Intensionalisation of Logical Operators

Vít Punčochár
Institute of Philosophy
Academy of Sciences
Czech Republic

Semantics based on an assertibility relation

C is a set of possible worlds (a context).
$C \Vdash \perp$ iff $C=\emptyset$.

$C \Vdash \varphi \vee \psi$ iff for some $D, E, D \cup E=C, D \Vdash \varphi$ and $E \Vdash \psi$.
$C \Vdash \varphi \rightarrow \psi$ iff $D \Vdash \psi$ for all $D \subseteq C$ such that $D \Vdash \varphi$.

Semantics based on an assertibility relation

C is a set of possible worlds (a context). $C \Vdash \perp$ iff $C=\emptyset$.
$C \Vdash p$ iff for all $v \in C, v(p)=1$. $C \Vdash \varphi \wedge \psi$ iff $C \Vdash \varphi$ and $C \Vdash \psi$. $C \Vdash \varphi \vee \psi$ iff for some $D, E, D \cup E=C, D \Vdash \varphi$ and $E \Vdash \psi$. $C \Vdash \varphi \rightarrow \psi$ iff $D \Vdash \psi$ for all $D \subseteq C$ such that $D \Vdash \varphi$.

Semantics based on an assertibility relation

C is a set of possible worlds (a context).
$C \Vdash \perp$ iff $C=\emptyset$.
$C \Vdash p$ iff for all $v \in C, v(p)=1$.
$C \Vdash \varphi \vee \psi$ iff for some $D, E, D \cup E=C, D \Vdash \varphi$ and $E \Vdash \psi$.
$C \Vdash \varphi \rightarrow \psi$ iff $D \Vdash \psi$ for all $D \subseteq C$ such th
$\neg \varphi=\operatorname{Df} \varphi \rightarrow \perp$

Semantics based on an assertibility relation

C is a set of possible worlds (a context).
$C \Vdash \perp$ iff $C=\emptyset$.
$C \Vdash p$ iff for all $v \in C, v(p)=1$.
$C \Vdash \varphi \wedge \psi$ iff $C \Vdash \varphi$ and $C \Vdash \psi$.
$C \Vdash \varphi \vee \psi$ iff for some $D, E, D \cup E=C, D \Vdash \varphi$ and $E \Vdash \psi$.
$C \Vdash \varphi \rightarrow \psi$ iff $D \Vdash \psi$ for all $D \subseteq C$ such that $D \Vdash \varphi$.

Semantics based on an assertibility relation

C is a set of possible worlds (a context).
$C \Vdash \perp$ iff $C=\emptyset$.
$C \Vdash p$ iff for all $v \in C, v(p)=1$.
$C \Vdash \varphi \wedge \psi$ iff $C \Vdash \varphi$ and $C \Vdash \psi$.
$C \Vdash \varphi \vee \psi$ iff for some $D, E, D \cup E=C, D \Vdash \varphi$ and $E \Vdash \psi$.

Semantics based on an assertibility relation

C is a set of possible worlds (a context).
$C \Vdash \perp$ iff $C=\emptyset$.
$C \Vdash p$ iff for all $v \in C, v(p)=1$.
$C \Vdash \varphi \wedge \psi$ iff $C \Vdash \varphi$ and $C \Vdash \psi$.
$C \Vdash \varphi \vee \psi$ iff for some $D, E, D \cup E=C, D \Vdash \varphi$ and $E \Vdash \psi$.
$C \Vdash \varphi \rightarrow \psi$ iff $D \Vdash \psi$ for all $D \subseteq C$ such that $D \Vdash \varphi$.

Semantics based on an assertibility relation

C is a set of possible worlds (a context).
$C \Vdash \perp$ iff $C=\emptyset$.
$C \Vdash p$ iff for all $v \in C, v(p)=1$.
$C \Vdash \varphi \wedge \psi$ iff $C \Vdash \varphi$ and $C \Vdash \psi$.
$C \Vdash \varphi \vee \psi$ iff for some $D, E, D \cup E=C, D \Vdash \varphi$ and $E \Vdash \psi$.
$C \Vdash \varphi \rightarrow \psi$ iff $D \Vdash \psi$ for all $D \subseteq C$ such that $D \Vdash \varphi$.

$$
\neg \varphi=\operatorname{Df} \varphi \rightarrow \perp
$$

Consequence relation

Definition

$\Delta \vDash \psi$ iff for all C, if $C \Vdash \Delta$, then $C \Vdash \psi$.

Consequence relation

Definition

$\Delta \vDash \psi$ iff for all C, if $C \Vdash \Delta$, then $C \Vdash \psi$.

Fact

\vDash is identical with the consequence relation of classical logic.

"Extensional" principle for disjunction

If $C \Vdash \varphi$ and $D \Vdash \psi$, then $C \cup D \Vdash \varphi \vee \psi$.

Factual sentences

$C \Vdash$ John is in Germany.

|= John is in Berlin
I= John is in Hamburg
I= John is in Munich

Factual sentences

$\mathcal{C} \Vdash$ John is in Germany.

|= John is in Berlin
I= John is in Hamburg
I= John is in Munich

Factual sentences

$D \Vdash$ John is in France.

Factual sentences

$D \Vdash$ John is in France.

|= John is in Paris
|= John is in Toulouse
|= John is in Strasbourg

Factual sentences

$C \cup D \Vdash$ John is in Germany or he is in France.

Factual sentences

$C \cup D \Vdash$ John is in Germany or he is in France.

Contextual sentences

$C \Vdash$ All suspects are men.

|= John commited the crime
|= Robert commited the crime
I= Michael commited the crime

Contextual sentences

$C \Vdash$ All suspects are men.

|= John commited the crime
|= Robert commited the crime
I= Michael commited the crime

Contextual sentences

$D \Vdash$ All suspects are women.

|= Anna commited the crime
|= Natalie commited the crime
|= Molly commited the crime

Contextual sentences

$D \Vdash$ All suspects are women.

|= Anna commited the crime
|= Natalie commited the crime
|= Molly commited the crime

Contextual sentences

$C \cup D \nVdash$ All suspects are men or all suspects are women.

|= John commited the crime
|= Robert commited the crime
|= Michael commited the crime
|= Anna commited the crime
|= Natalie commited the crime
|= Molly commited the crime

Contextual sentences

$C \cup D \nVdash$ All suspects are men or all suspects are women.

|= John commited the crime
|= Robert commited the crime
|= Michael commited the crime
|= Anna commited the crime
|= Natalie commited the crime
|= Molly commited the crime

Strict disjunction

$\mathcal{C} \Vdash \varphi \vee \psi$ iff $\mathcal{C} \Vdash \varphi$ or $C \Vdash \psi$.

Inquisitive semantics (J. Groenendijk)

$C \Vdash \perp$ iff $C=\emptyset$.
$C \Vdash p$ iff for all $v \in C, v(p)=1$.
$C \Vdash \varphi \wedge \psi$ iff $C \Vdash \varphi$ and $C \Vdash \psi$.
$C \Vdash \varphi \vee \psi$ iff $C \Vdash \varphi$ or $C \Vdash \psi$.
$C \Vdash \varphi \rightarrow \psi$ iff $D \Vdash \psi$ for all $D \subseteq C$ such that $D \Vdash \varphi$.

$$
\neg \varphi=D f \varphi \rightarrow \perp
$$

Semantics of assertibility

$C \Vdash \perp$ iff $C=\emptyset$.
$C \Vdash p$ iff for all $v \in C, v(p)=1$.
$C \Vdash \varphi \wedge \psi$ iff $C \Vdash \varphi$ and $C \Vdash \psi$.
$C \Vdash \varphi \vee \psi$ iff $C \Vdash \varphi$ or $C \Vdash \psi$.
$\mathcal{C} \Vdash \varphi \rightarrow \psi$ iff $D \Vdash \psi$ for all $D \subseteq C$ such that $D \Vdash \varphi$.

$$
\neg \varphi=D f \varphi \rightarrow \perp
$$

Negation and implication

$$
\neg(p \rightarrow q) \equiv p \wedge \neg q
$$

Paul Grice - Denial of a conditional

Sometimes a denial of a conditional has the effect of a refusal to assert the conditional in question, characteristically because the denier does not think that there are adequate non-truth-functional grounds for such an assertion.
(Paul Grice, Indicative conditionals)

Weak negation expressing a refusal to assert a sentence

$C \Vdash \sim \varphi$ iff $C \nVdash \varphi$.

Semantics of assertibility with weak negation

For every $C, C \nVdash \perp$.
$C \Vdash p$ iff for all $v \in C, v(p)=1$.
$C \Vdash \sim \varphi$ iff $C \nVdash \varphi$.
$C \Vdash \varphi \wedge \psi$ iff $C \Vdash \varphi$ and $C \Vdash \psi$.
$C \Vdash \varphi \vee \psi$ iff $C \Vdash \varphi$ or $C \Vdash \psi$.
$C \Vdash \varphi \rightarrow \psi$ iff $D \Vdash \psi$ for all nonempty $D \subseteq C$ such that $D \Vdash \varphi$.

$$
\neg \varphi=\operatorname{Df} \varphi \rightarrow \perp
$$

Two kinds of modal operators

$$
\begin{array}{ll}
\square \varphi=D f \neg \neg \varphi, & \diamond \varphi={ }_{D f} \sim \square \sim \varphi . \\
\square \varphi=D f \neg \sim \varphi, & \diamond \varphi==_{D f} \sim \square \sim \varphi .
\end{array}
$$

The relationships between the modalities

Fact
(i) $\square \varphi \equiv \square \varphi$,
(ii) $\diamond \varphi \equiv \downarrow \varphi$.

The relationships between the modalities

Fact
(i) $\square \varphi \equiv \square \varphi$,
(ii) $\Delta \varphi \equiv \boxtimes \varphi$.

Proof.
(i) $\square \varphi=\neg \neg \varphi \equiv \neg \sim \sim \neg \sim \sim \varphi=\square \varphi$.
(ii) $\diamond \varphi=\sim \neg \neg \sim \varphi \equiv \sim \neg \sim \sim \neg \sim \varphi=\downarrow \square_{\varphi}$.

Semantics of the modal operators

Fact

(i) $\square \varphi$ is assertible in C iff φ is (classically) true in every world of C.
(ii) $\square \varphi$ is assertible in C iff φ is assertible in every subcontext of C.
(iii) $\diamond \varphi$ is assertible in C iff φ is (classically) true in some world of C. (iv) φ is assertible in C iff φ is assertible in some subcontext of C.

Two dual operators: \oplus and \otimes

$$
\varphi_{1} \oplus \ldots \oplus \varphi_{n}={ }_{D f} \square\left(\varphi_{1} \vee \ldots \vee \varphi_{n}\right) \wedge\left(\Delta \varphi_{1} \wedge \ldots \wedge \Delta \varphi_{n}\right)
$$

Two dual operators: \oplus and \otimes

$$
\begin{aligned}
& \varphi_{1} \oplus \ldots \oplus \varphi_{n}=D_{D f} \square\left(\varphi_{1} \vee \ldots \vee \varphi_{n}\right) \wedge\left(\diamond \varphi_{1} \wedge \ldots \wedge \diamond \varphi_{n}\right) . \\
& \varphi_{1} \otimes \ldots \otimes \varphi_{n}={ }_{D f} \diamond\left(\varphi_{1} \wedge \ldots \wedge \varphi_{n}\right) \vee\left(\square \varphi_{1} \vee \ldots \vee \square \varphi_{n}\right) .
\end{aligned}
$$

Semantics of \oplus

$\mathcal{C} \Vdash \varphi_{1} \oplus \ldots \oplus \varphi_{n}$.
Every disjunct is true in at least one possible world and in every possible world at least one disjunct is true.

Semantics of \oplus

$C \Vdash \varphi_{1} \oplus \ldots \oplus \varphi_{n}$.
Every disjunct is true in at least one possible world and in every possible world at least one disjunct is true.

Fact

(i) $\diamond \varphi_{1} \wedge \ldots \wedge \diamond \varphi_{n} \equiv \diamond\left(\varphi_{1} \oplus \ldots \oplus \varphi_{n}\right)$,
(ii) $\Delta \varphi_{1} \vee \ldots \vee \diamond \varphi_{n} \equiv\left(\varphi_{1} \otimes \ldots \otimes \varphi_{n}\right)$,
(iii) $\square \varphi_{1} \wedge \ldots \wedge \square \varphi_{n} \equiv \square\left(\varphi_{1} \oplus \ldots \oplus \varphi_{n}\right)$, (iv) $\square \varphi_{1} \vee \ldots \vee \square \varphi_{n} \equiv \square\left(\varphi_{1} \otimes \ldots \otimes \varphi_{n}\right)$.

Fact

(i) $\diamond \varphi_{1} \wedge \ldots \wedge \diamond \varphi_{n} \equiv\left(\varphi_{1} \oplus \ldots \oplus \varphi_{n}\right)$,

Conditional proof

Conditional proof

$$
\diamond \neg p, p \vDash \perp
$$

Conditional proof

$$
\begin{gathered}
\diamond \neg p, p \vDash \perp \\
\text { but } \diamond \neg p \not \models p \rightarrow \perp
\end{gathered}
$$

Conditional proof

$\diamond \neg p, p \vDash \perp$
but $\diamond \neg p \not \models p \rightarrow \perp$
i.e. $\diamond \neg p \not \models \neg p$.

Restricted conditional proof $(\varphi: \psi) / \varphi \rightarrow \psi$

In the scope of a hypotetical assumption, not all formulas from the outer proof are available.
We can use only \sim-free formulas and formulas of the form $\varphi \rightarrow \psi$.

A system of natural deduction

($\wedge I) \quad \varphi, \psi / \varphi \wedge \psi$
($\wedge E)$
(i) $\varphi \wedge \psi / \varphi$, (ii) $\varphi \wedge \psi / \psi$
($\vee /$) (i) $\varphi / \varphi \vee \psi$, (ii) $\psi / \varphi \vee \psi$
(VE)
$\varphi \vee \psi,[\varphi: \chi],[\psi: \chi] / \chi$
$(\rightarrow I)^{*} \quad(\varphi: \psi) / \varphi \rightarrow \psi$
$(\rightarrow E) \quad \varphi, \varphi \rightarrow \psi / \psi$
$(\perp /) \quad \varphi, \sim \varphi / \perp$
(IP) $\quad[\sim \varphi: \perp] / \varphi$

A system of natural deduction

(R1) $\quad \square p / p$
(R2) $/ \square(\varphi \vee \neg \varphi)$,
(R3) $\square \varphi \wedge \square \psi / \square(\varphi \wedge \psi)$
(R4) $\Delta \varphi_{1} \wedge \ldots \wedge \diamond \varphi_{n} / \triangleleft\left(\varphi_{1} \oplus \ldots \oplus \varphi_{n}\right)$.

Theorem
 The system of natural deduction is sound and complete with respect to the semantics of assertibility with weak negation.

$$
\sim(p \rightarrow q) \nvdash p
$$

1	$\sim(p \rightarrow q)$	premise
2	$\sim p$	hyp. assumption
3	p	hyp. assumption
4	\perp	2,3 ($\perp /$)
5	q	4 Ex falso quodlibet (derivable rule)
6	$p \rightarrow q$	3-5 $(\rightarrow I)^{*}$!!!!!!!
7	\perp	1,6 (\perp I)
8	p	2-7 (IP)

