible* if Δ consists of atoms and Γ of atoms and atomic implications.

An implicational formula $\bigwedge \Gamma \to \bigvee \Delta$ is *irreducible* if $\Gamma \Rightarrow \Delta$ is.

Intuitionistic logic

In IPC:

Formulas	$A \lor B \vdash \{A, B\}$	$\bigvee \Delta \vdash \Delta$
Sequents	$\Rightarrow A, B \vdash \{ \Rightarrow A, \Rightarrow B \}$	$\Rightarrow \Delta \vdash \{ \Rightarrow D \mid D \in \Delta \}$
HR	$ eg A \Rightarrow \Delta \sim \{ \neg A \Rightarrow D \mid D \in \Delta \}$	
	$A \to B \Rightarrow \Delta \vdash \{A \to B\}$	$\Rightarrow D \mid D \in \Delta\} \cup \{A \to B \Rightarrow A\}$
Visser rules	$\Gamma \Rightarrow \Delta \sim \{\Gamma \Rightarrow D \mid D \in$	$\Delta \cup \Gamma^a \} \ (\Gamma \ { m implications \ only}).$
Γ^a consists of the A such that $(A \rightarrow B) \in \Gamma$ for some B.		

Thm (lemhoff '01, Roziére '92)

The Visser rules are a basis for the multi-conclusion admissible rules of IPC.

Intermediate logics

Dfn The single-conclusion Visser rules: (Γ implications only)

$$(\bigwedge \Gamma \to \bigvee \Delta) \lor A / \bigvee \{\bigwedge \Gamma \to D \mid D \in \Delta \cup \Gamma^a\} \lor A.$$

Dfn Intermediate logics:

 $\begin{array}{ll} \mathsf{KC} & \neg A \lor \neg \neg A & \text{a maximal node} \\ \mathsf{LC} & (A \to B) \lor (B \to A) & \text{linear} \end{array}$

Thm (lemhoff '05)

The single-conclusion Visser rules are a basis for the admissible rules in any intermediate logic in which they are admissible.

Thm The single-conclusion Visser rules are a basis for the admissible rules of KC.

Thm The single-conclusion Visser rules are derivable in LC. Hence LC is structurally complete.

Thm (Goudsmit & lemhoff '12) The (n + 1)-th Visser rule is a basis for the *n*-th Gabbay-deJongh logic.

Modal logics

Dfn Given a formula A and set of atoms I, valuation v_I and substitution σ_I^A are defined as

$$v_{I}(p) \equiv_{dfn} \begin{cases} 1 & \text{if } p \in I \\ 0 & \text{if } p \notin I \end{cases} \quad \sigma_{I}^{A}(p) \equiv_{dfn} \begin{cases} A \to p & \text{if } p \in I \\ A \land p & \text{if } p \notin I \end{cases}$$

Thm If S contains an atom, then for I(S) = A, $A \vdash B \Leftrightarrow A \vdash B$.

Prf Choose an atom p in S. Define σ to be σ_{\emptyset}^{A} if p is in the antecedent of S, and $\sigma_{\{p\}}^{A}$ otherwise.

 $\vdash \sigma A \text{ and } A \vdash \sigma(B) \leftrightarrow B \text{ for all } B. \text{ Thus } A \vdash B \text{ implies } A \vdash B. \square.$

Note In many modal logics, any nonderivable admissible rule formulated via sequents has to have a premiss that does not contain atoms.

Modal logics

Dfn The modal Visser rules:

$$\frac{\Box \Gamma \Rightarrow \Box \Delta}{\{\boxdot \Gamma \Rightarrow D \mid D \in \Delta\}} \lor \bullet \quad \frac{\{\Box \Gamma \equiv \Gamma \Rightarrow D \mid D \in \Delta\}}{\{\boxdot \Gamma \Rightarrow D \mid D \in \Delta\}} \lor \bullet$$

 $(\Box A \text{ denotes } A \land \Box A \text{ and } \Box \Gamma \equiv \Gamma \text{ denotes } \{A \leftrightarrow \Box A \mid A \in \Gamma\}.)$

Thm (Jeřábek '05)

The irreflexive Visser rules are a basis in any extension of GL in which they are admissible. Similarly for the reflexive Visser rules and S4, and for their combination and K4.

Thm (Babenyshev & Rybakov '10) Explicit bases for temporal modal logics.

Fragments

Thm (Mints '76) In IPC, all nonderivable admissible rules contain \lor and \rightarrow .

Thm (Prucnal '83) IPC \rightarrow is structurally complete, as is IPC \rightarrow,\wedge .

Thm (Minari & Wroński '88) IPC $_{\rightarrow,\neg,\wedge}$ is structurally complete.

Thm (Cintula & Metcalfe '10)

 $IPC_{\rightarrow,\neg}$ is not structurally complete. The Wroński rules are a basis for its admissible rules:

$$\frac{(p_1 \to (p_2 \to \dots (p_n \to \bot) \dots)}{\{\neg \neg p_i \to p_i \mid i = 1, \dots, n\}}$$

Substructural logics

Thm (Odintsov & Rybakov '12)

Johanssons' minimal logic has finitary unification and admissibility is decidable.

Thm (Jeřábek '09)

The admissible rules of Łukasiewicz logic have no finite basis, but a nice infinite basis exists.

Approximations

Method of proof

Thm In many intermediate and modal logics, there is for every formula A a finite set of irreducible formulas Π_A such that

$$\bigvee \Pi_{\mathcal{A}} \vdash \mathcal{A} \vdash \Pi_{\mathcal{A}},$$

and for all $B \in \Pi_A$ and all C, $B \vdash C \Leftrightarrow B \vdash C$.

Cor If also $A \vdash^{\mathcal{R}} \Pi_A$ for some set of admissible rules \mathcal{R} , then \mathcal{R} is a basis. Prf $A \vdash^{\mathcal{R}} C$ implies that $B \vdash^{\mathcal{C}} C$ for all $B \in \Pi_A$. Hence $A \vdash^{\mathcal{R}} C$.

Dfn Π_A is an *(irreducible)* projective approximation of A.

Dfn $A \Vdash B$ if there is a σ which is the identity on the atoms in A such that $A \vdash \sigma B$. $A \nvDash B$ if every unifier of A can be extended to a unifier of B.

Thm Given a sequent S there is a set G of irreducible sequents such that

$$I(S) \vdash \bigwedge I(\mathcal{G}) \vdash I(S).$$

Prf (I) Apply the invertible logical rules of LJ as long as possible: For example, $\Gamma, A \land B \Rightarrow \Delta$ is replaced by $\Gamma, A, B \Rightarrow \Delta$. (II) Introduce atoms for the composite formulas in *S*: For example, $\Gamma, A \rightarrow B \Rightarrow \Delta$ is replaced by

$$(\Gamma, p \rightarrow q \Rightarrow \Delta) \ (p \Rightarrow A) \ (B \Rightarrow q).$$

Apply (I) and (II) as long as possible.

Valuations and substitutions

Dfn Given a formula A and set of atoms I, valuation v_I and substitution σ_I^A are defined as

$$v_{I}(p) \equiv_{dfn} \begin{cases} 1 & \text{if } p \in I \\ 0 & \text{if } p \notin I \end{cases} \quad \sigma_{I}^{A}(p) \equiv_{dfn} \begin{cases} A \to p & \text{if } p \in I \\ A \land p & \text{if } p \notin I \end{cases}$$

Note $A \vdash \sigma_I^A(B) \leftrightarrow B$ for all B and I. *Note* If $\vdash \sigma_I^A(A)$, then $A \vdash B \Leftrightarrow A \vdash B$ for all B.

Projective formulas

Dfn (Ghilardi) A formula A is projective in L if for some substitution σ and all atoms p:

$$\vdash_{\mathsf{L}} \sigma A \quad A \vdash_{\mathsf{L}} p \leftrightarrow \sigma(p).$$

 σ is the projective unifier (pu) of A.

Thm If A is projective and \vdash has the disjunction property, then for all Δ :

$$A \vdash_{\mathsf{L}} \Delta \Leftrightarrow \exists B \in \Delta A \vdash_{\mathsf{L}} B.$$

Cor If all unifiable formulas are projective in L, then all nonpassive rules are derivable.

Ex For
$$I = \{p\}$$
, σ_I^p is a pu of p . For $I = \emptyset$, $\sigma_I^{\neg p}$ is a pu of $\neg p$.

Intermezzo: the extension property

Dfn $\sum K_i$ denotes the disjoint union of the models K_1, \ldots, K_n .

Dfn K' denotes the extension of model K with one node at which no atoms are forced and that is below all nodes in K.

Dfn Two rooted models on the same frame are *variants* of each other when their valuation differs at most at the root.

Dfn A class of Kripke models \mathcal{K} has the *extension property (EP)* if for all $K_1, \ldots, K_n \in \mathcal{K}$ there is a variant of $(\sum K_i)'$ in \mathcal{K} .

Dfn A formula A has the *extension property* if it is complete with respect to a class of models with the extension property.

Thm (Ghilardi) In IPC, A is projective iff A has EP.

Ex In IPC, p and $\neg p$ are projective and $p \lor q$ is not.

Similar techniques apply to modal logics.

Method of proof

Thm If there is a set of admissible rules \mathcal{R} such that for every formula A there is a finite set of projective formulas Π_A such that

$$\bigvee \Pi_A \vdash_{\mathsf{L}} A \vdash^{\mathcal{R}}_{\mathsf{L}} \Pi_A,$$

then \mathcal{R} is a basis for the admissible rules of L.

Thm In the following logics there exists for every formula A a finite set of projective formulas Π_A such that

• in IPC:
$$\bigvee \Pi_A \vdash A \vdash^{\vee} \Pi_A$$
;

• in S4:
$$\bigvee \Pi_A \vdash A \vdash^{V^\circ} \Pi_A$$
;

• in GL:
$$\bigvee \Pi_A \vdash A \vdash^{\vee} \Pi_A$$
;

• in
$$CPC_{\neg,\rightarrow}$$
: $\bigvee \Pi_A \vdash A \vdash^W \Pi_A$;

o ...

(Jeřábek) In Ł: similar but the formulas are not projective.

