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A nonstandard representation of classical logic

Semantics based on an assertibility relation

C is a set of possible worlds (a context).
C  ⊥ iff C = ∅.
C  p iff for all v ∈ C, v(p) = 1.
C  ϕ ∧ ψ iff C  ϕ and C  ψ.
C  ϕ ∨ ψ iff for some D,E , D ∪ E = C, D  ϕ and E  ψ.
C  ϕ→ ψ iff D  ψ for all D ⊆ C such that D  ϕ.

¬ϕ =Df ϕ→ ⊥
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Vít Punčochář (AS CR) Intensionalisation 2013 2 / 29



A nonstandard representation of classical logic

Semantics based on an assertibility relation

C is a set of possible worlds (a context).
C  ⊥ iff C = ∅.
C  p iff for all v ∈ C, v(p) = 1.
C  ϕ ∧ ψ iff C  ϕ and C  ψ.
C  ϕ ∨ ψ iff for some D,E , D ∪ E = C, D  ϕ and E  ψ.
C  ϕ→ ψ iff D  ψ for all D ⊆ C such that D  ϕ.

¬ϕ =Df ϕ→ ⊥
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A nonstandard representation of classical logic

Consequence relation

Definition
∆ � ψ iff for all C, if C  ∆, then C  ψ.
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A nonstandard representation of classical logic

Consequence relation

Definition
∆ � ψ iff for all C, if C  ∆, then C  ψ.

Fact
� is identical with the consequence relation of classical logic.
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Strict disjunction

“Extensional” principle for disjunction

If C  ϕ and D  ψ, then C ∪ D  ϕ ∨ ψ.
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Strict disjunction

Factual sentences

C  John is in Germany.

r          |= John is in Berlin
s         |= John is in Hamburg
t          |= John is in Munich

C
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Strict disjunction

Factual sentences

D  John is in France.

u          |= John is in Paris
v          |= John is in Toulouse
w         |= John is in Strasbourg

D
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Strict disjunction

Factual sentences

C ∪ D  John is in Germany or he is in France.

r          |= John is in Berlin
s         |= John is in Hamburg
t          |= John is in Munich

u          |= John is in Paris
v          |= John is in Toulouse
w         |= John is in Strasbourg

CuD
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Strict disjunction

Contextual sentences

C  All suspects are men.

r          |= John commited the crime
s         |= Robert commited the crime
t          |= Michael commited the crime

C
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Strict disjunction

Contextual sentences

D  All suspects are women.

u          |= Anna commited the crime
v          |= Natalie commited the crime
w         |= Molly commited the crime
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Strict disjunction

Contextual sentences

C ∪ D 1 All suspects are men or all suspects are women.
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Strict disjunction

Strict disjunction

C  ϕ ∨ ψ iff C  ϕ or C  ψ.
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Strict disjunction

Inquisitive semantics (J. Groenendijk)

C  ⊥ iff C = ∅.
C  p iff for all v ∈ C, v(p) = 1.
C  ϕ ∧ ψ iff C  ϕ and C  ψ.
C  ϕ ∨ ψ iff C  ϕ or C  ψ.
C  ϕ→ ψ iff D  ψ for all D ⊆ C such that D  ϕ.

¬ϕ =Df ϕ→ ⊥
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Strict disjunction

Semantics of assertibility

C  ⊥ iff C = ∅.
C  p iff for all v ∈ C, v(p) = 1.
C  ϕ ∧ ψ iff C  ϕ and C  ψ.
C  ϕ ∨ ψ iff C  ϕ or C  ψ.
C  ϕ→ ψ iff D  ψ for all D ⊆ C such that D  ϕ.

¬ϕ =Df ϕ→ ⊥

Vít Punčochář (AS CR) Intensionalisation 2013 13 / 29



Weak negation

Negation and implication

¬(p → q) ≡ p ∧ ¬q
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Weak negation

Paul Grice — Denial of a conditional

Sometimes a denial of a conditional has the effect of a refusal
to assert the conditional in question, characteristically
because the denier does not think that there are adequate
non-truth-functional grounds for such an assertion.

(Paul Grice, Indicative conditionals)
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Weak negation

Weak negation
expressing a refusal to assert a sentence

C ∼ϕ iff C 1 ϕ.
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Weak negation

Semantics of assertibility with weak negation

For every C, C 1 ⊥.
C  p iff for all v ∈ C, v(p) = 1.
C ∼ϕ iff C 1 ϕ.
C  ϕ ∧ ψ iff C  ϕ and C  ψ.
C  ϕ ∨ ψ iff C  ϕ or C  ψ.
C  ϕ→ ψ iff D  ψ for all nonempty D ⊆ C such that D  ϕ.

¬ϕ =Df ϕ→ ⊥
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Weak negation

Two kinds of modal operators

�ϕ =Df ¬¬ϕ, ♦ϕ =Df∼�∼ϕ.

�ϕ =Df ¬∼ϕ, �ϕ =Df∼�∼ϕ.
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Weak negation

The relationships between the modalities

Fact
(i) �ϕ ≡ ��ϕ,
(ii) ♦ϕ ≡ ��ϕ.
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Weak negation

The relationships between the modalities

Fact
(i) �ϕ ≡ ��ϕ,
(ii) ♦ϕ ≡ ��ϕ.

Proof.
(i) �ϕ = ¬¬ϕ ≡ ¬∼∼¬∼∼ϕ = ��ϕ.
(ii) ♦ϕ =∼¬¬∼ϕ ≡∼¬∼∼¬∼ϕ = ��ϕ.
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Weak negation

Semantics of the modal operators

Fact
(i) �ϕ is assertible in C iff ϕ is (classically) true in every world of C.
(ii) �ϕ is assertible in C iff ϕ is assertible in every subcontext of C.
(iii) ♦ϕ is assertible in C iff ϕ is (classically) true in some world of C.
(iv) �ϕ is assertible in C iff ϕ is assertible in some subcontext of C.
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Weak negation

Two dual operators: ⊕ and ⊗

ϕ1 ⊕ . . .⊕ ϕn =Df �(ϕ1 ∨ . . . ∨ ϕn) ∧ (♦ϕ1 ∧ . . . ∧ ♦ϕn).

ϕ1 ⊗ . . .⊗ ϕn =Df ♦(ϕ1 ∧ . . . ∧ ϕn) ∨ (�ϕ1 ∨ . . . ∨�ϕn).
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Vít Punčochář (AS CR) Intensionalisation 2013 21 / 29



Weak negation

Semantics of ⊕

C  ϕ1 ⊕ . . .⊕ ϕn.
Every disjunct is true in at least one possible world and
in every possible world at least one disjunct is true.
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Weak negation

Fact
(i) ♦ϕ1 ∧ . . . ∧ ♦ϕn ≡ �(ϕ1 ⊕ . . .⊕ ϕn),
(ii) ♦ϕ1 ∨ . . . ∨ ♦ϕn ≡ �(ϕ1 ⊗ . . .⊗ ϕn),
(iii) �ϕ1 ∧ . . . ∧�ϕn ≡ �(ϕ1 ⊕ . . .⊕ ϕn),
(iv) �ϕ1 ∨ . . . ∨�ϕn ≡ �(ϕ1 ⊗ . . .⊗ ϕn).
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Vít Punčochář (AS CR) Intensionalisation 2013 23 / 29



A system of natural deduction

Conditional proof

♦¬p,p � ⊥
but ♦¬p 2 p → ⊥
i.e. ♦¬p 2 ¬p.
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A system of natural deduction

Restricted conditional proof (ϕ : ψ)/ϕ→ ψ

In the scope of a hypotetical assumption, not all formulas from the
outer proof are available.
We can use only ∼-free formulas and formulas of the form ϕ→ ψ.
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A system of natural deduction

A system of natural deduction

(∧I) ϕ,ψ/ϕ ∧ ψ (∧E) (i) ϕ ∧ ψ/ϕ, (ii) ϕ ∧ ψ/ψ
(∨I) (i) ϕ/ϕ ∨ ψ, (ii) ψ/ϕ ∨ ψ (∨E) ϕ ∨ ψ, [ϕ : χ], [ψ : χ]/χ

(→I)∗ (ϕ : ψ)/ϕ→ ψ (→E) ϕ,ϕ→ ψ/ψ

(⊥I) ϕ,∼ ϕ/⊥ (IP) [∼ ϕ : ⊥]/ϕ
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A system of natural deduction

A system of natural deduction

(R1) �p / p

(R2) / �(ϕ ∨ ¬ϕ),

(R3) �ϕ ∧�ψ / �(ϕ ∧ ψ)

(R4) ♦ϕ1 ∧ . . . ∧ ♦ϕn/�(ϕ1 ⊕ . . .⊕ ϕn).
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A system of natural deduction

Theorem
The system of natural deduction is sound and complete with
respect to the semantics of assertibility with weak negation.

Vít Punčochář (AS CR) Intensionalisation 2013 28 / 29



A system of natural deduction

∼(p → q) 0 p

1 ∼(p → q) premise

2 ∼p hyp. assumption

3 p hyp. assumption

4 ⊥ 2,3 (⊥I)

5 q 4 Ex falso quodlibet (derivable rule)

6 p → q 3-5 (→I)∗ !!!!!!!

7 ⊥ 1,6 (⊥I)

8 p 2-7 (IP)
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