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Introduction

A typical sequence for resolution theorem proving
Formulate a problem as first-order logic formula
Call a resolution prover: negate, skolemize, clausify, find refutation
Result: Yes (+ proof object) / No / Timeout
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Introduction

Problem
Resolution Proofs are hard to read for humans
Reason: Information is implicit

Approach
Transform the resolution proof into sequent calculus
Extract an Expansion Tree from the sequent calculus proof
Interactive navigation (via Display Expansion Tree)
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Example

Wolf, Goat & Cabbage Riddle
ppsouth, south, south, south, startq,

@T .pppsouth, north, south, north,Tq Ñ ppnorth, north, south, north, go_alonepTqqq,
@T1.pppnorth, north, south, north,T1q Ñ ppsouth, north, south, north, go_alonepT1qqq,
@T2.pppsouth, south, north, south,T2q Ñ ppnorth, south, north, south, go_alonepT2qqq,
@T3.pppnorth, south, north, south,T3q Ñ ppsouth, south, north, south, go_alonepT3qqq,

@T4.pppsouth, south, south, north,T4q Ñ ppnorth, north, south, north, take_wolf pT4qqq,
@T5.pppnorth, north, south, north,T5q Ñ ppsouth, south, south, north, take_wolf pT5qqq,
@T6.pppsouth, south, north, south,T6q Ñ ppnorth, north, north, south, take_wolf pT6qqq,
@T7.pppnorth, north, north, south,T7q Ñ ppsouth, south, north, south, take_wolf pT7qqq,

@X .@Y .@U.pppsouth,X , south,Y ,Uq Ñ ppnorth,X , north,Y , take_goatpUqqq,
@X1.@Y 1.@V .pppnorth,X1, north,Y 1,V q Ñ ppsouth,X1, south,Y 1, take_goatpV qqq,

@T8.pppsouth, north, south, south,T8q Ñ ppnorth, north, south, north, take_cabbagepT8qqq,
@T9.pppnorth, north, south, north,T9q Ñ ppsouth, north, south, south, take_cabbagepT9qqq,
@U1.pppsouth, south, north, south,U1q Ñ ppnorth, south, north, north, take_cabbagepU1qqq,
@V1.pppnorth, south, north, north,V1q Ñ ppsouth, south, north, south, take_cabbagepV1qqq

$

DZ .ppnorth, north, north, north,Zq
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Example: Resolution Refutation

p(north, v0, north, v1, v2) :- p(south, v0, south, v1, take_goat(v2))

p(north, south, north, north, v102) :- p(south, south, south, north, take_goat(v102))

Instance

p(north, south, north, north, v0) :- 

p(north, south, north, north, take_cabbage(go_alone(take_goat(start)))) :- 

Instance

p(north, south, north, south, v0) :- p(south, south, north, south, go_alone(v0))

p(north, south, north, south, take_goat(start)) :- p(south, south, north, south, go_alone(take_goat(start)))

Instance

 :- p(south, south, south, south, start)

 :- p(north, south, north, south, take_goat(start))

Res

 :- p(south, south, north, south, go_alone(take_goat(start)))

Res

p(south, v0, south, v1, v2) :- p(north, v0, north, v1, take_goat(v2))

p(south, south, south, south, start) :- p(north, south, north, south, take_goat(start))

Instance

p(south, north, south, north, v102) :- p(north, north, north, north, take_goat(v102))

Instance

p(south, south, north, south, go_alone(take_goat(start))) :- p(north, south, north, north, take_cabbage(go_alone(take_goat(start))))

 :- p(north, south, north, north, take_cabbage(go_alone(take_goat(start))))

Res

p(north, north, north, north, take_goat(v102)) :- 

p(south, north, south, north, v102) :- 

Res

p(south, north, south, north, v0) :- 

Instance

p(north, north, south, north, take_wolf(v100)) :- 

p(south, south, south, north, v100) :- 

Res

p(south, south, north, south, v0) :- p(north, south, north, north, take_cabbage(v0))

Instance

p(north, north, south, north, v0) :- p(south, north, south, north, go_alone(v0))

p(north, north, south, north, v100) :- p(south, north, south, north, go_alone(v100))

Instance

Res

 :- 

Res

p(north, south, north, north, v102) :- 

Res

p(south, south, south, north, take_goat(v102)) :- 

Res

Res

p(south, south, south, north, v100) :- p(north, north, south, north, take_wolf(v100))

Res

p(north, north, south, north, v0) :- 

Instance

p(north, north, north, north, v0) :- 

Instance

p(south, south, south, north, v0) :- 

Instance

p(south, north, south, north, go_alone(v100)) :- 

p(north, north, south, north, v100) :- 

Res

Instance

Res

Res

Instance

Res

Res

p(south, south, south, north, v0) :- p(north, north, south, north, take_wolf(v0))

Instance

Instance

Instance
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Example: Instantiation Terms needed for Solution

Extracted Substitutions
σ1 “ tv0 Ð go_alone(take_goat(start))u
σ2 “ tv0 Ð go_alone(v100)u
σ3 “ tv0 Ð take_cabbage(go_alone(take_goat(start)))u
σ4 “ tv0 Ð take_goat(start)u
σ5 “ tv0 Ð take_goat(v102)u
σ6 “ tv0 Ð take_wolf(v100)u
σ7 “ tv0 Ð v100u
σ8 “ tv100 Ð v0u
σ9 “ tv102 Ð v0u
σ10 “ tv1 Ð north, v0 Ð north, v2 Ð v102u
σ11 “ tv1 Ð north, v0 Ð south, v2 Ð v102u
σ12 “ tv1 Ð south, v0 Ð south, v2 Ð startu

Solution . . .
σ “ tZ Ð take_goatpgo_aloneptake_wolf ptake_goatp

take_cabbagepgo_aloneptake_goatpstartqqqqqqqu
. . . not easily extracted.
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Example: Expansion Tree in Prooftool
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Resolution to Sequent Calculus Transformation

Clause Set
{ $ F1,F2;

F1 $;
F2,F2 $ }

Ground Refutation in Sequent Notation

$ F1,F2 F1 $
res

$ F2

F2,F2 $
factor

F2 $ res
$
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CNF Transformation

CNF Projections
Let CNF pΓ $ ∆q “ tΠ1 $ Λ1; . . . ; Πn $ Λnu

If Γ $ ∆ does not contain strong quantifiers, then a proof
Γ,Πi $ Λi ,∆ is constructed for each clause i :

L1 $ L1 Ln $ Ln

...
(CNF Transformation)

...
Γ,Πi $ Λi ,∆
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From formulas

End-Sequent without strong Quantifiers
F1 $ F1 F2 $ F2

.

.

.
(CNF Transformation)

.

.

.
Γ $ F1, F2, ∆

F1 $ F1

.

.

.
(CNF Transformation)

.

.

.
Γ, F1 $ ∆

cut
Γ $ F2, ∆

F2, F2 $ F2, F2

.

.

.
(CNF Transformation)

.

.

.
Γ, F2, F2 $ ∆

c : r
Γ, F2 $ ∆

res
Γ $ ∆

Γ $ ∆: arbitrary sequent without strong quantifiers
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Expansion Trees

Expansion Trees
Introduced for HOL by D. Miller
Generalization of Herbrand Disjunction:

Formula written as tree with logical operators as nodes
Children of Weak Quantifiers have one child per instantiation needed
Shallow Formula: Original formula containing weak quantifiers
Deep Formula: Weak quantifiers are replaced by a disjunction of
instances
i.e. common parts of formulas in Herbrand Disjunction are merged

Expansion Proof:
Deep Formula is a tautology
Straightforward extraction from Sequent Calculus proofs without
quantified cuts
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Expansion Tree

Deep Formula 

Shallow Formula

∃x ....

∃y ...
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Display Expansion Tree

Display Expansion Tree
Modified Expansion Tree for interactive exploration
Weak Quantifier Nodes have three states:

Closed: DxF rxs
Open: Dx ă t1, . . . , tn ą F rxs

Expanded:
Ž

〈 F pt1q
. . .
F ptnq

〉
Open/expanded nodes require their ancestor nodes to be
open/expanded
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Display Expansion Tree

Display Expansion Tree

Deep Formula 

Shallow Formula

∃x ....

∃y ...
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Demo

(Change to Prooftool)
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Conclusion & Future Work

Conclusion
Display Expansion Trees show information not visible in Resolution
refutation
Interactive focus on instances relevant to the user
Implementation at http://www.logic.at/gapt

Future Work
Calculate instances on node expansion
Extend to higher-order Refutations
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The End

Thanks for your attention!
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