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Support

• Inquisitive semantics takes sentences to express a proposal
to the participants in the conversation to update the common
ground of the conversation (CG) in one or more ways.

• The question in (1a) proposes two alternative ways to update
the CG, which correspond to the two responses (1b-c).

(1) a. If Alf goes to the party, will Bea go too? p → ?q
b. If Alf goes, then Bea will go as well. p → q
c. If Alf goes, then Bea will not go. p → ¬q

• Basic inquisitive semantics (InqB) accounts for the intuition
that (1b-c) are responses that, if accepted by the other
conversational participants, yield a CG that supports the
question in (1a), settling the proposal that it expresses.
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Support and reject

• InqB does not account for the intuition that (1c) rejects the
proposal expressed by (1b), and vice versa.

(1) a. If Alf goes to the party, will Bea go too? p → ?q
b. If Alf goes, then Bea will go as well. p → q
c. If Alf goes, then Bea will not go. p → ¬q

• Radical inquisitive semantics (InqR) does account for this.

• It achieves this by not only specifying support-conditions, as
InqB does, but simultaneously also rejection-conditions.
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Support, reject, dismiss

• InqB and InqR do not account for the intuition that (1d)
dismisses a supposition that is shared by (1a)-(1c).

(1) a. If Alf goes to the party, will Bea go too? p → ?q
b. If Alf goes, then Bea will go as well. p → q
c. If Alf goes, then Bea will not go. p → ¬q
d. Alf will not go to the party. ¬p

• This is just as much a way of settling the proposals that these
sentences express, on a par with support and rejection.

• Suppositional inq semantics (InqS) aims to characterize when
a response suppositionally dismisses a given proposal.

• To achieve this, it does not only specify conditions for support
and rejection, but also for supposition dismissal.
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Some basic notions

• We consider a language L of propositional logic.

• We let ?ϕ be an abbreviation of ϕ ∨ ¬ϕ

• Sentences are evaluated relative to information states.

• An information state s is set of possible worlds.

• A possible world w is a valuation function that assigns the
value 1 or 0 to each atomic sentence in L.

• We use ω to denote the set of all worlds, the ignorant state.

• We refer to the empty set as the absurd or inconsistent state.
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Global structure of the semantics

• The semantics for L is stated by simultaneous recursion of
three notions:

1. s |=+ ϕ state s supports ϕ InqB

2. s |=− ϕ state s rejects ϕ InqR

3. s |=◦ ϕ state s dismisses a supposition of ϕ InqS

• By [ϕ]† we denote {s ⊆ ω | s |=† ϕ}. † ∈ {+,− ,◦ }

• In InqS the proposition expressed by ϕ, [ϕ], is determined by
the triple 〈[ϕ]+, [ϕ]−, [ϕ]◦〉.

• In presenting the semantics, we will often quantify over the
maximal elements of [ϕ]†, called †-alternatives.

• For any set of states S: altS = {s ∈ S | ¬∃t ∈ S : s ⊂ t}
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Notation convention for representing states

• Let |ϕ| denote the set of worlds where ϕ is classically true

• This gives us a convenient notation for states. For instance:

|p| |=+ p ∨ q
|¬p| |=− p ∧ q
|¬p| |=◦ p → q



8

Downward closure / persistence

• A distinctive feature of InqB is that [ϕ]+ is downward closed

• If s |=+ ϕ, then for any t ⊆ s : t |=+ ϕ

That is, in InqB support is persistent

• In InqR, both [ϕ]+ and [ϕ]− are downward closed

• If s |=+ ϕ, then for any t ⊆ s : t |=+ ϕ
• If s |=− ϕ, then for any t ⊆ s : t |=− ϕ

That is, in InqR both support and rejection are persistent

• Underlying idea: if s supports/rejects a sentence ϕ, then
any more informed state t ⊆ s will support/reject ϕ as well

• Information growth cannot lead to retraction of support/reject



9

Persistence and suppositional dismissal

• As soon as we take suppositional dismissal into account
this central idea from InqB and InqR is no longer valid

• For instance, we want that:

|p → q| |=+ p → q

But we also want that:

|¬p| |=◦ p → q
|¬p| 6|=+ p → q

• So: information growth can lead to suppositional dismissal,
and thereby to retraction of support (or retraction of rejection)
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Persistence modulo suppositional dismissal

• Fortunately, there is a natural way to adapt the idea that
support and rejection are persistent to the setting of InqS

• Namely, in InqS we postulate that support and rejection are
persistent modulo dismissal of a supposition, and that
dismissal itself is fully persistent:

• If s |=+ ϕ and t ⊆ s, then t |=+ ϕ or t |=◦ ϕ

• If s |=− ϕ and t ⊆ s, then t |=− ϕ or t |=◦ ϕ

• If s |=◦ ϕ and t ⊆ s, then t |=◦ ϕ
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Two more postulates
Second postulate

• The inconsistent state suppositionally dismisses any sentence
ϕ, and never supports or rejects it. That is, for any ϕ:

∅ |=◦ ϕ

∅ 6|=+ ϕ

∅ 6|=− ϕ

Third postulate

• Support and rejection are mutually exclusive : [ϕ]+ ∩ [ϕ]− = ∅

• The postulates do not exclude that for some ϕ and s , ∅ :

• s |=+ ϕ and s |=◦ ϕ

• s |=− ϕ and s |=◦ ϕ
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Finally

• Final postulate: any completely informed consistent state {w}
supports, rejects, or suppositionally dismisses any sentence:

∀ϕ ∈ L : ∀w ∈ ω : {w} ∈ ([ϕ]+ ∪ [ϕ]− ∪ [ϕ]◦)

Propositions as conversational issues

• The postulates imply that the three components of a
proposition jointly form a non-empty downward closed set of
states that cover the set of all worlds:⋃

([ϕ]+ ∪ [ϕ]− ∪ [ϕ]◦) = ω

• In terms of InqB, our propositions are issues over ω.

• The issue embodied by [ϕ] is a conversational issue,
it specifies several appropriate ways of responding to ϕ.
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Some responsehood relations

• We can define a range of logical responsehood relations
according to the following scheme, filling in different semantic
relations for †:

• ψ |=† ϕ iff ∀u ∈ alt[ψ]+ : u |=† ϕ

• Three obvious responsehood relations are:

• ψ supports ϕ : ψ |=+ ϕ

• ψ rejects ϕ : ψ |=− ϕ

• ψ dismisses a supposition of ϕ : ψ |=◦ ϕ

• But if, for example, we define a semantic property s |=⊗ ϕ as
below, we obtain a new responsehood relation, which may be
dubbed ψ suppositionally dismisses ϕ.

• s |=⊗ ϕ iff s |=◦ ϕ and ∀t ⊆ s : t 6|=+ ϕ and t 6|=− ϕ.



14

Inquisitive and suppositional sentences

• ϕ is support inquisitive iff there are at least two support-
alternatives for it, i.e., alt[ϕ]+ contains at least two elements

• Rejection inquisitiveness and suppositional inquisitiveness
are defined similarly

• We call a sentence ϕ suppositional iff there is a non-absurd
state s such that s |=◦ ϕ
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Atomic sentences

• s |=+ p iff s , ∅ and ∀w ∈ s : w(p) = 1

s |=− p iff s , ∅ and ∀w ∈ s : w(p) = 0

s |=◦ p iff s = ∅

• Atomic sentences are not suppositional, since only the
inconsistent state can dismiss a supposition of p.

• Atomic sentences are not inquisitive, since there is only a
single support-alternative and a single rejection-alternative:

alt[p]+ = {|p|}

alt[p]− = {|¬p|}
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Negation

s |=+ ¬ϕ iff s |=− ϕ

s |=− ¬ϕ iff s |=+ ϕ

s |=◦ ¬ϕ iff s |=◦ ϕ

• The suppositional content of ϕ is inherited by its negation ¬ϕ

• Unlike in InqB: ¬¬ϕ ≡ ϕ
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Disjunction

• s |=+ ϕ ∨ ψ iff s |=+ ϕ or s |=+ ψ

s |=− ϕ ∨ ψ iff s |=− ϕ and s |=− ψ

s |=◦ ϕ ∨ ψ iff s |=◦ ϕ or s |=◦ ψ

• The suppositional content of ϕ and ψ is inherited by the
disjunction ϕ ∨ ψ

• The disjunction p ∨ q is support-inquisitive: there are two
support-alternatives for p ∨ q:

alt[p ∨ q]+ = {|p|, |q|}
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Conjunction

• s |=+ ϕ ∧ ψ iff s |=+ ϕ and s |=+ ψ

s |=− ϕ ∧ ψ iff s |=− ϕ or s |=− ψ

s |=◦ ϕ ∧ ψ iff s |=◦ ϕ or s |=◦ ψ

• The suppositional content of ϕ and ψ is inherited by the
conjunction ϕ ∧ ψ

• The conjunction p ∧ q is reject-inquisitive: there are two
rejection-alternatives for p ∧ q:

alt[p ∧ q]− = {|¬p|, |¬q|}
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Triggering and projection of suppositional content

• None of the clauses in the semantics we have met so far
trigger suppositional content.

• Atomic sentences are not suppositional, and negation,
disjunction and conjunction only project suppositional content
of their subformulas in a cumulative way.

• For the language at hand, implication is the only trigger of
suppositional content.

• Implication also projects the suppositional content of its
consequent, but relativized to its antecedent.
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Supposition triggered by implication

• The supposition that is triggered by an implication concerns
the supposability of its antecedent.

• The supposability of a sentence is determined by:

(a) the existence of support-alternatives for it.

(b) the supposability of its support-alternatives.

• Suppositional dismissal of an implication occurs in s, when
there is no support-alternative for its antecedent, or when
there is some support-alternative that is not supposable in s.
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Supporting an implication: InqB versus InqS

• The clause for implication in InqB is as follows:

s |= ϕ→ ψ iff ∀t : if t |= ϕ, then t ∩ s |= ψ

• We can also formulate this in terms of the alternatives for ϕ:

s |= ϕ→ ψ iff ∀u ∈ alt[ϕ] : u ∩ s |= ψ

• Since in InqB support is fully persistent, it makes no difference
whether we consider just the support-alternatives for ϕ or all
states that support it.

• In InqS, where support is only persistent modulo suppositional
dismissal, it does potentially make a difference.

• We should only consider the support-alternatives for ϕ,
because other states that support ϕ may contain additional
information which causes suppositional dismissal of ψ.

• This should not be a reason for support of ϕ→ ψ to fail.
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Implication in InqS: the intuitive idea

• s supports ϕ→ ψ iff alt[ϕ]+ , ∅ and for every u ∈ alt[ϕ]+:

(a) it is possible to suppose u in s, and

(b) s ∩ u supports ψ

• s rejects ϕ→ ψ iff alt[ϕ]+ , ∅ and for some u ∈ alt[ϕ]+:

(a) it is possible to suppose u in s, and

(b) s ∩ u rejects ψ

• s dismisses ϕ→ ψ iff alt[ϕ]+ = ∅, or for some u ∈ alt[ϕ]+:

(a) it is impossible to suppose u in s, or

(b) s ∩ u dismisses a supposition of ψ
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Implication in InqS: supposability

When is it possible to suppose a support-alternative u for ϕ?

• Normally, to suppose a piece of information u in a state s is
thought of as going from s to the more informed state s ∩ u

• Thus, we could say that is possible to suppose u in s iff
in going from s to s ∩ u our state remains consistent

• However, in the present setting, u is not just an arbitrary piece
of information: it is a piece of information that supports ϕ

• This property should be maintained in going from u to s ∩ u:

∀t from u to u ∩ s : t |=+ ϕ

In words: support should persist in restricting u to s
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Persisting support and suppositional dismissal

• Recall our first general postulate:

Support should be persistent modulo suppositional dismissal

• Given this postulate, the only reason why support of ϕ may fail
to persist in restricting u to s is that somewhere along the way,
suppositional dismissal occurs

Persisting support and consistency

• Our persisting support condition: ∀t from u to u ∩ s : t |=+ ϕ

entails the basic requirement that s ∩ u should be consistent.

• Just requiring consistency is not always sufficient.

• Example: p → q has a single support-alternative u = |p → q|.
Let s = |¬p|, then u ∩ s , ∅. But p → q is not supposable in s.
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Persisting support versus support in u ∩ s

• We require persisting support all the way from u to u ∩ s:

∀t from u to u ∩ s : t |=+ ϕ

• Just requiring support at u ∩ s is not always sufficient.

• Example:

• Let ϕ = (p → q) ∨ r

• Then ϕ has two support-alternatives: |p → q| and |r |

• Let u = |p → q| and let s = |¬p ∧ r |

• Then u ∩ s = s, and s |=+ (p → q) ∨ r , because s |=+ r

• However, (p → q) ∨ r should not count as supposable in s
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Implication in InqS fully spelled out

• s |=+ ϕ→ ψ iff alt[ϕ]+ , ∅ and ∀u ∈ alt[ϕ]+ :

1. ∀t from u to u ∩ s : t |=+ ϕ, and

2. u ∩ s |=+ ψ

• s |=− ϕ→ ψ iff alt[ϕ]+ , ∅ and ∃u ∈ alt[ϕ]+ :

1. ∀t from u to u ∩ s : t |=+ ϕ, and

2. u ∩ s |=− ψ

• s |=◦ ϕ→ ψ iff alt[ϕ]+ = ∅ or ∃u ∈ alt[ϕ]+ :

1. ∃t from u to u ∩ s : t 6|=+ ϕ, or

2. u ∩ s |=◦ ψ
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Non-suppositional reductions

Reduction: ϕ not suppositional

• s |=+ ϕ→ ψ iff alt[ϕ]+ , ∅ and ∀u ∈ alt[ϕ]+ : u ∩ s |=+ ψ

• s |=− ϕ→ ψ iff alt[ϕ]+ , ∅ and ∃u ∈ alt[ϕ]+ : u ∩ s |=− ψ

• s |=◦ ϕ→ ψ iff alt[ϕ]+ = ∅ or ∃u ∈ alt[ϕ]+ : u ∩ s |=◦ ψ

Reduction: ϕ and ψ not suppositional

• s |=+ ϕ→ ψ iff alt[ϕ]+ , ∅ and ∀u ∈ alt[ϕ]+ : u ∩ s |=+ ψ

• s |=− ϕ→ ψ iff alt[ϕ]+ , ∅ and ∃u ∈ alt[ϕ]+ : u ∩ s |=− ψ

• s |=◦ ϕ→ ψ iff alt[ϕ]+ = ∅ or ∃u ∈ alt[ϕ]+ : u ∩ s = ∅
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Non-suppositional reductions

Reduction: ϕ not suppositional

• s |=+ ϕ→ ψ iff alt[ϕ]+ , ∅ and ∀u ∈ alt[ϕ]+ : u ∩ s |=+ ψ
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• s |=◦ ϕ→ ψ iff alt[ϕ]+ = ∅ or ∃u ∈ alt[ϕ]+ : u ∩ s |=◦ ψ

Reduction: ϕ and ψ not suppositional

• s |=+ ϕ→ ψ iff alt[ϕ]+ , ∅ and ∀u ∈ alt[ϕ]+ : u ∩ s |=+ ψ

• s |=− ϕ→ ψ iff alt[ϕ]+ , ∅ and ∃u ∈ alt[ϕ]+ : u ∩ s |=− ψ

• s |=◦ ϕ→ ψ iff alt[ϕ]+ = ∅ or ∃u ∈ alt[ϕ]+ : u ∩ s = ∅
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Non-inquisitive reductions

• Now suppose that besides being non-suppositional,
ϕ is not support-inquisitive either (though still supportable)

• In this case, alt[ϕ]+ consists of a single alternative, call it αϕ

• The clauses for ϕ→ ψ then simpy reduce to:

s |=+ ϕ→ ψ iff s ∩ αϕ |=+ ψ

s |=− ϕ→ ψ iff s ∩ αϕ |=− ψ

s |=◦ ϕ→ ψ iff s ∩ αϕ |=◦ ψ

• If ψ is non-suppositional, dismissal further reduces to:

s |=◦ ϕ→ ψ iff s ∩ αϕ = ∅
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Our initial example: p → q

s |=+ p → q iff s ∩ |p| |=+ q

s |=− p → q iff s ∩ |p| |=− q

s |=◦ p → q iff s ∩ |p| = ∅

11 10

01 00

(a) support

11 10

01 00

(b) reject

11 10

01 00

(c) dismiss
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How to read the pictures

• Support is persistent modulo suppositional dismissal.

• We depict maximal states that support ϕ, and if necessary also
the maximal substates of these states that no longer support ϕ.

• We think of these substates as support holes.

• Rejection is persistent modulo suppositional dismissal.

• We depict maximal states that reject ϕ, and if necessary also
the maximal substates of these states that no longer reject ϕ.

• We think of these substates as rejection holes.

• Dismissal is fully persistent.

• We depict only maximal states that dismiss a supposition of ϕ.
• All substates thereof also dismiss a supposition of ϕ.
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Our initial example: p → ¬q

s |=+ p → ¬q iff s ∩ |p| |=+ ¬q

s |=− p → ¬q iff s ∩ |p| |=− ¬q

s |=◦ p → ¬q iff s ∩ |p| = ∅

11 10

01 00

(a) support

11 10

01 00

(b) reject

11 10

01 00

(c) dismiss
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Our initial example: p → ?q

s |=+ p → ?q iff s ∩ |p| |=+ q or s ∩ |p| |=+ ¬q

s |=− p → ?q iff s ∩ |p| |=− q and s ∩ |p| |=− ¬q impossible

s |=◦ p → ?q iff s ∩ |p| = ∅

11 10

01 00

(a) support

11 10

01 00

(b) reject

11 10

01 00

(c) dismiss
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Desired predictions

(1) a. If Alf goes to the party, will Bea go too? p → ?q
b. If Alf goes, then Bea will go as well. p → q
c. If Alf goes, then Bea will not go. p → ¬q
d. Alf won’t go. ¬p

• Both (1b) and (1c) support the conditional question in (1a):

p → q |=+ p → ?q

p → ¬q |=+ p → ?q

• (1b) and (1c) are contradictory, they reject each other:

p → q |=− p → ¬q

p → ¬q |=− p → q
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Desired predictions

(1) a. If Alf goes to the party, will Bea go too? p → ?q
b. If Alf goes, then Bea will go as well. p → q
c. If Alf goes, then Bea will not go. p → ¬q
d. Alf won’t go. ¬p

• Finally, (1d) suppositionally dismisses (1a)-(1c) :

¬p |=⊗ p → ?q

¬p |=⊗ p → q

¬p |=⊗ p → ¬q

• In particular:
¬p 6|=+ p → q
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Three more complex examples

We will consider three more complex examples:

(1) Inquisitive antecedent: (p ∨ q)→ r

(2) Suppositional consequent: p → (q → r)

(3) Suppositional antecedent: (p → q)→ r
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(1) Inquisitive antecedent: (p ∨ q)→ r

• Both antecedent and consequent are non-suppositional

• There are two support-alternatives for the antecedent:

alt[p ∨ q]+ = {|p|, |q|}

• So we have:

s |=+ (p ∨ q)→ r iff ∀u ∈ {|p|, |q|} : u ∩ s |=+ r

s |=− (p ∨ q)→ r iff ∃u ∈ {|p|, |q|} : u ∩ s |=− r

s |=◦ (p ∨ q)→ r iff ∃u ∈ {|p|, |q|} : u ∩ s = ∅
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(1) Inquisitive antecedent: (p ∨ q)→ r

s |=+ (p ∨ q)→ r iff ∀u ∈ {|p|, |q|} : u ∩ s |=+ r

s |=− (p ∨ q)→ r iff ∃u ∈ {|p|, |q|} : u ∩ s |=− r

s |=◦ (p ∨ q)→ r iff ∃u ∈ {|p|, |q|} : u ∩ s = ∅

• Some (non-)support examples:

(p → r) ∧ (q → r) |=+ (p ∨ q)→ r

¬p ∧ ¬q 6|=+ (p ∨ q)→ r



37

(1) Inquisitive antecedent: (p ∨ q)→ r

s |=+ (p ∨ q)→ r iff ∀u ∈ {|p|, |q|} : u ∩ s |=+ r

s |=− (p ∨ q)→ r iff ∃u ∈ {|p|, |q|} : u ∩ s |=− r

s |=◦ (p ∨ q)→ r iff ∃u ∈ {|p|, |q|} : u ∩ s = ∅

• Some rejection examples:

p → ¬r |=− (p ∨ q)→ r

q → ¬r |=− (p ∨ q)→ r

(p → ¬r) ∨ (q → ¬r) |=− (p ∨ q)→ r
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(1) Inquisitive antecedent: (p ∨ q)→ r

s |=+ (p ∨ q)→ r iff ∀u ∈ {|p|, |q|} : u ∩ s |=+ r

s |=− (p ∨ q)→ r iff ∃u ∈ {|p|, |q|} : u ∩ s |=− r

s |=◦ (p ∨ q)→ r iff ∃u ∈ {|p|, |q|} : u ∩ s = ∅

• Some suppositional dismissal examples:

¬p |=⊗ (p ∨ q)→ r

¬q |=⊗ (p ∨ q)→ r

¬p ∨ ¬q |=⊗ (p ∨ q)→ r
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(2) Suppositional consequent: p → (q → r)

• The antecedent is still non-suppositional, so the persistent
support condition does not come into play

• Moreover, there is a single support-alternative for the
antecedent:

alt[p]+ = {|p|}

• So we have:

s |=+ p → (q → r) iff s ∩ |p| |=+ q → r

s |=− p → (q → r) iff s ∩ |p| |=− q → r

s |=◦ p → (q → r) iff s ∩ |p| |=◦ q → r
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(2) Suppositional consequent: p → (q → r)

s |=+ p → (q → r) iff s ∩ |p| |=+ q → r

s |=− p → (q → r) iff s ∩ |p| |=− q → r

s |=◦ p → (q → r) iff s ∩ |p| |=◦ q → r

• Since the consequent is a simple conditional,
this can be further reduced to:

s |=+ p → (q → r) iff s ∩ |p| ∩ |q| |=+ r

s |=− p → (q → r) iff s ∩ |p| ∩ |q| |=− r

s |=◦ p → (q → r) iff s ∩ |p| ∩ |q| = ∅
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(2) Suppositional consequent: p → (q → r)

s |=+ p → (q → r) iff s ∩ |p| ∩ |q| |=+ r

s |=− p → (q → r) iff s ∩ |p| ∩ |q| |=− r

s |=◦ p → (q → r) iff s ∩ |p| ∩ |q| = ∅

• Some (non-)support examples:

(p ∧ q)→ r |=+ p → (q → r)

¬p 6|=+ p → (q → r)

¬q 6|=+ p → (q → r)
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(2) Suppositional consequent: p → (q → r)

s |=+ p → (q → r) iff s ∩ |p| ∩ |q| |=+ r

s |=− p → (q → r) iff s ∩ |p| ∩ |q| |=− r

s |=◦ p → (q → r) iff s ∩ |p| ∩ |q| = ∅

• Some rejection examples:

p → ¬r |=− p → (q → r)

q → ¬r |=− p → (q → r)

(p ∧ q)→ ¬r |=− p → (q → r)
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(2) Suppositional consequent: p → (q → r)

s |=+ p → (q → r) iff s ∩ |p| ∩ |q| |=+ r

s |=− p → (q → r) iff s ∩ |p| ∩ |q| |=− r

s |=◦ p → (q → r) iff s ∩ |p| ∩ |q| = ∅

• Some suppositional dismissal examples:

¬p |=⊗ p → (q → r)

¬q |=⊗ p → (q → r)

¬p ∨ ¬q |=⊗ p → (q → r)

p → ¬q |=⊗ p → (q → r)
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(3) Suppositional antecedent: (p → q)→ r

• Now the antecedent is suppositional, so the
persistent support condition finally comes into play

• There is a single support-alternative u for the antecedent:

u = |p → q|

• So we have:

s |=+ (p → q)→ r iff ∀t from u to s ∩ u : t |=+ p → q

and s ∩ u |=+ r

s |=− (p → q)→ r iff ∀t from u to s ∩ u : t |=+ p → q

and s ∩ u |=− r

s |=◦ (p → q)→ r iff ∃t from u to s ∩ u : t 6|=+ p → q

or s ∩ u |=◦ r
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(3) Suppositional antecedent: (p → q)→ r
s |=+ (p → q)→ r iff ∀t from u to s ∩ u : t |=+ p → q

and s ∩ u |=+ r

s |=− (p → q)→ r iff ∀t from u to s ∩ u : t |=+ p → q

and s ∩ u |=− r

s |=◦ (p → q)→ r iff ∃t from u to s ∩ u : t 6|=+ p → q

or s ∩ u |=◦ r

• Some (non-)support examples:

r |=+ (p → q)→ r

¬p 6|=+ (p → q)→ r

p ∧ ¬q 6|=+ (p → q)→ r

p → ¬q 6|=+ (p → q)→ r
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(3) Suppositional antecedent: (p → q)→ r

s |=+ (p → q)→ r iff ∀t from u to s ∩ u : t |=+ p → q

and s ∩ u |=+ r

s |=− (p → q)→ r iff ∀t from u to s ∩ u : t |=+ p → q

and s ∩ u |=− r

s |=◦ (p → q)→ r iff ∃t from u to s ∩ u : t 6|=+ p → q

or s ∩ u |=◦ r

• Some rejection examples:

(p → q)→ ¬r |=− (p → q)→ r

p ∧ (q → ¬r) |=− (p → q)→ r
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(3) Suppositional antecedent: (p → q)→ r

s |=+ (p → q)→ r iff ∀t from u to s ∩ u : t |=+ p → q

and s ∩ u |=+ r

s |=− (p → q)→ r iff ∀t from u to s ∩ u : t |=+ p → q

and s ∩ u |=− r

s |=◦ (p → q)→ r iff ∃t from u to s ∩ u : t 6|=+ p → q

or s ∩ u |=◦ r

• Some suppositional dismissal examples:

¬p |=⊗ (p → q)→ r

p → ¬q |=⊗ (p → q)→ r

p ∧ ¬q |=⊗ (p → q)→ r
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Conclusion

• The general perspective on meaning in inquisitive semantics
is that sentences express proposals to update the CG in one
or more ways

• There are several ways one may respond to such proposals,
depending on one’s information state

• InqB characterizes which states support a given proposal

• InqR also characterizes which states reject a given proposal

• InqS further distinguishes states that dismiss a supposition of
a given proposal

• We thus arrive at a more and more fine-grained formal
characterization of proposals, and thereby a more and
more fine-grained characterization of meaning
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Conclusion

• This in turn leads to a better account of the behavior of certain
types of sentences in conversation

• InqS especially improves on InqB and InqR in its treatment of
conditional statements and questions

• Paradigm example:

p → q evaluated in the state |¬p|

• InqB: support

• InqR: both support and reject

• InqS: suppositional dismissal
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