Rules of Inference Lecture 1 Tuesday, September 24

Rosalie lemhoff Utrecht University, The Netherlands

TbiLLC 2013 Gudauri, Georgia, September 23-27, 2013

Questions

Given a theorem, what are the proofs that prove it?

Given a logic, what are the systems of inference that describe it?

Independent of the representation of a logic, in most cases there is a notion of inference.

Given a rule of inference, is it derivable in the logic or can it be added without extending the set of theorems? Is it *admissible*?

These questions can be studied using proof theory, model theory, algebraic logic ... Close connection unification theory.

Admissibility - where it occurs

Ex

- B → A(x)/B → ∀yA(y) (x not free in B) is admissible in classical predicate logic.
- $Con(ZF)/\perp$ is admissible but not derivable in ZF.
- $\Box A/A$ is admissible in many modal logics.
- Markov's Rule ¬¬∃xA(x)/∃xA(x) for A ∈ Δ₀ is admissible in Heyting Arithmetic.
- $\,\circ\,$ Cut is admissible in Gentzen's sequent calculus LK $-\,{\rm Cut}.$
- The Density Rule (A → P) ∨ (P → B)/A → B for atomic P is admissible in first-order Gödel logic.

Today

- Introduction
- Consequence relations
- Rules
- Decidability

Ex Let T be a theory in the propositional language consisting of propositional variables and \rightarrow given by (all substitution instances of)

$$\frac{A \quad A \to B}{B}$$

•

The rule

$$\frac{B \to A}{A \to B}$$

is admissible in T, but not derivable:

$$\vdash A \rightarrow B \Rightarrow \vdash B \rightarrow A$$

$$A \to B \not\vdash B \to A.$$

Ex The sequent calculus LK for classical predicate logic CQC contains the Cut Rule

$$\frac{\Gamma \Rightarrow \Delta, A \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} \quad Cut$$

(Γ and Δ are finite sequences of formulas.) LK⁻: LK without *Cut*. Thm Every theorem of CQC has a proof in LK without *Cut*. In other words: *Cut* is admissible in LK⁻. Disjunction properties are examples of multi-conclusion rules: Ex If $\vdash_{IPC} A \lor B$ then $\vdash_{IPC} A$ or $\vdash_{IPC} B$. Ex If $\vdash_{K4} \Box A \lor \Box B$ then $\vdash_{K4} A$ or $\vdash_{K4} B$.

Other multi-conclusion rules:

Ex (Williamson '92) If $\vdash_{\mathsf{KT}} A \to \Box A$ then $\vdash_{\mathsf{KT}} A$ or $\vdash_{\mathsf{KT}} \neg A$.

Logics can be given in a variety of ways. What does it mean to extend a logic by a rule? What does it mean to extend a logic by a multi-conclusion rule?

Consequence Relations

Setting

Consequence relations form a convenient framework to study rules. They capture in great generality what it means to infer something.

Origins: Tarski (1935), Polish School.

Preliminaries

Dfn We consider logics in a certain language \mathcal{L} together with a notion of substitution for the formulas $\mathcal{F}_{\mathcal{L}}$ in \mathcal{L} .

Propositional logics: \mathcal{L}_p consists of propositional variables (atoms), constants \top, \bot and connectives $\land, \lor, \rightarrow, \neg$. A substitution σ is a map on $\mathcal{F}_{\mathcal{L}}$ that commutes with the connectives. It is uniquely characterized by its behavior on atoms.

Modal logics: \mathcal{L}_m is \mathcal{L}_p extended by the modal operators and substitutions commute with the connectives and the operators.

Predicate logics: \mathcal{L}_f is defined as usual, with predicates, functions, variables, the connectives, \top , \bot , and the quantifiers.

Substructural logics: \mathcal{L}_s is as propositional logic except that the connectives may be different, such as ! or \otimes .

Consequence relations

Dfn A finitary multi-conclusion consequence relation $(m.c.r.) \vdash$ is a relation on finite sets of formulas in $\mathcal{F}_{\mathcal{L}}$ that satisfies

Reflexivity	$\Gamma \vdash \Delta \text{ if } \Gamma \cap \Delta \neq \emptyset;$
Monotonicity	$\Gamma \vdash \Delta \text{ implies } \Gamma, \Pi \vdash \Delta, \Sigma;$
Transitivity	$\Gamma \vdash A, \Delta \text{ and } \Pi, A \vdash \Sigma \text{ implies } \Gamma, \Pi \vdash \Delta, \Sigma.$

It is structural if

Structurality $\Gamma \vdash \Delta$ implies $\sigma \Gamma \vdash \sigma \Delta$ for all substitutions σ .

 $\Gamma, A \vdash \Delta, B$ is short for $\Gamma \cup \{A\} \vdash \Delta \cup \{B\}$ and $\vdash \Delta$ for $\emptyset \vdash \Delta$.

A finitary single-conclusion consequence relation $(s.c.r.) \vdash$ is a relation between finite sets of formulas and formulas that satisfies

Reflexivity $A \vdash A$;Monotonicity $\Gamma \vdash A$ implies $\Gamma, \Pi \vdash A$;Transitivity $\Gamma \vdash A$ and $\Pi, A \vdash B$ implies $\Gamma, \Pi \vdash B$.

Examples of consequence relations

Dfn The theorems of \vdash are Th(\vdash) $\equiv_{dfn} \{A \mid \vdash A \text{ holds}\}$. The multi-conclusion theorems of \vdash are Thm(\vdash) $\equiv_{dfn} \{\Delta \mid \vdash \Delta \text{ holds}\}$.

Ex The minimal consequence relation: $\Gamma \Vdash \Delta \equiv_{dfn} \Gamma \cap \Delta \neq \emptyset$.

Ex Given a m.c.r. \vdash , its single-conclusion fragment \vdash_s is defined as

$$\Gamma \vdash_{s} A \equiv_{dfn} \Gamma \vdash A.$$

Ex Any s.c.r. \vdash has a natural multi-conclusion analogue:

$$\Gamma \vdash^{\min} \Delta \iff \exists A \in \Delta \Gamma \vdash A$$

Dfn A consequence relation \vdash covers a logic L if Th(\vdash) consists of the theorems of L.

Examples of single-conclusion consequence relations

Ex The following two consequence relations cover Th(CPC):

$$\Gamma \vdash A \equiv_{dfn} (\bigwedge \Gamma \rightarrow A)$$
 is a theorem of CPC;
 $\Gamma \vdash A \equiv_{dfn} A \in \Gamma$ or A is a theorem of CPC.

Ex A s.c.r. on $\mathcal{F}_{\mathcal{L}_m}$ that covers the modal logic K:

 $\Gamma \vdash A \equiv_{dfn} A$ holds in all Kripke models in which all formulas in Γ hold. Dfn Given a logic L that contains \land, \lor, \rightarrow the s.c.r. and m.c.r. \vdash_{L} are

$$\Gamma \vdash_{\mathsf{L}} A \equiv_{dfn} (\bigwedge \Gamma \to A) \text{ is a theorem of } \mathsf{L}$$
$$\Gamma \vdash_{\mathsf{L}} \Delta \equiv_{dfn} (\bigwedge \Gamma \to \bigvee \Delta) \text{ is a theorem of } \mathsf{L}$$

Note For many logics L, \vdash_L and \vdash_L are structural consequence relations.

Logics are given by consequence relations. What does it mean to extend a logic by a rule? What does it mean to extend a logic by a multi-conclusion rule?

Rules

Rules

Dfn A (single-conclusion) rule is a pair of a finite set of formulas Γ and a formula A, denoted as Γ/A . A multi-conclusion rule is a pair of finite sets of formulas denoted as Γ/Δ . Alternative notation: $\frac{\Gamma}{A}$ and $\frac{\Gamma}{\Delta}$. Ru(\vdash) consists of the rules Γ/Δ for which $\Gamma \vdash \Delta$. Similar for s.c.r. For a set of rules \mathcal{R} , $\sigma \mathcal{R} \equiv_{dfn} \{\sigma R \mid R \in \mathcal{R}\}$, where $\sigma(\Gamma/\Delta) = \sigma \Gamma/\sigma \Delta$.

Because rules are often schematic and come with side conditions, the notion of rule is generalized to rule scheme.

Dfn A *rule scheme* is a pair (R, S), where R is a rule, and S a set of substitutions. For every $\sigma \in S$, σR is an *instance* of the rule scheme. A *structural* rule is a rule scheme where the set of substitutions is maximal. Given a set of rules schemes \mathcal{R} :

$$\mathsf{Ru}(\mathcal{R}) \equiv_{dfn} \{ \sigma R \mid \exists S : (R, S) \in \mathcal{R} \text{ and } \sigma \in S \}.$$

Ex

- $\exists xA(x, fx)/\exists x \forall yA(x, y)$ (f fresh) is a Skolem Rule in predicate logic.
- $(\Box A/A, S)$, where S is the set of all subsitutions in \mathcal{L}_m , is a structural rule that is admissible but nonderivable in many modal logics. $\Box(p \to q)/p \to q$ is an instance of the rule.
- Markov's Scheme (¬¬∃xP(x)/∃xP(x), S), where S consists of those substitutions on L_f that map atom P(x) to a formula in Δ₀, is admissible in Heyting Arithmetic.
- The Cut Scheme { $(\Gamma \Rightarrow A, \Delta), (A, \Gamma \Rightarrow \Delta)$ }/ $(\Gamma \Rightarrow \Delta), S$, where S is the set of all subsitutions in \mathcal{L}_f , is an admissible structural rule scheme in Gentzen's sequent calculus LK Cut.

Consequence relations and rules

Dfn Given a set of rule schemes \mathcal{R} , $\vdash^{\mathcal{R}}$ is the smallest consequence relation that extends \vdash and which rules contain Ru(\mathcal{R}).

For a rule R, \vdash^R is short for \vdash^R , where \mathcal{R} consists of the rule scheme (R, Sub), for Sub being the set of all substitutions.

Dfn Given a set of rule schemes \mathcal{R} , a sequence of formulas A_1, \ldots, A_n is a *derivation* of Γ/Δ in \mathcal{R} if $A_n \in \Delta$ and for all $A_i \notin \Gamma$ there are $i_1, \ldots, i_m < i$ such that $A_{i_1}, \ldots, A_{i_m}/A_i$ belongs to $\operatorname{Ru}(\mathcal{R})$.

Thm For a s.c.r. \vdash and set of s.c. rule schemes \mathcal{R} : $\Gamma \vdash^{\mathcal{R}} A$ iff there is a derivation of Γ/A in $\operatorname{Ru}(\vdash) \cup \operatorname{Ru}(\mathcal{R})$.

Dfn A m.c.r. \vdash is *saturated* if $\Gamma \vdash \Delta$ implies $\Gamma \vdash A$ for some $A \in \Delta$.

Thm For a saturated m.c.r. \vdash and set of m.c. rule schemes \mathcal{R} : $\Gamma \vdash^{\mathcal{R}} \Delta$ iff there is a derivation of Γ/Δ in Ru(\vdash) \cup Ru(\mathcal{R}).

Dfn For a logic given by a c.r. \vdash , the *extension* of it by a set of rules (schemes) \mathcal{R} is $\vdash^{\mathcal{R}}$.

Examples consequence relations

Ex Mendelson's Hilbert style system for $CPC_{\neg,\rightarrow}$ given as a set of structural rules $\mathcal{R}:$ rule Modus Ponens and axioms

$$\begin{array}{l} A \rightarrow (B \rightarrow A) \quad (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)) \\ (\neg A \rightarrow \neg B) \rightarrow ((\neg A \rightarrow B) \rightarrow A). \end{array}$$

Is there a smaller consequence relation that covers $\mathsf{CPC}_{\neg,\rightarrow}?$ Yes,

$$\{\Gamma \vdash' A \mid A \in \Gamma \text{ or } A \text{ holds in } CPC_{\neg, \rightarrow}\}.$$

Is there an extension of \vdash that also covers $CPC_{\neg, \rightarrow}$? We will see.

Derivable and admissible

Dfn Γ/Δ is derivable in L iff $\Gamma \vdash_{L} \Delta$. Dfn Γ/Δ is strongly derivable in L iff $\vdash_{L} \land \Gamma \rightarrow \bigvee \Delta$. Dfn $R = \Gamma/\Delta$ is admissible in L $(\Gamma \vdash_{L}\Delta)$ iff $\text{Thm}(\vdash_{L}) = \text{Thm}(\vdash_{L}^{R})$. Dfn $R = \Gamma/A$ is admissible in L $(\Gamma \vdash_{L}A)$ iff $\text{Th}(\vdash_{L}) = \text{Th}(\vdash_{L}^{R})$. Dfn \vdash_{L} is structurally complete if all admissible rules of \vdash_{L} are derivable.

 $Ex \perp/A$ is admissible in any consistent logic, but not always derivable. $Ex \Box A/A$ is admissible in many modal logics, such as S4 and GL.

Dfn \vdash has the disjunction property iff $\vdash \Delta$ implies $\vdash A$ for some $A \in \Delta$.

Standard consequence relations

Note Given a logic L, the smallest consequence relation that covers L is

 $\{\Gamma \Vdash_{\mathsf{L}}^{\mathsf{m}} A \mid A \in \mathsf{Th}(\mathsf{L}) \text{ or } A \in \Gamma\}.$

Thm For single-conclusion consequence relations:

 $\Gamma \succ_{\mathsf{L}} A$ iff for all substitutions $\sigma: \vdash_{\mathsf{L}} \bigwedge \sigma \Gamma$ implies $\vdash_{\mathsf{L}} \sigma A$.

Thm For multi-conclusion c.r.'s with the disjunction property:

 $\Gamma \vdash_{\mathsf{L}} \Delta$ iff for all substitutions $\sigma \colon \vdash_{\mathsf{L}} \bigwedge \sigma \Gamma$ implies $\vdash_{\mathsf{L}} \sigma A$ for some $A \in \Delta$.

Note L has the disjunction property iff $A \lor B \succ_{L} \{A, B\}$.

Thm For c.r. with the disjunction property admissibility depends only on the theorems of the c.r: if $Th(\vdash_1) = Th(\vdash_2)$, then $\vdash_1 = \vdash_2$.

Note \sim_{L} is the largest consequence relation that covers L. Thm For all logics L:

Admissibility in algebraic logic

Dfn A quasi equation $\{s_i = t_i \mid i = 1, ..., n\} \Rightarrow s = t$ is admissible in a class of algebras \mathcal{K} if it holds in the free algebra of \mathcal{K} on ω generators.

Classical logic

Thm Classical propositional logic CPC is structurally complete, i.e. all admissible rules of \vdash_{CPC} are (strongly) derivable.

Prf If A/B is admissible, then for all ground substitutions σ from $\mathcal{F}_{\mathcal{L}_p}$ to $\{\top, \bot\}$: if $\vdash_{CPC} \sigma A$, then $\vdash_{CPC} \sigma B$.

Thus $A \rightarrow B$ is true under all valuations. Hence $\vdash_{CPC} A \rightarrow B$.

Dfn Given a formula A and set of atoms I, valuation v_I and substitution σ_I^A are defined as

$$v_{I}(p) \equiv_{dfn} \begin{cases} \top & \text{if } p \in I \\ \bot & \text{if } p \notin I \end{cases} \quad \sigma_{I}^{A}(p) \equiv_{dfn} \begin{cases} A \to p & \text{if } p \in I \\ A \land p & \text{if } p \notin I. \end{cases}$$

Thm If $v_l(A) = \top$, then $\vdash_{CPC} \sigma_l^A(A)$. Prf Write σ for σ_l^A . $\vdash_{CPC} A \rightarrow (\sigma(p) \leftrightarrow p)$, thus $\vdash_{CPC} A \rightarrow \sigma(A)$. $\vdash_{CPC} \neg A \rightarrow (\sigma(p) \leftrightarrow v_l(p))$, thus $\vdash_{CPC} \neg A \rightarrow \sigma(A)$. Hence $\vdash_{CPC} \sigma(A)$.

