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Propositional logics

Propositional logic L:

Language: formulas built from atoms (variables) {xn : n ∈ ω}

using a fixed set of connectives of finite arity

Consequence relation: a relation Γ ⊢L ϕ between sets of
formulas and formulas such that

ϕ ⊢L ϕ

Γ ⊢L ϕ implies Γ,∆ ⊢L ϕ

Γ,∆ ⊢L ϕ and ∀ψ ∈ ∆ Γ ⊢L ψ imply Γ ⊢L ϕ

Γ ⊢L ϕ implies σ(Γ) ⊢L σ(ϕ) for every substitution σ
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Algebraizable logics

A logic L is finitely algebraizable wrt a class K of algebras if
there is a finite set E(x, y) of formulas and a finite set T (x) of
equations such that

Γ ⊢L ϕ⇔ T (Γ) �K T (ϕ)

∆ �K t ≈ s⇔ E(∆) ⊢L E(t, s)

x ⊣⊢L E(T (x))

x ≈ y ��K T (E(x, y))

In modal logic, we will have:
T (x) = {x ≈ 1}, E(x, y) = {x↔ y}, K is a variety of modal
algebras
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Equational unification

Θ: a background equational theory (or a variety of algebras)

Basic Θ-unification problem:
Given a set of equations Γ = {t1 ≈ s1, . . . , tn ≈ sn}, is there a
substitution σ (a Θ-unifier of Γ) s.t.

σ(t1) =Θ σ(s1), . . . , σ(tn) =Θ σ(sn)?

If L is a logic algebraizable wrt a (quasi)variety K:

An L-unifier of a formula ϕ is σ such that ⊢L σ(ϕ)

L-unifier of ϕ = K-unifier of T (ϕ)

K-unifier of t ≈ s = L-unifier of E(t, s)

Sets reduce to single formulas if L has well-behaved
conjunction
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Admissible rules

Single-conclusion rule: Γ / ϕ (Γ finite set of formulas)

Multiple-conclusion rule: Γ / ∆ (Γ,∆ finite sets of formulas)

Γ / ∆ is L-derivable (or valid) if Γ ⊢L δ for some δ ∈ ∆

Γ / ∆ is L-admissible (written as Γ ∼L ∆)
if every L-unifier of Γ also unifies some δ ∈ ∆

T (Γ / ∆) :=
∧

γ∈Γ

T (γ) ⇒
∨

δ∈∆

T (δ):

Γ / ∆ is derivable iff T (Γ / ∆) holds in all K-algebras

Γ / ∆ is admissible iff T (Γ / ∆) holds in free K-algebras

Note: Γ is unifiable iff Γ /∼L ∅
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Parameters

In real life, propositional atoms model both “variables” and
“constants”

We don’t want to allow substitution for constants

Example (description logic):

(1) ∀child.(¬HasSon ⊓ ∃spouse.⊤)

(2) ∀child.∀child.¬Male ⊓ ∀child.Married

(3) ∀child.∀child.¬Female ⊓ ∀child.Married

Good: Unify (1) with (2) by HasSon 7→ ∃child.Male,
Married 7→ ∃spouse.⊤

Bad: Unify (2) with (3) by Male 7→ Female
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Admissibility with parameters

In unification theory, it is customary to consider unification
with free constants

Set-up with two kinds of atoms:

variables {xn : n ∈ ω}

parameters (constants) {pn : n ∈ ω}

Substitutions only modify variables, we require σ(pn) = pn

Adapt accordingly other notions:

L-unifier, L-admissible rule

Caveat: “Propositional logic” is always assumed to be
closed under substitution for parameters
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Transitive modal logics
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Transitive modal logics

Normal modal logics with a single modality 2, include the
transitivity axiom 2x→ 22x (i.e., L ⊇ K4)

Common examples: various combinations of
logic axiom (on top of K4) finite rooted transitive frames

S4 2x → x reflexive

D4 3⊤ final clusters reflexive

GL 2(2x → x) → 2x irreflexive

K4Grz 2(2(x → 2x) → x) → 2x no proper clusters

K4.1 ·23x → ·32x no proper final clusters

K4.2 3 ·2x → 2 ·3x unique final cluster

K4.3 2( ·2x → y) ∨ 2(2y → x) linear (chain of clusters)

K4B x → 23x lone cluster

S5 = S4 ⊕ B lone reflexive cluster
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Admissibility in transitive modal logics

Much is known about admissibility and unification in logics
with suitable frame extension properties:

Semantic characterization of admissible rules,
decidability of admissibility (even with parameters)
[Rybakov]

Existence of projective approximations and computable
finite complete sets of unifiers [Ghilardi]

Explicit bases of admissible rules [J.]

Various results were generalized to the setting with
parameters in [J13]
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Complexity of admissibility and unification

Complexity of parameter-free unification and (in)admissibility
[J07]:

Logics of branching 1: usually NP-complete

Extensible logics of infinite branching: NEXP-complete

General logics satisfying certain weak condition:
NEXP-hard

This talk: unification and (in)admissibility with parameters

Lower bounds for broad classes of logics

Matching upper bounds for cluster-extensible logics

Complexity depends on semantic properties of the logic
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Cluster-extensible logics

L a transitive modal logic with fmp, n ∈ ω, C a finite cluster
type (irreflexive •, k-element reflexive k©):

A finite rooted frame F is of type 〈C, n〉 if its root cluster rcl(F )

is of type C and has n immediate successor clusters

-frameL

C

1 2 n

L is 〈C, n〉-extensible if:
For every type-〈C, n〉 frame F , if F r rcl(F )

is an L-frame, then so is F

L is cluster-extensible (clx), if it is
〈C, n〉-extensible whenever it has some
type-〈C, n〉 frame
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Properties of clx logics

Examples: All combinations of K4, S4, GL, D4, K4Grz,
K4.1, K4.3, K4B, S5, ± bounded branching (K4BBk) or
cluster size (K4BCk)

Nonexamples: K4.2, S4.2, . . .

For every clx logic L:

L is finitely axiomatizable

L has the exponential-size model property

L is ∀∃-definable on finite frames

L is PSPACE-complete (if branching ≥ 2) or
coNP-complete
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Variants of clx logics

The definition can be tweaked to cover other kinds of logics:

Logics with a single top cluster (extensions of K4.2)
Top-restricted cluster-extensible (tclx) logics:
extension condition only for frames with a single top
cluster
Examples: joins of K4.2 with clx logics

Superintuitionistic logics
Behave much like their largest modal companion
(Blok–Esakia isomorphism)
The only (t)clx logics are IPC, Tn, KC, KC + Tn

(NB: T1 = LC, T0 = CPC)
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Tight predecessors

P a finite set of parameters, C a finite cluster type, n ∈ ω

Consider frames W with fixed valuation of parameters

W is 〈C, n〉-extensible if for every E ⊆ 2
P , 0 < |E| ≤ |C|,

and every X = {w1, . . . , wn} ⊆W , there is a tight
predecessor (tp) {ue : e ∈ E} ⊆W :

ue � P e, ue↑ = X↑

C reflexive
︷ ︸︸ ︷

∪ {ue′ : e′ ∈ E}

If L is a clx logic, an L-frame is L-extensible if it is
〈C, n〉-extensible whenever L is

For tclx logics: if n > 0, only {w1, . . . , wn} below the same
top cluster have tp’s
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Semantics for admissible rules

Theorem:
If L is a clx or tclx logic, tfae:

Γ /∼L ∆

Γ / ∆ fails in some L-extensible model

Γ / ∆ fails in an exponential-size L-model that
“approximates” an extensible model wrt subformulas of
Γ ∪ ∆

Note: L-extensible models are normally infinite

Emil Je řábek|Complexity of unification with parameters. . . |TbiLLC 2013, Gudauri 14:27



Upper bound strategy

Semantic characterization ⇒ unifiability and inadmissibility
in any (t)clx logic is ΣEXP

2 :

∃model ∀E ⊆ 2
P . . .

Optimization in certain cases:

Bounded cluster size: ∀E ⊆ 2
P becomes a poly-size

quantifier

Width 1:
The model is an upside-down tree of clusters
An alternating TM can seach for it while keeping only
one partial branch
(≈ the usual proof that ⊢L is in PSPACE)
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Lower bound conditions

Main principle: Hardness of L-unifiability stems from finite
configurations that occur as subframes in L-frames

I.e., if there are subreductions from some general L-frames
to a particular finite frame or a sequence of frames,
L-unifiability is C-hard.

Example conditions:

L has unbounded depth:
L-frames subreduce to arbitrarily long finite chains

L has unbounded cluster size:
L-frames subreduce to arbitrarily large finite clusters

L has width ≥ 2:
an L-frame subreduces to a 3-element fork
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Lower bound strategy

Reduce to L-unifiability a C-complete problem, e.g.:

PSPACE: validity of quantified Boolean sentences

ΣEXP
k /ΠEXP

k : validity of Σ2
k/Π

2
k-sentences on finite sets

∃X1 ⊆ P([n])∀X2 ⊆ P([n])∃t1, . . . , tc ⊆ [n]ϕ(i ∈ tα, tα ∈ Xj , . . .)

generally: ∃ simulated by variables, ∀ by parameters

∀X ⊆ P([n]): parameter assignments realized in a cluster

∃X ⊆ P([n]): single variable x

use antichains to enforce consistency:
w � σ(x) unaffected by a change of parameters in
points v � w
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Σ
EXP
2 bounds

Recall: ΣEXP
2 = NEXPNP

Lower bound:
L-unifiability is ΣEXP

2 -hard if ∀n an L-frame subreduces to a
rooted frame containing an n-element cluster and an
incomparable point.

∗

∗

Upper bound:
If L is a clx or tclx logic, then L-inadmissibility is in ΣEXP

2 .

Examples: K4, S4, S4.1, S4.2, . . . (± bounded branching)
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NEXP bounds

Lower bound:
If L has width ≥ 2, then L-unifiability is NEXP-hard.

∗

∗∗

Upper bound:
If L is a clx or tclx logic of bounded cluster size, then
L-inadmissibility is in NEXP.

Examples: GL, K4Grz, S4Grz, S4Grz.2, IPC, KC, . . .
(± bounded branching)
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coNEXP bounds

Lower bound:
If L has unbounded cluster size, then L-unifiability is
coNEXP-hard.

Upper bound:
If L is a clx logic of width 1, then L-inadmissibility is in
coNEXP.

Examples: S5, K4.3, S4.3, . . .
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PSPACE and below

∗

∗

∗

∗

∗Lower bound:
L-unifiability is PSPACE-hard, unless L is a tabular
logic of width 1.

Upper bound:
If L is a clx logic of width 1 and bounded cluster
size, then L-admissibility is in PSPACE.

Examples: GL.3, K4Grz.3, S4Grz.3, LC, . . .

Remaining cases:
If L is a tabular logic of width 1 and depth d, then
L-unification and L-inadmissibility are ΠP

2d-complete.

Examples: CPC, Gd+1, S5 ⊕ Altk, K4 ⊕ 2⊥, . . .
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Complexity summary for clx logics

We get the following classification for clx logics:

logic
0L

/∼L
examples

cluster
size

bran-
ching

par.-free with param’s

< ∞
0

NP-complete

ΠP

2
-c. S5⊕ Altk, CPC

1 PSPACE-c. GL.3, LC

∞ ≤ 1 coNEXP-c. S5, S4.3

< ∞
≥ 2 PSPACE-c.

NEXP-complete GL, S4Grz, IPC

∞ ΣEXP

2
-c. K4, S4

With parameters, unifiability and inadmissibility have the
same complexity
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Θ
EXP
2 bounds

For tclx logics, we need one more exotic class
ΘEXP

2 is the exponential version of ΘP
2 :

ΘEXP
2 := EXPNP[poly] = EXP‖NP = PNEXP = PSPACENEXP

Lower bound:
L-unifiability is ΘEXP

2 -hard if ∀n there is a connected L-frame
(in mathematical sense) of cluster size ≥ n and width ≥ 2.

Upper bound:
If L is a tclx logic of bounded inner cluster size, then
L-admissibility is in ΘEXP

2 .

Example: S4.2 ⊕ S4.1.4
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Complexity summary for tclx logics

Classification for tclx logics:
(NB: they extend K4.2 and have branching ≥ 2 by definition)

logic
0L

/∼L
examples

inner
cl. size

top cl.
size

par.-free w/ param’s

< ∞
< ∞

PSPACE-c.

NEXP-complete GL.2, Grz.2, KC

∞ ΘEXP

2
-c. S4.1.4 ⊕ S4.2

∞ ΣEXP

2
-c. K4.2, S4.2

Again: with parameters, unifiability and inadmissibility have
the same complexity
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Hereditary hardness

Can we fully classify the complexity of unifiability for all
transitive logics L?

Hopeless as such: e.g., ⊢L can be undecidable with
arbitrary Turing degree

But: we can determine the minimal complexity of
unifiability among the sublogics of L

Definition: Unifiability has hereditary hardness C below L if

L′-unifiability is C-hard for all L′ ⊆ L

L′-unifiability is C-complete for some L′ ⊆ L
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Hereditary hardness (cont’d)

Theorem:
The hereditary hardness of unifiability below any transitive
logic is one of ΣEXP

2 , ΘEXP
2 , EXPBH2, NEXP, coNEXP,

PSPACE, or ΠP
2d.

Here, a language is in EXPBH2 if it can be written as the
difference of two NEXP languages

Boolean hierarchy over NEXP:

EXPBH1 = NEXP

EXPBHk+1 = {ArB : A ∈ NEXP, B ∈ EXPBHk}

Example: L-unifiability (and L-inadmissibility) is
EXPBH2-complete for L = S5 ∩ S4Grz
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Unifiability vs. inadmissibility

Parameter-free unifiability is often much easier than
inadmissibility: e.g., extensions of IPC, D4, GL

With parameters, unifiability has the same complexity as
inadmissibility for all clx and tclx logics

However, this is not a general principle

Example: L = GL ∩ S4.3

L-frames are disjoint sums of GL-frames and
S4.3-frames

L-unifiability is EXPBH2-complete

single-conclusion L-inadmissibility is EXPBH4-complete

multiple-conc. L-inadmissibility is EXPNP[log n]-complete
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Thank you for attention!
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