Complexity of unification and admissibility with parameters in transitive modal logics

Emil Jeřábek jerabek@math.cas.cz http://math.cas.cz/~jerabek/

Institute of Mathematics of the Academy of Sciences, Prague

TbiLLC 2013 Gudauri September 2013

Admissibility and unification

Propositional logic L:

Language: formulas built from atoms (variables) $\{x_n : n \in \omega\}$ using a fixed set of connectives of finite arity

Consequence relation: a relation $\Gamma \vdash_L \varphi$ between sets of formulas and formulas such that

- $\, \bullet \, \varphi \vdash_L \varphi$
- $\Gamma \vdash_L \varphi$ implies $\Gamma, \Delta \vdash_L \varphi$
- $\Gamma, \Delta \vdash_L \varphi$ and $\forall \psi \in \Delta \Gamma \vdash_L \psi$ imply $\Gamma \vdash_L \varphi$
- $\Gamma \vdash_L \varphi$ implies $\sigma(\Gamma) \vdash_L \sigma(\varphi)$ for every substitution σ

Algebraizable logics

A logic *L* is finitely algebraizable wrt a class *K* of algebras if there is a finite set E(x, y) of formulas and a finite set T(x) of equations such that

- $\Gamma \vdash_L \varphi \Leftrightarrow T(\Gamma) \vDash_K T(\varphi)$
- $\Delta \vDash_K t \approx s \Leftrightarrow E(\Delta) \vdash_L E(t,s)$
- $x \dashv \vdash_L E(T(x))$

In modal logic, we will have:

 $T(x) = \{x \approx 1\}, E(x, y) = \{x \leftrightarrow y\}, K \text{ is a variety of modal algebras}$

 Θ : a background equational theory (or a variety of algebras) Basic Θ -unification problem: Given a set of equations $\Gamma = \{t_1 \approx s_1, \dots, t_n \approx s_n\}$, is there a substitution σ (a Θ -unifier of Γ) s.t.

$$\sigma(t_1) =_{\Theta} \sigma(s_1), \dots, \sigma(t_n) =_{\Theta} \sigma(s_n)?$$

If L is a logic algebraizable wrt a (quasi)variety K:

An *L*-unifier of a formula φ is σ such that $\vdash_L \sigma(\varphi)$

- *L*-unifier of $\varphi = K$ -unifier of $T(\varphi)$
- *K*-unifier of $t \approx s = L$ -unifier of E(t, s)
- Sets reduce to single formulas if L has well-behaved conjunction

Single-conclusion rule: Γ / φ (Γ finite set of formulas) Multiple-conclusion rule: Γ / Δ (Γ, Δ finite sets of formulas)

- Γ / Δ is *L*-derivable (or valid) if $\Gamma \vdash_L \delta$ for some $\delta \in \Delta$
- Γ / Δ is *L*-admissible (written as $\Gamma \vdash_L \Delta$) if every *L*-unifier of Γ also unifies some $\delta \in \Delta$

$$T(\Gamma \ / \ \Delta) := \bigwedge_{\gamma \in \Gamma} T(\gamma) \Rightarrow \bigvee_{\delta \in \Delta} T(\delta):$$

- Γ / Δ is derivable iff $T(\Gamma / \Delta)$ holds in all K-algebras
- Γ / Δ is admissible iff $T(\Gamma / \Delta)$ holds in free K-algebras

Note: Γ is unifiable iff $\Gamma \nvDash_L \varnothing$

Parameters

In real life, propositional atoms model both "variables" and "constants"

We don't want to allow substitution for constants

Example (description logic):

- (1) \forall child.(\neg HasSon $\sqcap \exists$ spouse. \top)
- (2) \forall child. \forall child. \neg Male $\sqcap \forall$ child.Married
- (3) \forall child. \forall child. \neg Female $\sqcap \forall$ child.Married

Good: Unify (1) with (2) by $HasSon \mapsto \exists child.Male$, Married $\mapsto \exists spouse.\top$

Bad: Unify (2) with (3) by Male \mapsto Female

Admissibility with parameters

In unification theory, it is customary to consider unification with free constants

Set-up with two kinds of atoms:

- variables $\{x_n : n \in \omega\}$
- parameters (constants) $\{p_n : n \in \omega\}$

Substitutions only modify variables, we require $\sigma(p_n) = p_n$

Adapt accordingly other notions:

L-unifier, *L*-admissible rule

Caveat: "Propositional logic" is always assumed to be closed under substitution for parameters

Transitive modal logics

Transitive modal logics

Normal modal logics with a single modality \Box , include the transitivity axiom $\Box x \rightarrow \Box \Box x$ (i.e., $L \supseteq \mathbf{K4}$)

Common examples: various combinations of

logic	axiom (on top of ${f K4}$)	finite rooted transitive frames	
S 4	$\Box x \to x$	reflexive	
D4	$\diamond \top$	final clusters reflexive	
GL	$\Box(\Box x \to x) \to \Box x$	irreflexive	
K4Grz	$\Box(\Box(x\to\Box x)\to x)\to\Box x$	no proper clusters	
K4.1	$\Box \diamondsuit x \to \diamondsuit \Box x$	no proper final clusters	
K4.2	$\Diamond \boxdot x \to \Box \diamondsuit x$	unique final cluster	
K4.3	$\Box(\boxdot x \to y) \lor \Box(\Box y \to x)$	linear (chain of clusters)	
K4B	$x \to \Box \diamondsuit x$	lone cluster	
$\mathbf{S5}$	$= \mathbf{S4} \oplus \mathbf{B}$	lone reflexive cluster	

Admissibility in transitive modal logics

Much is known about admissibility and unification in logics with suitable frame extension properties:

- Semantic characterization of admissible rules, decidability of admissibility (even with parameters) [Rybakov]
- Existence of projective approximations and computable finite complete sets of unifiers [Ghilardi]
- Explicit bases of admissible rules [J.]

Various results were generalized to the setting with parameters in [J13]

Complexity of admissibility and unification

Complexity of parameter-free unification and (in)admissibility [J07]:

- Logics of branching 1: usually NP-complete
- Extensible logics of infinite branching: NEXP-complete
- General logics satisfying certain weak condition: NEXP-hard

This talk: unification and (in)admissibility with parameters

- Lower bounds for broad classes of logics
- Matching upper bounds for cluster-extensible logics
- Complexity depends on semantic properties of the logic

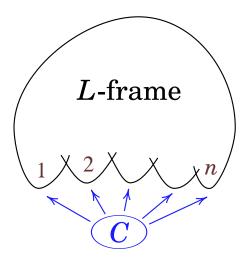
Cluster-extensible logics

L a transitive modal logic with fmp, $n \in \omega$, *C* a finite cluster type (irreflexive •, *k*-element reflexive (*k*)):

A finite rooted frame *F* is of type $\langle C, n \rangle$ if its root cluster rcl(F) is of type *C* and has *n* immediate successor clusters

L is $\langle C, n \rangle$ -extensible if: For every type- $\langle C, n \rangle$ frame *F*, if $F \smallsetminus rcl(F)$ is an *L*-frame, then so is *F*

L is cluster-extensible (clx), if it is $\langle C, n \rangle$ -extensible whenever it has some type- $\langle C, n \rangle$ frame



Properties of clx logics

Examples: All combinations of K4, S4, GL, D4, K4Grz, K4.1, K4.3, K4B, S5, \pm bounded branching (K4BB_k) or cluster size (K4BC_k)

Nonexamples: K4.2, S4.2, ...

For every clx logic *L*:

- L is finitely axiomatizable
- L has the exponential-size model property
- L is $\forall \exists$ -definable on finite frames
- L is PSPACE-complete (if branching \geq 2) or coNP-complete

Variants of clx logics

The definition can be tweaked to cover other kinds of logics:

- Logics with a single top cluster (extensions of K4.2)
 - Top-restricted cluster-extensible (tclx) logics: extension condition only for frames with a single top cluster
 - Examples: joins of K4.2 with clx logics
- Superintuitionistic logics
 - Behave much like their largest modal companion (Blok–Esakia isomorphism)
 - . The only (t)clx logics are IPC, T_n , KC, KC + T_n (NB: $T_1 = LC$, $T_0 = CPC$)

Tight predecessors

P a finite set of parameters, C a finite cluster type, $n\in\omega$

- Consider frames W with fixed valuation of parameters
- W is $\langle C, n \rangle$ -extensible if for every $E \subseteq 2^P$, $0 < |E| \le |C|$, and every $X = \{w_1, \dots, w_n\} \subseteq W$, there is a tight predecessor (tp) $\{u_e : e \in E\} \subseteq W$: C reflexive

$$u_e \vDash P^e, \qquad u_e \uparrow = X \uparrow \bigcup \{ u_{e'} : e' \in E \}$$

- If *L* is a clx logic, an *L*-frame is *L*-extensible if it is $\langle C, n \rangle$ -extensible whenever *L* is
- For tclx logics: if n > 0, only $\{w_1, \ldots, w_n\}$ below the same top cluster have tp's

Semantics for admissible rules

Theorem:

- If *L* is a clx or tclx logic, tfae:
 - $\Gamma \not\vdash_L \Delta$
 - Γ / Δ fails in some *L*-extensible model
 - Γ / Δ fails in an exponential-size *L*-model that "approximates" an extensible model wrt subformulas of $\Gamma \cup \Delta$
- Note: *L*-extensible models are normally infinite

Upper bound strategy

Semantic characterization \Rightarrow unifiability and inadmissibility in any (t)clx logic is Σ_2^{EXP} :

 $\exists \operatorname{model} \forall E \subseteq \mathbf{2}^P \dots$

Optimization in certain cases:

- Bounded cluster size: $\forall E \subseteq \mathbf{2}^P$ becomes a poly-size quantifier
- Width 1:
 - The model is an upside-down tree of clusters
 - An alternating TM can seach for it while keeping only one partial branch (≈ the usual proof that ⊢_L is in PSPACE)

Lower bound conditions

Main principle: Hardness of *L*-unifiability stems from finite configurations that occur as subframes in *L*-frames

I.e., if there are subreductions from some general L-frames to a particular finite frame or a sequence of frames, L-unifiability is C-hard.

Example conditions:

- L has unbounded depth:
 L-frames subreduce to arbitrarily long finite chains
- L has unbounded cluster size:
 L-frames subreduce to arbitrarily large finite clusters
- L has width ≥ 2 :

an *L*-frame subreduces to a 3-element fork

Lower bound strategy

Reduce to *L*-unifiability a *C*-complete problem, e.g.:

- PSPACE: validity of quantified Boolean sentences
- $\Sigma_k^{\text{EXP}}/\Pi_k^{\text{EXP}}$: validity of Σ_k^2/Π_k^2 -sentences on finite sets

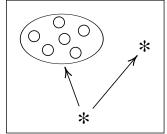
 $\exists X_1 \subseteq \mathcal{P}([n]) \,\forall X_2 \subseteq \mathcal{P}([n]) \,\exists t_1, \dots, t_c \subseteq [n] \,\varphi(i \in t_\alpha, t_\alpha \in X_j, \dots)$

- generally: ∃ simulated by variables, ∀ by parameters
- $\forall X \subseteq \mathcal{P}([n])$: parameter assignments realized in a cluster
- $\exists X \subseteq \mathcal{P}([n])$: single variable x
 - use antichains to enforce consistency:
 - $w \vDash \sigma(x)$ unaffected by a change of parameters in points $v \not\geq w$

Recall: $\Sigma_2^{\text{EXP}} = \text{NEXP}^{\text{NP}}$

Lower bound:

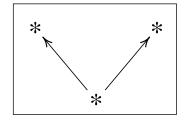
L-unifiability is Σ_2^{EXP} -hard if $\forall n$ an *L*-frame subreduces to a rooted frame containing an *n*-element cluster and an incomparable point.



Upper bound: If *L* is a clx or tclx logic, then *L*-inadmissibility is in Σ_2^{EXP} . Examples: K4, S4, S4, S4.1, S4.2, ... (± bounded branching)

NEXP **bounds**

Lower bound: If *L* has width ≥ 2 , then *L*-unifiability is NEXP-hard.



Upper bound: If *L* is a clx or tclx logic of bounded cluster size, then *L*-inadmissibility is in NEXP.

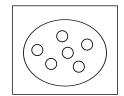
Examples: GL, K4Grz, S4Grz, S4Grz.2, IPC, KC, ... (± bounded branching)

coNEXP **bounds**

Lower bound: If *L* has unbounded cluster size, then *L*-unifiability is coNEXP-hard.

Upper bound: If *L* is a clx logic of width 1, then *L*-inadmissibility is in coNEXP.

Examples: S5, K4.3, S4.3, ...



20:27

Lower bound: *L*-unifiability is PSPACE-hard, unless *L* is a tabular logic of width 1.

Upper bound: If *L* is a clx logic of width 1 and bounded cluster size, then *L*-admissibility is in PSPACE.

Examples: GL.3, K4Grz.3, S4Grz.3, LC, ...

Remaining cases: If *L* is a tabular logic of width 1 and depth *d*, then *L*-unification and *L*-inadmissibility are Π_{2d}^{P} -complete. Examples: CPC, G_{d+1} , $S5 \oplus Alt_k$, $K4 \oplus \Box \bot$, ... *

*

*

*

*

Complexity summary for clx logics

We get the following classification for clx logics:

logic				$\not\vdash_L$	overnlee
cluster size	bran- ching	\nvdash_L	parfree	with param's	examples
	0		Π^{P}_2 -C.	$\mathbf{S5} \oplus \mathbf{Alt}_k$, \mathbf{CPC}	
$ <\infty$	1	NP-complete		PSPACE-c.	GL.3, LC
∞	≤ 1			coNEXP-c.	S5 , S4 .3
$<\infty$	> 9	PSPACE-c.	NEXP-complete		GL, S4Grz, IPC
∞	<u> </u>	≥ 2 PSPACE-C.		Σ_2^{EXP} -C.	K4, S4

With parameters, unifiability and inadmissibility have the same complexity

Θ_2^{EXP} bounds

For tclx logics, we need one more exotic class Θ_2^{EXP} is the exponential version of Θ_2^{P} :

 $\Theta_2^{\text{EXP}} := \text{EXP}^{\text{NP}[\text{poly}]} = \text{EXP}^{\parallel \text{NP}} = \text{P}^{\text{NEXP}} = \text{PSPACE}^{\text{NEXP}}$

Lower bound:

L-unifiability is Θ_2^{EXP} -hard if $\forall n$ there is a connected *L*-frame (in mathematical sense) of cluster size $\geq n$ and width ≥ 2 .

Upper bound:

If *L* is a tclx logic of bounded inner cluster size, then *L*-admissibility is in Θ_2^{EXP} .

Example: $S4.2 \oplus S4.1.4$

Complexity summary for tclx logics

Classification for tclx logics:

(NB: they extend K4.2 and have branching ≥ 2 by definition)

logic			$\not\sim_L$		ovamplas
inner cl. size	top cl. size	\nvdash_L	parfree	w/ param's	examples
	$<\infty$		NEXP-complete		GL.2, Grz.2, KC
$<\infty$	∞	PSPACE-c.		Θ_2^{EXP} -C.	${f S4.1.4 \oplus S4.2}$
∞				Σ_2^{EXP} -C.	K4.2, S4.2

Again: with parameters, unifiability and inadmissibility have the same complexity

Hereditary hardness

Can we fully classify the complexity of unifiability for all transitive logics *L*?

- Hopeless as such: e.g., ⊢_L can be undecidable with arbitrary Turing degree
- But: we can determine the minimal complexity of unifiability among the sublogics of L

Definition: Unifiability has hereditary hardness C below L if

- L'-unifiability is C-hard for all $L' \subseteq L$
- L'-unifiability is C-complete for some $L' \subseteq L$

Theorem:

The hereditary hardness of unifiability below any transitive logic is one of Σ_2^{EXP} , Θ_2^{EXP} , EXPBH_2 , NEXP, coNEXP, PSPACE, or Π_{2d}^{P} .

Here, a language is in EXPBH_2 if it can be written as the difference of two NEXP languages

Boolean hierarchy over NEXP:

 $EXPBH_1 = NEXP$ $EXPBH_{k+1} = \{A \smallsetminus B : A \in NEXP, B \in EXPBH_k\}$

Example: *L*-unifiability (and *L*-inadmissibility) is $EXPBH_2$ -complete for $L = S5 \cap S4Grz$

Unifiability vs. inadmissibility

- Parameter-free unifiability is often much easier than inadmissibility: e.g., extensions of IPC, D4, GL
- With parameters, unifiability has the same complexity as inadmissibility for all clx and tclx logics
- However, this is not a general principle
- Example: $L = GL \cap S4.3$
 - L-frames are disjoint sums of GL-frames and S4.3-frames
 - *L*-unifiability is EXPBH₂-complete
 - single-conclusion L-inadmissibility is EXPBH₄-complete
 - multiple-conc. *L*-inadmissibility is $EXP^{NP[\log n]}$ -complete

Thank you for attention!

References

F. Baader, W. Snyder, *Unification theory*, in: Handbook of Automated Reasoning (A. Robinson and A. Voronkov, eds.), vol. I, Elsevier, 2001, 445–533.

S. Ghilardi, *Best solving modal equations*, Ann. Pure Appl. Log. 102 (2000), 183–198.

E. Jeřábek, Complexity of admissible rules, Arch. Math. Log. 46 (2007), 73-92.

_, *Rules with parameters in modal logic I*, preprint, 2013.

_____, *Rules with parameters in modal logic II*, in preparation.

V. Rybakov, Admissibility of logical inference rules, Elsevier, 1997.