Intensionalisation of Logical Operators

Vít Punčochář

Institute of Philosophy Academy of Sciences Czech Republic

Vít Punčochář (AS CR)

Intensionalisation

2013 1 / 29

3 > 4 3

C is a set of possible worlds (a context).

 $C \Vdash \bot$ iff $C = \emptyset$.

 $C \Vdash p$ iff for all $v \in C$, v(p) = 1.

 $C \Vdash \varphi \land \psi$ iff $C \Vdash \varphi$ and $C \Vdash \psi$.

 $C \Vdash \varphi \lor \psi$ iff for some $D, E, D \cup E = C, D \Vdash \varphi$ and $E \Vdash \psi$.

 $C \Vdash \varphi \rightarrow \psi$ iff $D \Vdash \psi$ for all $D \subseteq C$ such that $D \Vdash \varphi$.

$$\neg \varphi =_{Df} \varphi \to \bot$$

C is a set of possible worlds (a context).

 $C \Vdash \bot$ iff $C = \emptyset$.

 $C \Vdash p$ iff for all $v \in C$, v(p) = 1.

 $C \Vdash \varphi \land \psi$ iff $C \Vdash \varphi$ and $C \Vdash \psi$.

 $C \Vdash \varphi \lor \psi$ iff for some $D, E, D \cup E = C, D \Vdash \varphi$ and $E \Vdash \psi$.

 $C \Vdash \varphi \rightarrow \psi$ iff $D \Vdash \psi$ for all $D \subseteq C$ such that $D \Vdash \varphi$.

$$\neg \varphi =_{Df} \varphi \to \bot$$

C is a set of possible worlds (a context).

 $C \Vdash \bot$ iff $C = \emptyset$.

 $C \Vdash p$ iff for all $v \in C$, v(p) = 1.

 $C \Vdash \varphi \land \psi$ iff $C \Vdash \varphi$ and $C \Vdash \psi$.

- $C \Vdash \varphi \lor \psi$ iff for some $D, E, D \cup E = C, D \Vdash \varphi$ and $E \Vdash \psi$.
- $C \Vdash \varphi \to \psi$ iff $D \Vdash \psi$ for all $D \subseteq C$ such that $D \Vdash \varphi$.

$$\neg \varphi =_{Df} \varphi \to \bot$$

C is a set of possible worlds (a context).

 $C \Vdash \bot$ iff $C = \emptyset$.

 $C \Vdash p$ iff for all $v \in C$, v(p) = 1.

 $C \Vdash \varphi \land \psi$ iff $C \Vdash \varphi$ and $C \Vdash \psi$.

 $C \Vdash \varphi \lor \psi$ iff for some $D, E, D \cup E = C, D \Vdash \varphi$ and $E \Vdash \psi$.

 $C \Vdash \varphi \to \psi$ iff $D \Vdash \psi$ for all $D \subseteq C$ such that $D \Vdash \varphi$.

$$\neg \varphi =_{Df} \varphi \to \bot$$

C is a set of possible worlds (a context).

 $C \Vdash \bot$ iff $C = \emptyset$.

 $C \Vdash p$ iff for all $v \in C$, v(p) = 1.

 $C \Vdash \varphi \land \psi$ iff $C \Vdash \varphi$ and $C \Vdash \psi$.

 $C \Vdash \varphi \lor \psi$ iff for some $D, E, D \cup E = C, D \Vdash \varphi$ and $E \Vdash \psi$.

 $\mathcal{C} \Vdash \varphi \to \psi$ iff $\mathcal{D} \Vdash \psi$ for all $\mathcal{D} \subseteq \mathcal{C}$ such that $\mathcal{D} \Vdash \varphi$.

 $\neg \varphi =_{Df} \varphi \to \bot$

C is a set of possible worlds (a context).

 $C \Vdash \bot$ iff $C = \emptyset$.

 $C \Vdash p$ iff for all $v \in C$, v(p) = 1.

 $C \Vdash \varphi \land \psi$ iff $C \Vdash \varphi$ and $C \Vdash \psi$.

 $C \Vdash \varphi \lor \psi$ iff for some $D, E, D \cup E = C, D \Vdash \varphi$ and $E \Vdash \psi$.

 $C \Vdash \varphi \rightarrow \psi$ iff $D \Vdash \psi$ for all $D \subseteq C$ such that $D \Vdash \varphi$.

 $\neg \varphi =_{Df} \varphi \to \bot$

C is a set of possible worlds (a context).

 $C \Vdash \bot$ iff $C = \emptyset$.

 $C \Vdash p$ iff for all $v \in C$, v(p) = 1.

 $C \Vdash \varphi \land \psi$ iff $C \Vdash \varphi$ and $C \Vdash \psi$.

 $C \Vdash \varphi \lor \psi$ iff for some $D, E, D \cup E = C, D \Vdash \varphi$ and $E \Vdash \psi$.

 $C \Vdash \varphi \rightarrow \psi$ iff $D \Vdash \psi$ for all $D \subseteq C$ such that $D \Vdash \varphi$.

$$\neg \varphi =_{Df} \varphi \to \bot$$

Consequence relation

Definition

 $\Delta \vDash \psi$ iff for all *C*, if $C \Vdash \Delta$, then $C \Vdash \psi$.

Vít Punčochář (AS CR)

Intensionalisation

2013 3/29

Consequence relation

Definition

 $\Delta \vDash \psi$ iff for all *C*, if $C \Vdash \Delta$, then $C \Vdash \psi$.

Fact

⊨ is identical with the consequence relation of classical logic.

Vít Punčochář	(AS CR)
---------------	---------

"Extensional" principle for disjunction

If $C \Vdash \varphi$ and $D \Vdash \psi$, then $C \cup D \Vdash \varphi \lor \psi$.

Vít Punčochář (AS CR)

2013 4/29

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

 $C \Vdash$ John is in Germany.

|= John is in Berlin |= John is in Hamburg |= John is in Munich

Vít Punčochář (AS CR)

2013 5/29

 $C \Vdash$ John is in Germany.

|= John is in Berlin |= John is in Hamburg |= John is in Munich

Vít Punčochář (AS CR)

2013 5/29

 $D \Vdash$ John is in France.

|= John is in Paris |= John is in Toulouse |= John is in Strasbourg

Vít Punčochář (AS CR)

2013 6/29

 $D \Vdash$ John is in France.

|= John is in Paris |= John is in Toulouse |= John is in Strasbourg

 $C \cup D \Vdash$ John is in Germany or he is in France.

2013 7/29

 $C \cup D \Vdash$ John is in Germany or he is in France.

 $C \Vdash$ All suspects are men.

|= John commited the crime |= Robert commited the crime |= Michael commited the crime

 $C \Vdash$ All suspects are men.

|= John commited the crime |= Robert commited the crime |= Michael commited the crime

 $D \Vdash$ All suspects are women.

|= Anna commited the crime |= Natalie commited the crime |= Molly commited the crime

 $D \Vdash$ All suspects are women.

|= Anna commited the crime |= Natalie commited the crime |= Molly commited the crime

 $C \cup D \nvDash$ All suspects are men or all suspects are women.

|= John commited the crime

- |= Robert commited the crime
- |= Michael commited the crime
 - |= Anna commited the crime
- |= Natalie commited the crime
- |= Molly commited the crime

2013 10 / 29

 $C \cup D \nvDash$ All suspects are men or all suspects are women.

Strict disjunction

$\mathcal{C}\Vdash\varphi\lor\psi\text{ iff }\mathcal{C}\Vdash\varphi\text{ or }\mathcal{C}\Vdash\psi.$

Vít Punčochář (AS CR)

イロト イヨト イヨト イヨト

Inquisitive semantics (J. Groenendijk)

$$C \Vdash \bot \text{ iff } C = \emptyset.$$

$$C \Vdash p \text{ iff for all } v \in C, v(p) = 1.$$

$$C \Vdash \varphi \land \psi \text{ iff } C \Vdash \varphi \text{ and } C \Vdash \psi.$$

$$C \Vdash \varphi \lor \psi \text{ iff } C \Vdash \varphi \text{ or } C \Vdash \psi.$$

$$C \Vdash \varphi \rightarrow \psi \text{ iff } D \Vdash \psi \text{ for all } D \subseteq C \text{ such that } D \Vdash \varphi.$$

$$\neg \varphi =_{Df} \varphi \to \bot$$

Vít Punčochář (AS CR)

▶ Ξ シへの 2013 12/29

・ロト ・ 四ト ・ ヨト ・ ヨト

Semantics of assertibility

$$C \Vdash \bot \text{ iff } C = \emptyset.$$

$$C \Vdash p \text{ iff for all } v \in C, v(p) = 1.$$

$$C \Vdash \varphi \land \psi \text{ iff } C \Vdash \varphi \text{ and } C \Vdash \psi.$$

$$C \Vdash \varphi \lor \psi \text{ iff } C \Vdash \varphi \text{ or } C \Vdash \psi.$$

$$C \Vdash \varphi \rightarrow \psi \text{ iff } D \Vdash \psi \text{ for all } D \subseteq C \text{ such that } D \Vdash \varphi.$$

$$\neg \varphi =_{Df} \varphi \to \bot$$

Vít Punčochář (AS CR)

イロト イヨト イヨト イヨト

Negation and implication

$$\neg(p
ightarrow q) \equiv p \land \neg q$$

Vít Punčochář (AS CR)

Intensionalisation

■ ▶ ■ つへの 2013 14/29

Paul Grice — Denial of a conditional

Sometimes a denial of a conditional has the effect of a refusal to assert the conditional in question, characteristically because the denier does not think that there are adequate non-truth-functional grounds for such an assertion.

(Paul Grice, Indicative conditionals)

Weak negation expressing a refusal to assert a sentence

 $C \Vdash \sim \varphi$ iff $C \nvDash \varphi$.

Vít Punčochář (AS CR)

2013 16 / 29

Semantics of assertibility with weak negation

For every $C, C \nvDash \bot$. $C \Vdash p$ iff for all $v \in C, v(p) = 1$. $C \Vdash \sim \varphi$ iff $C \nvDash \varphi$. $C \Vdash \varphi \land \psi$ iff $C \Vdash \varphi$ and $C \Vdash \psi$. $C \Vdash \varphi \lor \psi$ iff $C \Vdash \varphi$ or $C \Vdash \psi$. $C \Vdash \varphi \lor \psi$ iff $D \Vdash \psi$ for all nonempty $D \subseteq C$ such that $D \Vdash \varphi$.

$$\neg \varphi =_{Df} \varphi \to \bot$$

Two kinds of modal operators

$$\Box \varphi =_{Df} \neg \neg \varphi, \qquad \Diamond \varphi =_{Df} \sim \Box \sim \varphi.$$
$$\blacksquare \varphi =_{Df} \neg \sim \varphi, \qquad \blacklozenge \varphi =_{Df} \sim \blacksquare \sim \varphi.$$

Vít Punčochář (AS CR)

▶ Ξ シへの 2013 18/29

イロト イポト イヨト イヨ

Weak negation

The relationships between the modalities

Vít Punčochář (AS CR)

2013 19/29

The relationships between the modalities

Fact

(i) $\Box \varphi \equiv \blacksquare \blacklozenge \varphi$, (ii) $\Diamond \varphi \equiv \blacklozenge \blacksquare \varphi$.

Proof.

(i)
$$\Box \varphi = \neg \neg \varphi \equiv \neg \sim \neg \neg \sim \varphi = \blacksquare \blacklozenge \varphi$$
.
(ii) $\Diamond \varphi = \neg \neg \neg \sim \varphi \equiv \neg \neg \sim \neg \neg \varphi = \blacklozenge \blacksquare \varphi$.

Vít Punčochář	(AS C	R)
---------------	-------	----

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Semantics of the modal operators

Fact

(i) □φ is assertible in C iff φ is (classically) true in every world of C.
(ii) ■φ is assertible in C iff φ is assertible in every subcontext of C.
(iii) ◊φ is assertible in C iff φ is (classically) true in some world of C.
(iv) ♦φ is assertible in C iff φ is assertible in some subcontext of C.

Two dual operators: \oplus and \otimes

$\varphi_1 \oplus \ldots \oplus \varphi_n =_{Df} \Box (\varphi_1 \vee \ldots \vee \varphi_n) \land (\Diamond \varphi_1 \land \ldots \land \Diamond \varphi_n).$

 $\varphi_1 \otimes \ldots \otimes \varphi_n =_{Df} \Diamond (\varphi_1 \wedge \ldots \wedge \varphi_n) \lor (\Box \varphi_1 \lor \ldots \lor \Box \varphi_n).$

Vít Punčochář (AS CR)

2013 21 / 29

イロト イポト イヨト イヨト 二日

Two dual operators: \oplus and \otimes

$\varphi_1 \oplus \ldots \oplus \varphi_n =_{Df} \Box(\varphi_1 \vee \ldots \vee \varphi_n) \land (\Diamond \varphi_1 \land \ldots \land \Diamond \varphi_n).$ $\varphi_1 \otimes \ldots \otimes \varphi_n =_{Df} \Diamond (\varphi_1 \land \ldots \land \varphi_n) \lor (\Box \varphi_1 \lor \ldots \lor \Box \varphi_n).$

2013 21 / 29

Semantics of \oplus

$C \Vdash \varphi_1 \oplus \ldots \oplus \varphi_n.$

Every disjunct is true in at least one possible world and in every possible world at least one disjunct is true.

Vít Punčochář (AS CR)

Intensionalisation

2013 22/29

Semantics of \oplus

$C \Vdash \varphi_1 \oplus \ldots \oplus \varphi_n.$

Every disjunct is true in at least one possible world and in every possible world at least one disjunct is true.

Vít Punčochář (AS CR)

Intensionalisation

2013 22 / 29

Fact

(i) $\Diamond \varphi_1 \land \ldots \land \Diamond \varphi_n \equiv \blacklozenge (\varphi_1 \oplus \ldots \oplus \varphi_n),$ (ii) $\Diamond \varphi_1 \lor \ldots \lor \Diamond \varphi_n \equiv \blacklozenge (\varphi_1 \otimes \ldots \otimes \varphi_n),$ (iii) $\Box \varphi_1 \land \ldots \land \Box \varphi_n \equiv \blacksquare (\varphi_1 \oplus \ldots \oplus \varphi_n),$ (iv) $\Box \varphi_1 \lor \ldots \lor \Box \varphi_n \equiv \blacksquare (\varphi_1 \otimes \ldots \otimes \varphi_n).$

< 日 > < 同 > < 回 > < 回 > < 回 > <

Fact

(i) $\Diamond \varphi_1 \land \ldots \land \Diamond \varphi_n \equiv \blacklozenge (\varphi_1 \oplus \ldots \oplus \varphi_n),$ (ii) $\Diamond \varphi_1 \lor \ldots \lor \Diamond \varphi_n \equiv \blacklozenge (\varphi_1 \otimes \ldots \otimes \varphi_n),$ (iii) $\Box \varphi_1 \land \ldots \land \Box \varphi_n \equiv \blacksquare (\varphi_1 \oplus \ldots \oplus \varphi_n),$ (iv) $\Box \varphi_1 \lor \ldots \lor \Box \varphi_n \equiv \blacksquare (\varphi_1 \otimes \ldots \otimes \varphi_n).$

Vít Punčochář (AS CR)

▶ Ξ シへC 2013 23/29

 $\Diamond \neg p, p \vDash \bot$ but $\Diamond \neg p \nvDash p \rightarrow \bot$ i.e. $\Diamond \neg p \nvDash \neg p.$

Vít Punčochář (AS CR)

Intensionalisation

イロン イ理 とく ヨン 一

Vít Punčochář (AS CR)

Intensionalisation

2013 24/29

<ロ> <四> <四> <四> <四> <四</p>

$\Diamond \neg p, p \vDash \bot$ but $\Diamond \neg p \nvDash p \rightarrow \bot$ i.e. $\Diamond \neg p \nvDash \neg p.$

Vít Punčochář (AS CR)

2013 24 / 29

<ロ> <四> <四> <四> <四> <四</p>

Vít Punčochář (AS CR)

イロト イヨト イヨト イヨト

Restricted conditional proof $(\varphi:\psi)/\varphi \rightarrow \psi$

In the scope of a hypotetical assumption, not all formulas from the outer proof are available.

We can use only \sim -free formulas and formulas of the form $\varphi \rightarrow \psi$.

A system of natural deduction

- $\begin{array}{ll} (\wedge I) & \varphi, \psi/\varphi \wedge \psi \\ (\vee I) & (\mathbf{i}) \varphi/\varphi \vee \psi, \, (\mathbf{ii}) \psi/\varphi \vee \psi \\ (\rightarrow I)^* & (\varphi:\psi)/\varphi \rightarrow \psi \\ (\perp I) & \varphi, \sim \varphi/\bot \end{array}$
- $\begin{array}{ll} (\wedge E) & (\mathsf{i}) \ \varphi \wedge \psi/\varphi, \ (\mathsf{ii}) \ \varphi \wedge \psi/\psi \\ (\vee E) & \varphi \lor \psi, [\varphi : \chi], [\psi : \chi]/\chi \\ (\rightarrow E) & \varphi, \varphi \rightarrow \psi/\psi \\ (IP) & [\sim \varphi : \bot]/\varphi \end{array}$

A system of natural deduction

 $(R1) \quad \Box p / p$ $(R2) \quad / \ \Box (\varphi \lor \neg \varphi),$ $(R3) \quad \Box \varphi \land \Box \psi / \ \Box (\varphi \land \psi)$ $(R4) \quad \Diamond \varphi_1 \land \ldots \land \Diamond \varphi_n / \blacklozenge (\varphi_1 \oplus \ldots \oplus \varphi_n).$

2013 27 / 29

Theorem

The system of natural deduction is sound and complete with respect to the semantics of assertibility with weak negation.

\sim ($p \rightarrow q$) $\nvdash p$

- premise
 - hyp. assumption
 - hyp. assumption
 - 2,3 (⊥*I*)
 - 4 Ex falso quodlibet (derivable rule)
 - 3-5 (→/)* !!!!!!!
 - 1,6 (⊥/)
 - 2-7 (*IP*)