t—internal models 000000 The big model 000

・ロト ・日下 ・ヨト ・ヨト ・ りゃぐ

Kripke Models of Models of Peano Arithmetic

Paula Henk

ILLC, University of Amsterdam

September 23, 2013

 $1 \, / \, 16$

t—internal models 000000 The big model 000

<ロト < 回 ト < 三 ト < 三 ト こ の < で</p>

Provability logic

Introduction o●oooo t—internal models 000000 The big model 000

Provability predicate of PA

Peano Arithmetic (PA) — first–order theory of arithmetic. There is a formula Pr(x) of \mathcal{L}_{PA} such that:

(1)
$$\vdash_{\mathsf{PA}} \varphi \iff \vdash_{\mathsf{PA}} \mathsf{Pr}(\overline{\ulcorner \varphi \urcorner})$$

Furthermore,

$$\begin{array}{ll} (2) & \vdash_{\mathsf{PA}} \Pr(\ulcorner\varphi \to \psi\urcorner) \land \Pr(\ulcorner\varphi\urcorner) \to \Pr(\ulcorner\psi\urcorner) \\ (3) & \vdash_{\mathsf{PA}} \Pr(\ulcorner\varphi\urcorner) \to \Pr(\ulcornerPr(\ulcorner\varphi\urcorner)\urcorner) \end{array} \end{array}$$

t—internal models 000000 The big model 000

Provability logic GL

The system GL (Gödel and Löb) is K plus Löb's axiom

 $\Box(\Box A \to A) \to \Box A.$

 GL is sound and (weakly) complete w.r.t. Kripke frames where R is transitive and conversely well-founded.

t—internal models 000000 The big model 000

Arithmetical realisations

Definition

An arithmetical realisation is a function $*: \operatorname{prop}(\mathcal{L}_{\Box}) \to \operatorname{sent}(\mathcal{L}_{PA})$. It is extended to a function from the full modal language by requiring:

i.
$$\bot^* = \bot$$

ii. $(A \to B)^* = (A^* \to B^*)$
iii. $\Box A^* = \Pr\left(\overline{A^* \neg} \right)$

Arithmetical soundness and completeness of GL

Theorem (Solovay) GL is the provability logic of PA:

 $\vdash_{\mathsf{GL}} A \Leftrightarrow \text{ for all arithmetical realisations } *, \vdash_{\mathsf{PA}} A^*$

Thus, in the context of PA,

- $\Box \varphi$ means: φ is provable $(\mathsf{Pr}(\overline{\ulcorner \varphi \urcorner}))$.
- $\diamond \varphi$ means: φ is consistent $(\neg \mathsf{Pr}(\overline{\neg \varphi}))$

t—internal models 000000 The big model 000

Goal of this talk

There is a relation \triangleright_t (the t-internal model relation) between models of PA such that for all $\varphi \in \mathcal{L}_{PA}$,

 $\mathcal{M} \vDash \mathsf{Pr}(\overline{\ulcorner \varphi \urcorner}) \Leftrightarrow \text{ for all } \mathcal{N} \text{ such that } \mathcal{M} \rhd_t \mathcal{N}, \ \mathcal{N} \vDash \varphi$

 \Rightarrow new interpretation of the modal operators in PA

- $\Box \varphi$ means: φ is true in all t-internal models
- $\Diamond \varphi$ means: φ is true in some t-internal model

The collection of models of PA, together with the relation \triangleright_t , can be seen as a big Kripke frame \Rightarrow new perspective on Solovay's Theorem

 $\substack{t-\mathrm{internal\ models}\\\bullet00000}$

The big model 000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

t-internal models

 $8 \, / \, 16$

 $\substack{t-internal\ models\\ 0 \bullet 0000}$

The big model 000

Relative translations

Definition Let Σ , Θ be signatures. A *relative translation* $j: \Sigma \to \Theta$ is a tuple $\langle \delta, \tau \rangle$, where

- 1. δ is a $\Theta\text{--formula}$ with one free variable,
- 2. τ associates to each $n\text{-}\mathrm{ary}$ relation symbol R of Σ a formula R^τ of Θ with n free variables

 τ is extended to a function from all formulas of Σ by requiring that it commutes with the propositional connectives, and furthermore

i.
$$(Rx_0...x_{n-1})^{\tau} = R^{\tau}(x_0...x_{n-1})$$

ii.
$$(\forall x \, \varphi)^{\tau} = \forall x \, (\delta(x) \to \varphi^{\tau})$$

A relative translation $j: \Sigma \to \Theta$ is a way of uniformly defining a model \mathcal{M}^j of signature Σ inside a given model \mathcal{M} of signature Θ , provided that $\mathcal{M} \vDash \exists x \, \delta(x)$. We say that \mathcal{M}^j is an *internal model* of \mathcal{M} .

 $\substack{t-internal\ models\\00000}$

The big model 000

t-internal models

Definition

 \mathcal{N} is a t-internal model of \mathcal{M} ($\mathcal{M} \succ_t \mathcal{N}$) if there exists a triple $j = \langle \delta, \tau, tr \rangle$ such that

- 1. $\langle \delta, \tau \rangle$ is a relative translation from the signature of \mathcal{N} to the signature of \mathcal{M} , and $\mathcal{N} = \mathcal{M}^{\langle \delta, \tau \rangle}$.
- 2. tr is a formula of the signature of \mathcal{M} , and the following sentences are satisfied in \mathcal{M} :

$$\begin{array}{ll} \mathrm{i.} & \forall x \left(\delta(x) \rightarrow \left(R^{\tau}x \leftrightarrow \mathrm{tr}(Rc_x) \right) \right) \\ \mathrm{ii.} & \forall \varphi \in \mathrm{sent}, \forall \psi \in \mathrm{sent} \left(\mathrm{tr}(\varphi \rightarrow \psi) \leftrightarrow \left(\mathrm{tr}(\varphi) \rightarrow \mathrm{tr}(\psi) \right) \right) \\ \mathrm{iii.} & \forall \varphi \in \mathrm{sent} \left(\mathrm{tr}(\neg \varphi) \leftrightarrow \neg \mathrm{tr}(\varphi) \right) \\ \mathrm{iv.} & \forall \varphi \in \mathrm{sent}, \forall u \in \mathrm{var} \left(\mathrm{tr}(\forall u \, \varphi) \leftrightarrow \forall x \left(\delta(x) \rightarrow \mathrm{tr}(\varphi(c_x)) \right) \right) \\ \mathrm{v.} & \forall \varphi \in \mathrm{sent} \left(\mathrm{Ax}_{\mathsf{PA}}(\varphi) \rightarrow \mathrm{tr}(\varphi) \right) \end{array}$$

We write $j: \mathcal{M} \triangleright_{\mathsf{t}} \mathcal{N}$, and refer to the components of j by $\delta_j, \tau_j, \mathsf{tr}_j$.

t-internal models 000000

The big model 000

An arithmetical accessibility relation

Theorem Let $\mathcal{M} \models \mathsf{PA}$. Then for any $\mathcal{L}_{\mathsf{PA}}$ -sentence φ ,

 $\mathcal{M} \vDash \mathsf{Pr}(\varphi) \Leftrightarrow \text{ for all } \mathcal{N} \text{ with } \mathcal{M} \rhd_{\mathsf{t}} \mathcal{N}, \ \mathcal{N} \vDash \varphi$

t–internal models $0000 \bullet 0$

The big model 000

An arithmetical accessibility relation (1)

Lemma Let $j: \mathcal{M} \triangleright_{\mathsf{t}} \mathcal{N}$. For any $\mathcal{L}_{\mathsf{PA}}$ -sentence $\varphi, \mathcal{M} \models \mathsf{Pr}(\varphi) \to \varphi^{\tau_j}$ Theorem (1)Let $\mathcal{M} \models \mathsf{PA}$. Then for any $\mathcal{L}_{\mathsf{PA}}$ -sentence φ , $\mathcal{M} \vDash \mathsf{Pr}(\varphi) \Rightarrow \text{ for all } \mathcal{N} \text{ with } \mathcal{M} \succ_{\mathsf{t}} \mathcal{N}, \ \mathcal{N} \vDash \varphi$ Proof. Let $\mathcal{M} \models \mathsf{PA}$ and $\mathcal{M} \models \mathsf{Pr}(\varphi)$. Let $j: \mathcal{M} \triangleright_{\mathsf{t}} \mathcal{N}$. By the Lemma, $\mathcal{M} \models \varphi^{\tau_j}$, whence $\mathcal{N} \models \varphi$ by the internal model construction.

t-internal models 00000

The big model 000

An arithmetical accessibility relation

Theorem (2)
Let
$$\mathcal{M} \models \mathsf{PA}$$
. Then for any $\mathcal{L}_{\mathsf{PA}}$ -sentence φ ,

 $\mathcal{M} \vDash \neg \mathsf{Pr}(\varphi) \Rightarrow \text{ there is some } \mathcal{N} \text{ with } \mathcal{M} \rhd_{\mathsf{t}} \mathcal{N}, \text{ and } \mathcal{N} \vDash \neg \varphi$

Proof.

If $\mathcal{M} \models \neg \mathsf{Pr}(\varphi)$, then $\mathcal{M} \models \mathsf{Con}(\mathsf{PA} + \neg \varphi)$. The proof is by the arithmetised Gödel's Completeness Theorem, noting that the formula representing the Henkin set can be viewed as a truth definition for the internally constructed $\mathcal{N} \models \mathsf{PA} + \neg \varphi$.

t—internal models 000000 The big model $\bullet 00$

<ロト < 回 ト < 三 ト < 三 ト こ の < で</p>

The big model

 $14 \, / \, 16$

t—internal models 000000 The big model $0 \bullet 0$

Defining big Kripke models

Define the Kripke frame $\mathfrak{F}_{\mathsf{big}}$ as follows:

i. W_{big} consists of all models of PA

ii. R_{big} is $\triangleright_{\mathsf{t}}$

Let * be an arithmetical realisation. We turn $\mathfrak{F}_{\mathsf{big}}$ into a model $\mathfrak{M}^*_{\mathsf{big}}$ by letting:

$$\langle W_{\mathsf{big}}, \rhd_{\mathsf{t}} \rangle, \mathcal{M} \Vdash^{*} p : \Leftrightarrow \mathcal{M} \vDash p^{*}$$

By the properties of \triangleright_t , we get for any $A \in \mathcal{L}_{\Box}$:

$$\langle W_{\mathsf{big}}, \rhd_{\mathsf{t}} \rangle, \mathcal{M} \Vdash^* A \Leftrightarrow \mathcal{M} \vDash A^*.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ ��や

15/16

t-internal models 000000 The big model 000

Relation to Solovay's proof

For any GL-model M with domain $\{1, \ldots, n\}$ and root 1, let M^0 denote the model M, where 0 is added as a root below 1.

Theorem For any GL-model $M = \langle \{1, \ldots, n\}, R, V \rangle$, there exists an arithmetical realisation *, and a relation $Z: \{0, 1, \ldots, n\} \times W_{\text{big}}$ such that Z is a total bisimulation between M^0 and $\mathfrak{M}^*_{\text{big}}$.

Proof. Let S_0, \dots, S_n be the Solovay sentences corresponding to M^0 and let * be the Solovay realisation, i.e. $p^* = \bigvee_{i: M^0, i \Vdash p} S_i$. Let

$$(i, \mathcal{M}) \in Z : \Leftrightarrow \mathcal{M} \vDash S_i.$$

Corollary (Arithmetical Completeness of GL) If $\nvdash_{\mathsf{GL}} A$, then $\nvdash_{\mathsf{PA}} A^*$ for some arithmetical realisation *.