Rules of Inference
 Lecture 2
 Wednesday, September 25

Rosalie Iemhoff
Utrecht University, The Netherlands

TbiLLC 2013
Gudauri, Georgia, September 23-27, 2013

Today

- Examples
- Bases
- Approximations
- Projective formulas

Derivable and admissible

Dfn Given a set of rule schemes $\mathcal{R}, \vdash^{\mathcal{R}}$ is the smallest consequence relation that extends \vdash and which rules contain $\operatorname{Ru}(\mathcal{R})$.
For a rule $R, \vdash^{\mathcal{R}}$ is short for $\vdash^{\mathcal{R}}$, where \mathcal{R} consists of the rule scheme (R, Sub), for Sub being the set of all substitutions.

Dfn Γ / Δ is derivable in L iff $\Gamma \vdash_{\mathrm{L}} \Delta$.
Dfn $R=\Gamma / \Delta$ is admissible in $L\left(\Gamma \sim_{L} \Delta\right)$ iff $\operatorname{Thm}\left(\vdash_{\mathrm{L}}\right)=\operatorname{Thm}\left(\vdash_{\mathrm{L}}^{R}\right)$.
Thm For single-conclusion consequence relations:

$$
\Gamma \vdash_{\llcorner } A \text { iff for all substitutions } \sigma: \vdash_{\mathrm{L}} \bigwedge \sigma \Gamma \text { implies } \vdash_{\mathrm{L}} \sigma A \text {. }
$$

Thm For multi-conclusion c.r.'s with the disjunction property:
$\Gamma \sim_{\llcorner } \Delta$ iff for all substitutions $\sigma: \vdash_{\mathrm{L}} \bigwedge \sigma \Gamma$ implies $\vdash_{\mathrm{L}} \sigma A$ for some $A \in \Delta$.

Examples

Classical logic

Thm Classical propositional logic CPC is structurally complete, i.e. all admissible rules of $\vdash_{\text {CPC }}$ are (strongly) derivable.

Intuitionistic logic

Thm The Harrop or Kreisel-Putnam Rule

$$
\frac{\neg A \rightarrow B \vee C}{(\neg A \rightarrow B) \vee(\neg A \rightarrow C)} \mathrm{HR}
$$

is admissible but not derivable in IPC, as

$$
(\neg A \rightarrow B \vee C) \rightarrow(\neg A \rightarrow B) \vee(\neg A \rightarrow C)
$$

is not derivable in IPC. The same holds for Heyting Arithmetic.
Thm (Prucnal '79) HR is admissible in any intermediate logic.
Thm The disjunctive Harrop Rule

$$
\frac{\{\neg A \rightarrow B \vee C\}}{\{(\neg A \rightarrow B),(\neg A \rightarrow C)\}} \mathrm{HR}
$$

is admissible in intermediate logics with the disjunction property.
Thm (Buss \& Mints \& Pudlak '01)
HR does not shorten proofs more than polynomially.

Thm (Prucnal '79) The Harrop or Kreisel-Putnam Rule

$$
\frac{\neg A \rightarrow B \vee C}{(\neg A \rightarrow B) \vee(\neg A \rightarrow C)} \mathrm{HR}
$$

is admissible in any intermediate logic.
Prf If $\vdash_{\mathrm{L}} \neg A \rightarrow B \vee C$, then $\vdash_{\mathrm{L}} \neg \sigma A \rightarrow \sigma B \vee \sigma C$, where $\sigma=\sigma_{I}{ }^{A}$ for some valuation v_{I} that satisfies $\neg A$ (if $\neg A$ is inconsistent, the statement is trivial).
As $\vdash_{\mathrm{CPC}} \neg \sigma A$, also $\vdash_{\mathrm{L}} \neg \sigma A$ by Glivenko's theorem. Hence $\vdash_{\mathrm{L}} \sigma B \vee \sigma C$. Therefore $\vdash_{\mathrm{L}}(\neg A \rightarrow B) \vee(\neg A \rightarrow C)$.

Thm (Minari \& Wroński '88) For A a Harrop formula, the rule

$$
\frac{A \rightarrow B \vee C}{(A \rightarrow B) \vee(A \rightarrow C)}
$$

is admissible in any intermediate logic.

Decidability

Decidability

Thm (Chagrov '92) There are decidable logics in which admissibility is undecidable.

Thm (Rybakov \& Odintsov \& Babenyshev '00's) Admissibility is decidable in many modal and temporal logics.

Thm (Jeřábek '07)
In IPC and many transitive modal logics admissibility is coNEXP-complete.

Bases

Note If $A \sim_{\mathrm{L}} B$, then $A \wedge C \sim_{\mathrm{L}} B \wedge C$.
To describe all admissible rules of a logic the notion of basis is used.
Dfn A set of rules \mathcal{R} derives a rule Γ / Δ in L iff $\Gamma \vdash_{L}^{\mathcal{R}} \Delta$.
Dfn \mathcal{R} is a basis for the admissible rules of L iff the rules in \mathcal{R} are admissible in L and all admissible rules of L are derivable from \mathcal{R} in L :

$$
\sim_{\mathrm{L}}=\vdash_{\mathrm{L}}^{\mathcal{R}} .
$$

Dfn A basis is independent if no proper subset of it is a basis. It is weakly independent if no finite subset of it is a basis.
Thm (Rybakov 80's)
There is no finite basis for the admissible rules of IPC.

Sequents

In the description of bases it is convenient to use sequents instead of formulas.

Dfn A sequent is of the form $\Gamma \Rightarrow \Delta$ where Γ and Δ are finite sets of formulas. Its interpretation $I(\Gamma \Rightarrow \Delta)$ is $\Lambda \Gamma \rightarrow \bigvee \Delta$.
With a formula A the sequent $\Rightarrow A$ is associated.
We sometimes write $\vdash S$ instead of $\vdash I(S)$.
For a set of sequents $\mathcal{S}, I(\mathcal{S})$ denotes $\bigwedge_{S \in \mathcal{S}} I(S)$.
Dfn An implication $A \rightarrow B$ is atomic if A and B are atoms. A sequent ($\Gamma \Rightarrow \Delta$) is irreducible if Δ consists of atoms and Γ of atoms and atomic implications.
An implicational formula $\wedge \Gamma \rightarrow \bigvee \Delta$ is irreducible if $\Gamma \Rightarrow \Delta$ is.

Intuitionistic logic

In IPC:
Formulas $\quad A \vee B \sim\{A, B\} \quad \vee \Delta \sim \Delta$
Sequents $\quad \Rightarrow A, B \vdash\{\Rightarrow A, \Rightarrow B\} \Rightarrow \Delta \sim\{\Rightarrow D \mid D \in \Delta\}$
HR

$$
\neg A \Rightarrow \Delta \neg\{\neg A \Rightarrow D \mid D \in \Delta\}
$$

$$
A \rightarrow B \Rightarrow \Delta \vdash\{A \rightarrow B \Rightarrow D \mid D \in \Delta\} \cup\{A \rightarrow B \Rightarrow A\}
$$

Visser rules $\Gamma \Rightarrow \Delta ん\left\{\Gamma \Rightarrow D \mid D \in \Delta \cup \Gamma^{a}\right\} \quad$ (Γ implications only).
Γ^{a} consists of the A such that $(A \rightarrow B) \in \Gamma$ for some B.

Thm (lemhoff '01, Roziére '92)
The Visser rules are a basis for the multi-conclusion admissible rules of IPC.

Intermediate logics

Dfn The single-conclusion Visser rules: (Γ implications only)

$$
(\bigwedge \Gamma \rightarrow \bigvee \Delta) \vee A / \bigvee\left\{\bigwedge \Gamma \rightarrow D \mid D \in \Delta \cup \Gamma^{a}\right\} \vee A
$$

Dfn Intermediate logics:

$$
\begin{array}{lll}
\mathrm{KC} & \neg A \vee \neg \neg A & \text { a maximal node } \\
\mathrm{LC} & (A \rightarrow B) \vee(B \rightarrow A) & \text { linear }
\end{array}
$$

Thm (lemhoff '05)

The single-conclusion Visser rules are a basis for the admissible rules in any intermediate logic in which they are admissible.
Thm The single-conclusion Visser rules are a basis for the admissible rules of KC.

Thm The single-conclusion Visser rules are derivable in LC. Hence LC is structurally complete.
Thm (Goudsmit \& lemhoff '12) The ($n+1$)-th Visser rule is a basis for the n-th Gabbay-deJongh logic.

Modal logics

Dfn Given a formula A and set of atoms I, valuation v_{l} and substitution σ_{l}^{A} are defined as

$$
v_{l}(p) \equiv_{d f n}\left\{\begin{array} { l l }
{ 1 } & { \text { if } p \in I } \\
{ 0 } & { \text { if } p \notin I }
\end{array} \quad \sigma _ { l } ^ { A } (p) \equiv _ { d f n } \left\{\begin{array}{ll}
A \rightarrow p & \text { if } p \in I \\
A \wedge p & \text { if } p \notin I .
\end{array}\right.\right.
$$

Thm If S contains an atom, then for $I(S)=A, A \vdash B \Leftrightarrow A \vdash B$. Prf Choose an atom p in S. Define σ to be σ_{\emptyset}^{A} if p is in the antecedent of S, and $\sigma_{\{p\}}^{A}$ otherwise.
$\vdash \sigma A$ and $A \vdash \sigma(B) \leftrightarrow B$ for all B. Thus $A \vdash B$ implies $A \vdash B$.
Note In many modal logics, any nonderivable admissible rule formulated via sequents has to have a premiss that does not contain atoms.

Modal logics

Dfn The modal Visser rules:

$$
\frac{\square \Gamma \Rightarrow \square \Delta}{\{『 \Gamma \Rightarrow D \mid D \in \Delta\}} \mathrm{V}^{\bullet} \quad \frac{\{\square \Gamma \equiv \Gamma \Rightarrow D \mid D \in \Delta\}}{\{\boxminus \Gamma \Rightarrow D \mid D \in \Delta\}} \mathrm{V}^{\circ}
$$

($\square A$ denotes $A \wedge \square A$ and $\square \Gamma \equiv \Gamma$ denotes $\{A \leftrightarrow \square A \mid A \in \Gamma\}$.)
Thm (Jeřábek '05)
The irreflexive Visser rules are a basis in any extension of GL in which they are admissible. Similarly for the reflexive Visser rules and S4, and for their combination and K4.

Thm (Babenyshev \& Rybakov '10)
Explicit bases for temporal modal logics.

Fragments

Thm (Mints '76)

In IPC, all nonderivable admissible rules contain \vee and \rightarrow.
Thm (Prucnal '83)
IPC \rightarrow is structurally complete, as is IPC \rightarrow, \wedge.
Thm (Minari \& Wroński '88)
$\mathrm{IPC}_{\rightarrow, \neg, \wedge}$ is structurally complete.
Thm (Cintula \& Metcalfe '10)
IPC $_{\rightarrow, \neg}$ is not structurally complete. The Wroński rules are a basis for its admissible rules:

$$
\frac{\left(p_{1} \rightarrow\left(p_{2} \rightarrow \ldots\left(p_{n} \rightarrow \perp\right) \ldots\right)\right.}{\left\{\neg \neg p_{i} \rightarrow p_{i} \mid i=1, \ldots, n\right\}}
$$

Substructural logics

Thm (Odintsov \& Rybakov '12)
Johanssons' minimal logic has finitary unification and admissibility is decidable.

Thm (Jeřábek '09)
The admissible rules of Łukasiewicz logic have no finite basis, but a nice infinite basis exists.

Approximations

Method of proof

Thm In many intermediate and modal logics, there is for every formula A a finite set of irreducible formulas Π_{A} such that

$$
\bigvee \Pi_{A} \vdash A \vdash \Pi_{A},
$$

and for all $B \in \Pi_{A}$ and all $C, B \vdash C \Leftrightarrow B \vdash C$.
Cor If also $A \vdash^{\mathcal{R}} \Pi_{A}$ for some set of admissible rules \mathcal{R}, then \mathcal{R} is a basis. Prf $A \nsim C$ implies that $B \vdash C$ for all $B \in \Pi_{A}$. Hence $A \vdash^{\mathcal{R}} C$.

Dfn Π_{A} is an (irreducible) projective approximation of A.

Irreducible approximations

Dfn $A \Vdash B$ if there is a σ which is the identity on the atoms in A such that $A \vdash \sigma B$. $A \nvdash B$ if every unifier of A can be extended to a unifier of B.

Thm Given a sequent S there is a set \mathcal{G} of irreducible sequents such that

$$
I(S) \Vdash \bigwedge I(\mathcal{G}) \vdash I(S)
$$

Prf (I) Apply the invertible logical rules of LJ as long as possible:
For example, $\Gamma, A \wedge B \Rightarrow \Delta$ is replaced by $\Gamma, A, B \Rightarrow \Delta$.
(II) Introduce atoms for the composite formulas in S :

For example, $\Gamma, A \rightarrow B \Rightarrow \Delta$ is replaced by

$$
(\Gamma, p \rightarrow q \Rightarrow \Delta)(p \Rightarrow A)(B \Rightarrow q)
$$

Apply (I) and (II) as long as possible.

Valuations and substitutions

Dfn Given a formula A and set of atoms I, valuation v_{I} and substitution σ_{l}^{A} are defined as

$$
v_{l}(p) \equiv{ }_{d f n}\left\{\begin{array} { l l }
{ 1 } & { \text { if } p \in I } \\
{ 0 } & { \text { if } p \notin I }
\end{array} \quad \sigma _ { I } ^ { A } (p) \equiv d f n \left\{\begin{array}{ll}
A \rightarrow p & \text { if } p \in I \\
A \wedge p & \text { if } p \notin I
\end{array}\right.\right.
$$

Note $A \vdash \sigma_{I}^{A}(B) \leftrightarrow B$ for all B and I.
Note If $\vdash \sigma_{I}^{A}(A)$, then $A \sim B \Leftrightarrow A \vdash B$ for all B.

Projective formulas

Dfn (Ghilardi) A formula A is projective in L if for some substitution σ and all atoms p :

$$
\vdash_{\llcorner } \sigma A \quad A \vdash_{\llcorner } p \leftrightarrow \sigma(p) .
$$

σ is the projective unifier (pu) of A.
Thm If A is projective and \vdash has the disjunction property, then for all Δ :

$$
A \vdash_{\llcorner } \Delta \Leftrightarrow \exists B \in \Delta A \vdash_{\llcorner } B .
$$

Cor If all unifiable formulas are projective in L , then all nonpassive rules are derivable.
Ex For $I=\{p\}, \sigma_{l}^{p}$ is a pu of p. For $I=\emptyset, \sigma_{l}^{\neg p}$ is a pu of $\neg p$.

Intermezzo: the extension property

Dfn $\sum K_{i}$ denotes the disjoint union of the models K_{1}, \ldots, K_{n}.
Dfn K^{\prime} denotes the extension of model K with one node at which no atoms are forced and that is below all nodes in K.

Dfn Two rooted models on the same frame are variants of each other when their valuation differs at most at the root.
Dfn A class of Kripke models \mathcal{K} has the extension property (EP) if for all $K_{1}, \ldots, K_{n} \in \mathcal{K}$ there is a variant of $\left(\sum K_{i}\right)^{\prime}$ in \mathcal{K}.

Dfn A formula A has the extension property if it is complete with respect to a class of models with the extension property.
Thm (Ghilardi) In IPC, A is projective iff A has EP.
Ex In IPC, p and $\neg p$ are projective and $p \vee q$ is not.
Similar techniques apply to modal logics.

Method of proof

Thm If there is a set of admissible rules \mathcal{R} such that for every formula A there is a finite set of projective formulas Π_{A} such that

$$
\bigvee \Pi_{A} \vdash_{L} A \vdash_{L}^{\mathcal{R}} \Pi_{A},
$$

then \mathcal{R} is a basis for the admissible rules of L .
Thm In the following logics there exists for every formula A a finite set of projective formulas Π_{A} such that

- in IPC: $\bigvee \Pi_{A} \vdash A \vdash^{\vee} \Pi_{A}$;
- in S4: $\bigvee \Pi_{A} \vdash A \vdash V^{\circ} \Pi_{A}$;
- in GL: $\bigvee \Pi_{A} \vdash A \vdash \vdash^{\bullet} \Pi_{A}$;
- in $\mathrm{CPC}_{\neg, \rightarrow:}$ V $\Pi_{A} \vdash A \vdash^{\mathrm{W}} \Pi_{A}$;
- ...
(Jerábek) In $Ł$: similar but the formulas are not projective.
Finis

Finis
Finis Finis

inis
Finis

Finis
Finis Finis

Finis
Finis

Finis

Finis Finis

