Analytic calculi for non-classical logics: the Baha'i method

Agata Ciabattoni

Vienna University of Technology (TU Vienna)

Non-classical logics

Non-classical logics provide languages for reasoning, e.g., about dynamic data structures, resources, algebraic structures, vague or inconsistent information...
They are often described/introduced by adding suitable properties to known systems:

- Hilbert axioms
- Semantic conditions

Non-classical logics

Non-classical logics provide languages for reasoning, e.g., about dynamic data structures, resources, algebraic structures, vague or inconsistent information...
They are often described/introduced by adding suitable properties to known systems:

- Hilbert axioms

■ Semantic conditions
Example: Gödel logic is obtained from intuitionistic logic

- by adding the Hilbert axiom $(\phi \rightarrow \psi) \vee(\psi \rightarrow \phi)$, or
- by imposing on intuitionistic frames the strong connectedness of the accessibility relation \leqslant, i.e.

$$
\forall x \forall y \forall z((x \leqslant y \wedge x \leqslant z) \rightarrow(y \leqslant z \vee z \leqslant y))
$$

Analytic calculi

The applicability/usefulness of non-classical logics strongly depends on the availability of analytic calculi.

Analytic calculi are

- useful for establishing various properties of logics
- key for developing automated reasoning methods.

Sequent Calculus

(Gentzen 1934)

Sequents

$$
A_{1}, \ldots, A_{n} \Rightarrow B_{1}, \ldots, B_{m}
$$

Axioms
E.g., $\quad A \Rightarrow A$

Rules
Logical, Structural and

$$
\frac{\Gamma \Rightarrow A \quad A, \Delta \Rightarrow \Pi}{\Gamma, \Delta \Rightarrow \Pi} C u t
$$

Sequent Calculus - state of the art

+ Cut-free sequent calculi have been successfully used
■ to prove decidability, interpolation, consistency, ...
■ to give syntactic proofs of algebraic properties for which (in particular cases) semantic methods are not known or do not work well
- Many useful and interesting logics have no cut-free sequent calculus

Sequent Calculus - state of the art

+ Cut-free sequent calculi have been successfully used
■ to prove decidability, interpolation, consistency, ...
■ to give syntactic proofs of algebraic properties for which (in particular cases) semantic methods are not known or do not work well
- Many useful and interesting logics have no cut-free sequent calculus

A large range of extensions of sequent calculus have been introduced

Extensions of the sequent calculus

Syntactic Formalisms

- hypersequent calculus (Avron, TU Vienna, ...)

■ display calculus (Belnap, Wansing, Goré, ...)
■ nested sequents (Guglielmi, Brünnler, Fitting, ...)

Semantic Formalisms
■ labelled systems (Gabbay, Negri, Viganó, ...)

- many placed sequents (TU Vienna) - finite valued logics
- sequents of relations (TU Vienna) - many-valued logics
- ...

Extensions of the sequent calculus

Syntactic Formalisms
■ hypersequent calculus (Avron, TU Vienna, ...)
■ display calculus (Belnap, Wansing, Goré, ...)
■ nested sequents (Guglielmi, Brünnler, Fitting, ...)

- ...

Semantic Formalisms
■ labelled systems (Gabbay, Negri, Viganó, ...)

- many placed sequents (TU Vienna) - finite valued logics
- sequents of relations (TU Vienna) - many-valued logics

Long standing dispute?!

State of the art

The definition of analytic calculi is usually logic-tailored. Steps:
(i) choosing a framework
(ii) looking for the "right" inference rule(s)
(iii) proving cut-elimination

State of the art

The definition of analytic calculi is usually logic-tailored. Steps:
(i) choosing a framework
(ii) looking for the "right" inference rule(s)
(iii) proving cut-elimination

Our Dream

- Define analytic calculi for non-classical logics in a systematic and algorithmic way
- Characterize the expressive power of the various frameworks

The Baha'i method

The Baha'i method
A general method to introduce analytic calculi for large classes of logics which works for syntactic and semantic formalisms and provide a unifying perspective of them.
(with N. Galatos and K. Terui)

The Baha'i method

The Baha'i faith believes in the unity of all religion. One God and many prophets: Buddha, Krishna, Jesus, Mohammed, ... (cf. Lonely Planet)

The Baha'i method

A general method to introduce analytic calculi for large classes of logics which works for syntactic and semantic formalisms and provide a unifying perspective of them.

The Baha'i method

The Baha'i method

The Baha'i method - Steps

(Step 1): Classification of the properties (axioms, frame conditions ...)
(Step 2): Transformation procedure: from conditions to structural rules that preserve cut-elimination when added to the base calculus
(Step 3): Completion of the generated rules (when needed)

Step 1: classification

The formulas (Hilbert axioms, semantics conditions..) are classified according to the
polarity of their connectives/quantifiers
(J.-M. Andreoli, 1992)

- Positive polarity: rule introducing the connective/quantifier on the left is invertible
- Negative polarity: rule introducing the connective/quantifier on the right is invertible

Step 2: transformation procedure

Given a base cut-free calculus \mathcal{C}. The algorithm is based on:
Ingredient 1
The use of the invertible rules of \mathcal{C}

Ingredient 2: Ackermann Lemma

An algebraic equation $t \leq u$ is equivalent to a quasiequation $u \leq x \Longrightarrow t \leq x$, and also to $x \leq t \Longrightarrow x \leq u$, where x is a fresh variable not occurring in t, u.

Step 2: transformation procedure

Given a base cut-free calculus \mathcal{C}. The algorithm is based on:

Ingredient 1

The use of the invertible rules of \mathcal{C}

Ingredient 2: Ackermann Lemma

An algebraic equation $t \leq u$ is equivalent to a quasiequation $u \leq x \Longrightarrow t \leq x$, and also to $x \leq t \Longrightarrow x \leq u$, where x is a fresh variable not occurring in t, u.

Example: the sequent $A \vdash B$ is equivalent to

$$
\frac{\Gamma \vdash A, \Delta}{\Gamma \vdash B, \Delta} \quad \frac{\Gamma, B \vdash \Delta}{\Gamma, A \vdash \Delta}
$$

(Γ, Δ fresh metavariables for lists of formulas)

Intermediate logics: a case study

Logics between intuitionistic and classical logic

Semantic approach

- imposing on intuitionistic Kripke frames additional conditions on the (transitive and reflexive) accessibility relation \leqslant

Syntactic approach

■ extending intuitionistic propositional calculus with Hilbert axioms

LJ + axioms/frame conditions $=$ no cut-elimination!

The Bahai's method at work

- hypersequent calculus

■ labelled sequent calculus

- display calculus
(-, N. Galatos and K. Terui). Annals of Pure and Applied Logic, 2012.
(-, N. Galatos and K. Terui). LICS 2008.

Hypersequent calculus

(Avron'87)

It is obtained by embedding sequents into hypersequents

$$
\Gamma_{1} \Rightarrow \Pi_{1}|\ldots| \Gamma_{n} \Rightarrow \Pi_{n}
$$

where all $\Gamma_{i} \Rightarrow \Pi_{i}$ are ordinary sequents (components).

Hypersequent calculus

It is obtained by embedding sequents into hypersequents

$$
\Gamma_{1} \Rightarrow \Pi_{1}|\ldots| \Gamma_{n} \Rightarrow \Pi_{n}
$$

where all $\Gamma_{i} \Rightarrow \Pi_{i}$ are ordinary sequents (components).
E.g. Rules

$$
\begin{array}{ll}
\left.\frac{G \mid \Gamma \Rightarrow A}{} \quad G \right\rvert\, A, \Delta \Rightarrow \Pi \\
G \mid \Gamma, \Delta \Rightarrow \Pi & \text { Cut }
\end{array} \frac{\overline{G \mid A \Rightarrow A} \text { Identity }}{\frac{G|\Gamma \Rightarrow A \quad G| B, \Delta \Rightarrow \Pi}{G \mid \Gamma, A \rightarrow B, \Delta \Rightarrow \Pi} \rightarrow I} \frac{G \mid A, \Gamma \Rightarrow B}{G \mid \Gamma \Rightarrow A \rightarrow B} \rightarrow r .
$$

Hypersequent calculus

It is obtained by embedding sequents into hypersequents

$$
\Gamma_{1} \Rightarrow \Pi_{1}|\ldots| \Gamma_{n} \Rightarrow \Pi_{n}
$$

where all $\Gamma_{i} \Rightarrow \Pi_{i}$ are ordinary sequents (components).
E.g. Rules

$$
\begin{array}{ll}
\left.\frac{G \mid \Gamma \Rightarrow A}{} \quad G \right\rvert\, A, \Delta \Rightarrow \Pi \\
G \mid \Gamma, \Delta \Rightarrow \Pi & \text { cut }
\end{array} \frac{\overline{G \mid A \Rightarrow A} \text { Identity }}{\frac{G|\Gamma \Rightarrow A \quad G| B, \Delta \Rightarrow \Pi}{G \mid \Gamma, A \rightarrow B, \Delta \Rightarrow \Pi} \rightarrow I} \frac{G \mid A, \Gamma \Rightarrow B}{G \mid \Gamma \Rightarrow A \rightarrow B} \rightarrow r .
$$

and, to manipulate the additional layer of structure,
$\frac{G}{G \mid \Gamma \Rightarrow A}$ (ew) $\quad \frac{G\left|\Gamma^{\prime} \Rightarrow B\right| \Gamma \Rightarrow A \mid G^{\prime}}{G|\Gamma \Rightarrow A| \Gamma^{\prime} \Rightarrow B \mid G^{\prime}}$ (ee) $\quad \frac{G|\Gamma \Rightarrow A| \Gamma \Rightarrow A}{G \mid \Gamma \Rightarrow A}$ (ec)

Structural rules in the hypersequent calculus

Example: Gödel logic $(=\mathrm{IL}+(\phi \rightarrow \psi) \vee(\psi \rightarrow \phi))$

$$
\frac{G\left|\Delta_{1}, \Gamma_{1} \Rightarrow \Pi_{1} \quad G\right| \Delta_{2}, \Gamma_{2} \Rightarrow \Pi_{2}}{G\left|\Delta_{2}, \Gamma_{1} \Rightarrow \Pi_{1}\right| \Delta_{1}, \Gamma_{2} \Rightarrow \Pi_{2}}(\mathrm{com})
$$

(Avron '91)

The Baha'i method for hypersequent calculus

■ hypersequent calculi
For intermediate logics

- Base system: hypersequent version of Gentzen LJ calculus
- Properties of intermediate logics: Hilbert axioms
- Generated Rules: structural hypersequent rules
- labelled sequent calculi
- display calculi

The Baha'i method for hypersequent calculus

(Step 1): Classification of axioms based on the polarity of connectives/quantifiers
(Step 2): Transformation procedure
(Step 3): Completion of the generated rules

From axioms to hypersequent rules

Definition (Classification based on LJ)

The classes $\mathcal{P}_{n}, \mathcal{N}_{n}$ of positive and negative axioms are:

- $\mathcal{P}_{0}::=\mathcal{N}_{0}::=$ atomic formulas
- $\mathcal{P}_{n+1}::=\mathcal{N}_{n}\left|\mathcal{P}_{n+1} \vee \mathcal{P}_{n+1}\right| \mathcal{P}_{n+1} \wedge \mathcal{P}_{n+1} \mid \perp$

■ $\mathcal{N}_{n+1}::=\mathcal{P}_{n}\left|\mathcal{P}_{n+1} \rightarrow \mathcal{N}_{n+1}\right| \mathcal{N}_{n+1} \wedge \mathcal{N}_{n+1} \mid \top$

Our Result

Theorem

Any axiom within the class \mathcal{P}_{3} can be transformed into equivalent structural hypersequent rules that preserve cut-elimination once added to LJ.

Some examples
■ $\sim \phi \vee \phi$
$■(\phi \rightarrow \psi) \vee(\psi \rightarrow \phi)$
■ $\sim \phi \vee \sim \sim \phi$

- $\phi_{0} \vee\left(\phi_{0} \rightarrow \phi_{1}\right) \vee \cdots \vee\left(\phi_{0} \wedge \cdots \wedge \phi_{k-1} \rightarrow \phi_{k}\right)$
- $\bigvee_{i=0}^{k}\left(\phi_{i} \rightarrow \bigvee_{j \neq i} \phi_{j}\right)$

From axioms to hypersequent rules II

Example (Jankov logic: Axiom $\sim \phi \vee \sim \sim \phi$)
Equivalent to

$$
G|\Rightarrow \sim \phi| \Rightarrow \sim \sim \phi
$$

Invertibility

$$
\overline{G|\phi \Rightarrow| \sim \phi \Rightarrow}
$$

Ackermann Lemma $1 \quad \begin{aligned} & G \mid \Gamma^{\prime} \Rightarrow \sim \phi \\ & G|\phi \Rightarrow| \Gamma^{\prime} \Rightarrow\end{aligned}$

Invertibility

$$
\frac{G \mid \Gamma^{\prime}, \phi \Rightarrow}{G|\phi \Rightarrow| \Gamma^{\prime} \Rightarrow}
$$

Ackermann Lemma $2 \quad \frac{G|\Gamma \Rightarrow \phi \quad G| \Gamma^{\prime}, \phi \Rightarrow}{G|\Gamma \Rightarrow| \Gamma^{\prime} \Rightarrow}$

Equivalent rule

$$
\frac{G \mid \Gamma, \Gamma^{\prime} \Rightarrow}{G|\Gamma \Rightarrow| \Gamma^{\prime} \Rightarrow}
$$

Automated approach: Axiomcalc

Our theorem

Any axiom within the class \mathcal{P}_{3} can be transformed into equivalent structural hypersequent rules that preserve cut-elimination once added to LJ.

Our system: Axiomcalc

http://www.logic.at/people/lara/axiomcalc.html

The Bahai's method at work II

- hypersequent calculus
- labelled sequent calculus
- display calculus
(-, P. Maffezioli and L. Spendier). Tableaux 2013.

From frame conditions to labelled calculi

Definition (Semantics)

- Intuitionistic frame $\mathfrak{F}=\langle X, \leqslant\rangle$ where X is a non-empty set and \leqslant is a reflexive and transitive (accessibility) relation on X.
- Intuitionistic model $\mathfrak{M}=\langle\mathfrak{F}, \Vdash\rangle$
- \Vdash (forcing): relation between elements of X and atomic formulas

Example

- Jankov logic:
$\forall x \forall y \forall z((x \leqslant y \wedge x \leqslant z) \rightarrow \exists w(y \leqslant w \wedge z \leqslant w))$
■ Gödel logic: $\forall x \forall y \forall z((x \leqslant y \wedge x \leqslant z) \rightarrow(y \leqslant z \vee z \leqslant y))$
- $B d_{2}: \forall x \forall y \forall z((x \leqslant y \wedge y \leqslant z) \rightarrow(y \leqslant x \vee z \leqslant y))$

Labelled calculi for intermediate logics

Labelled calculi (Kanger 1957, ...):
■ Extension of standard sequent calculi in which the semantics is explicit part of the syntax
■ Each formula α receives a label x, e.g. $x: \alpha$

- Labels occur also in expressions of the (reflexive and transitive) accessibility relation $x \leqslant y$
$x \Vdash \alpha(x$ "forces" $\alpha)$ represented as $x: \alpha$

Labelled calculi for intermediate logics

Labelled calculus G3I for intuitionistic logic (Negri):

$$
\begin{align*}
& x \leqslant y, x: p, \Gamma \Rightarrow \Delta, y: p \\
& \frac{x: \alpha, x: \beta, \Gamma \Rightarrow \Delta}{x: \alpha \wedge \beta, \Gamma \Rightarrow \Delta}(\wedge, I) \\
& \frac{\Gamma \Rightarrow \Delta, x: \alpha \quad \Gamma \Rightarrow \Delta, x: \beta}{\Gamma \Rightarrow \Delta, x: \alpha \wedge \beta}(\wedge, r) \\
& \frac{x: \alpha, \Gamma \Rightarrow \Delta \quad x: \beta, \Gamma \Rightarrow \Delta}{x: \alpha \vee \beta, \Gamma \Rightarrow \Delta}(\vee, I) \quad \frac{\Gamma \Rightarrow \Delta, x: \alpha, x: \beta}{\Gamma \Rightarrow \Delta, x: \alpha \vee \beta}(\vee, r) \\
& \frac{x \leqslant y, x: \alpha \rightarrow \beta, \Gamma \Rightarrow \Delta, y: \alpha \quad x \leqslant y, x: \alpha \rightarrow \beta, y: \beta, \Gamma \Rightarrow \Delta}{x \leqslant y, x: \alpha \rightarrow \beta, \Gamma \Rightarrow \Delta}(\rightarrow, I) \\
& \overline{x: \perp, \Gamma \Rightarrow \Delta}(\perp, /) \\
& \frac{x \leqslant y, y: \alpha, \Gamma \Rightarrow \Delta, y: \beta}{\Gamma \Rightarrow \Delta, x: \alpha \rightarrow \beta}(\rightarrow, r) \\
& \frac{x \leqslant x, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}(\operatorname{Ref}) \tag{Trans}\\
& \frac{x \leqslant z, x \leqslant y, y \leqslant z, \Gamma \Rightarrow \Delta}{x \leqslant y, y \leqslant z, \Gamma \Rightarrow \Delta}
\end{align*}
$$

The Baha'i method for labelled calculus

- hypersequent calculi
- labelled sequent calculi

For intermediate logics

- Base system: Labelled calculus G3I
- Properties of intermediate logics: frame conditions (first-order formulas of classical logic)
■ Generated Rules: structural labelled rules
- display calculi

From frame conditions to labelled rules

Classification of frame conditions:

- Observation: Frame conditions are formulas of classical logic

■ Polarities: \exists : positive $-\forall$: negative

Definition

- formulas in Σ_{0}, Π_{0} are quantifier-free
- if ϕ is equivalent to $\exists \bar{x} \psi$ were $\psi \in \Pi_{n}$ then $\phi \in \Sigma_{n+1}$
- if ϕ is equivalent to $\forall \bar{x} \psi$ were $\psi \in \Sigma_{n}$ then $\phi \in \Pi_{n+1}$

From frame conditions to labelled rules

Classification of frame conditions:

- Observation: Frame conditions are formulas of classical logic

■ Polarities: \exists : positive $-\forall$: negative

Definition

- formulas in Σ_{0}, Π_{0} are quantifier-free
- if ϕ is equivalent to $\exists \bar{x} \psi$ were $\psi \in \Pi_{n}$ then $\phi \in \Sigma_{n+1}$
- if ϕ is equivalent to $\forall \bar{x} \psi$ were $\psi \in \Sigma_{n}$ then $\phi \in \Pi_{n+1}$

Theorem

Any formula within the class Π_{2} (i.e. $\forall \bar{x} \exists \bar{y} \psi$) can be transformed into a set of equivalent structural rules that preserve cut-elimination when added to G3I (with additional axioms $x \leqslant y, \Gamma \Rightarrow \Delta, x \leqslant y)$.

From frame conditions to labelled rules II

Example (Jankov logic)

Frame condition

$$
(\forall x y z(x \leqslant y \wedge x \leqslant z) \rightarrow \exists w(y \leqslant w \wedge z \leqslant w))
$$

Invertibility

$$
\Rightarrow \forall x y z((x \leqslant y \wedge x \leqslant z) \rightarrow \exists w(y \leqslant w \wedge z \leqslant w))
$$

Ackermann Lemma
$\overline{x^{\prime}} \leqslant y^{\prime}, x^{\prime} \leqslant z^{\prime} \Rightarrow \exists w\left(y^{\prime} \leqslant w \wedge z^{\prime} \leqslant w\right)$

Invertibility

$$
\frac{\exists w\left(y^{\prime} \leqslant w \wedge z^{\prime} \leqslant w\right), \Gamma \Rightarrow \Delta}{x^{\prime} \leqslant y^{\prime}, x^{\prime} \leqslant z^{\prime}, \Gamma \Rightarrow \Delta}
$$

Invertibility

$$
\frac{y^{\prime} \leqslant w^{\prime} \wedge z^{\prime} \leqslant w^{\prime}, \Gamma \Rightarrow \Delta}{x^{\prime} \leqslant y^{\prime}, x^{\prime} \leqslant z^{\prime}, \Gamma \Rightarrow \Delta}
$$

Equivalent rule

$$
\frac{y^{\prime} \leqslant w^{\prime}, z^{\prime} \leqslant w^{\prime}, \Gamma \Rightarrow \Delta}{x^{\prime} \leqslant y^{\prime}, x^{\prime} \leqslant z^{\prime}, \Gamma \Rightarrow \Delta}
$$

Relationships with the state of the art

Frame conditions following the "geometric axiom scheme"

$$
\forall \bar{x}\left(\neg P_{1} \vee \cdots \vee \neg P_{m} \vee \exists \bar{y}_{1}\left(\bigwedge Q_{1}\right) \vee \cdots \vee \exists \bar{y}_{n}\left(\bigwedge Q_{n}\right)\right)
$$

can be converted into structural rules (S. Negri, 2004)

$$
\frac{\bar{Q}_{1}\left[y_{1} / x_{1}\right], \bar{P}, \Gamma \Rightarrow \Delta \quad \cdots \quad \bar{Q}_{k}\left[y_{k} / x_{k}\right], \bar{P}, \Gamma \Rightarrow \Delta}{\bar{P}, \Gamma \Rightarrow \Delta}
$$

(\bar{Q}_{i}, \bar{P} are sets of atoms) that preserve cut-elimination

Relationships with the state of the art

Frame conditions following the "geometric axiom scheme"

$$
\forall \bar{x}\left(\neg P_{1} \vee \cdots \vee \neg P_{m} \vee \exists \bar{y}_{1}\left(\bigwedge Q_{1}\right) \vee \cdots \vee \exists \bar{y}_{n}\left(\bigwedge Q_{n}\right)\right)
$$

can be converted into structural rules (S. Negri, 2004)

$$
\frac{\bar{Q}_{1}\left[y_{1} / x_{1}\right], \bar{P}, \Gamma \Rightarrow \Delta \quad \cdots \quad \bar{Q}_{k}\left[y_{k} / x_{k}\right], \bar{P}, \Gamma \Rightarrow \Delta}{\bar{P}, \Gamma \Rightarrow \Delta}
$$

(\bar{Q}_{i}, \bar{P} are sets of atoms) that preserve cut-elimination
$■$ These formulas are $\in \Pi_{2}$

- Our rules for geometric formulas are the same

Relationships with the state of the art

Frame conditions following the "geometric axiom scheme"

$$
\forall \bar{x}\left(\neg P_{1} \vee \cdots \vee \neg P_{m} \vee \exists \bar{y}_{1}\left(\bigwedge Q_{1}\right) \vee \cdots \vee \exists \bar{y}_{n}\left(\bigwedge Q_{n}\right)\right)
$$

can be converted into structural rules (S. Negri, 2004)

$$
\frac{\bar{Q}_{1}\left[y_{1} / x_{1}\right], \bar{P}, \Gamma \Rightarrow \Delta \quad \cdots \quad \bar{Q}_{k}\left[y_{k} / x_{k}\right], \bar{P}, \Gamma \Rightarrow \Delta}{\bar{P}, \Gamma \Rightarrow \Delta}
$$

(\bar{Q}_{i}, \bar{P} are sets of atoms) that preserve cut-elimination
$■$ These formulas are $\in \Pi_{2}$

- Our rules for geometric formulas are the same

Are there frame conditions $\in \Pi_{2}$ that are not equivalent to any geometric formula?

The Bahai's method at work III

- hypersequent calculus
- labelled sequent calculus
- display calculus
(-, R. Ramanayake). WOLLIC 2013.

Display Calculus

Gentzen Sequent: $A_{1}, \ldots, A_{n} \Rightarrow B_{1}, \ldots, B_{m}$

$$
\left(A_{1} \wedge \ldots \wedge A_{n} \Rightarrow B_{1} \vee \ldots \vee B_{m}\right)
$$

Belnap's idea ('82) : look at \Rightarrow as a deducibility relation between finite possible complex data (structures)

Display Calculus

Gentzen Sequent: $A_{1}, \ldots, A_{n} \Rightarrow B_{1}, \ldots, B_{m}$

$$
\left(A_{1} \wedge \ldots \wedge A_{n} \Rightarrow B_{1} \vee \ldots \vee B_{m}\right)
$$

Belnap's idea ('82) : look at \Rightarrow as a deducibility relation between finite possible complex data (structures)

Definition (Display Sequent)

$X \Rightarrow Y$, where X, Y are structures which are built from formulae using structural connectives.

Display Calculus

Gentzen Sequent: $A_{1}, \ldots, A_{n} \Rightarrow B_{1}, \ldots, B_{m}$

$$
\left(A_{1} \wedge \ldots \wedge A_{n} \Rightarrow B_{1} \vee \ldots \vee B_{m}\right)
$$

Belnap's idea ('82) : look at \Rightarrow as a deducibility relation between finite possible complex data (structures)

Definition (Display Sequent)

$X \Rightarrow Y$, where X, Y are structures which are built from formulae using structural connectives.

Display property: given a display sequent $X \Rightarrow Y$ and any occurrence of a substructure Z in the sequent, that occurrence can be displayed as $Z \Rightarrow U$ or as $U \Rightarrow Z$ using structural rules.

Example: Display calculus $\delta \mathrm{HB}$ for $\mathrm{Bi}-\mathrm{Int}$

(Kamide and Wansing 2012)
■ \mathbf{I} is \perp

- - is "," on the RHS $(=\vee)$ and \rightarrow^{d} on the LHS
$\square \circ$ is \rightarrow on the RHS and \wedge on the LHS
(Some of the) Logical rules:

$$
\begin{array}{cc}
\frac{\mathbf{I \vdash X}}{\mathrm{T} \vdash X} \mathrm{TI} & \frac{X \vdash \mathbf{I}}{X \vdash \perp} \perp r \\
\frac{X \vdash A \quad X \vdash B}{X \vdash A \wedge B} \wedge r & \frac{A \vdash X \quad B \vdash X}{A \vee B \vdash X} \vee I \\
\frac{X \vdash A \quad Y \vdash B}{A \rightarrow B \vdash X \circ Y} \rightarrow I & \frac{X \vdash A \circ B}{X \vdash A \rightarrow B} \rightarrow r \frac{B \bullet A \vdash X}{B \rightarrow A \vdash X} \rightarrow{ }_{d} l \\
& \frac{X \vdash B}{X \bullet Y \vdash B \rightarrow{ }_{d} A} \rightarrow{ }_{d} r
\end{array}
$$

Example: Display calculus $\delta \mathrm{HB}$ for $\mathrm{Bi}-\mathrm{Int}$

(Kamide and Wansing 2012)
■ I is \perp

- • is "," on the RHS $(=\vee)$ and \rightarrow^{d} on the LHS

■ \circ is \rightarrow on the RHS and \wedge on the LHS
Display rules

Structural rules

$$
\begin{array}{cccc}
\frac{X \vdash Y}{X \vdash Y \bullet Z} & \frac{X \vdash Y}{X \circ Z \vdash Y} & \frac{X \vdash Y \bullet Z}{X \vdash Z \bullet Y} & \frac{X \circ Z \vdash Y}{Z \circ X \vdash Y} \\
\frac{X \vdash Y \bullet Y}{X \vdash Y} & \frac{X \circ X \vdash Y}{X \vdash Y} & \frac{X \vdash(Y \bullet Z) \bullet U}{X \vdash Y \bullet(Z \bullet U)} & \frac{(X \circ Y) \circ Z \vdash U}{X \circ(Y \circ Z) \vdash U}
\end{array}
$$

The Baha'i method for display calculus

- hypersequent calculi

■ labelled sequent calculi

- display calculi

For intermediate logics

- Base system: the calculus $\delta H B$ for (Bi)intuitionistic logic in (Kamide and Wansing 2012)
- Properties of intermediate logics: Hilbert axioms

■ Generated Rules: structural display rules

The Baha'i method for display calculus

(Step 1): Classification of axioms based on the polarity of connectives
(Step 2): Transformation procedure
(Step 3): Completion of the generated rules

From Hilbert axioms to display rules

In the calculus $\delta H B$ for intuitionistic logic all rules for connectives are invertible but $(\rightarrow, /)$
Classification:

$$
\begin{aligned}
& \mathcal{I}_{0}::=\text { atomic formulae } \\
& \mathcal{I}_{n+1}::=\perp|\top| \mathcal{I}_{n} \rightarrow \mathcal{I}_{n+1}\left|\mathcal{I}_{n+1} \wedge \mathcal{I}_{n+1}\right| \mathcal{I}_{n+1} \vee \mathcal{I}_{n+1}
\end{aligned}
$$

From Hilbert axioms to display rules

In the calculus $\delta H B$ for intuitionistic logic all rules for connectives are invertible but $(\rightarrow, /)$
Classification:

$$
\begin{aligned}
& \mathcal{I}_{0}::=\text { atomic formulae } \\
& \mathcal{I}_{n+1}::=\perp|\top| \mathcal{I}_{n} \rightarrow \mathcal{I}_{n+1}\left|\mathcal{I}_{n+1} \wedge \mathcal{I}_{n+1}\right| \mathcal{I}_{n+1} \vee \mathcal{I}_{n+1}
\end{aligned}
$$

Theorem

Each axiom within the class \mathcal{I}_{2} can be transformed into equivalent structural display rules which preserve cut-elimination when added to $\delta \mathrm{HB}$.

From Hilbert axioms to display rules

I is \perp, \bullet is $\vee(\mathrm{RHS})$ and $\rightarrow^{d}(\mathrm{LHS})$, \circ is $\rightarrow(\mathrm{RHS})$ and $\wedge(\mathrm{LHS})$
Example (Jankov logic - Axiom $\sim \phi \vee \sim \sim \phi$)
Invertibility

$$
\mathbf{I} \bullet(\sim \phi \circ \mathbf{I}) \vdash \phi \circ \mathbf{I}
$$

Display Property

$$
\phi \vdash(\mathbf{I} \bullet(\sim \phi \circ \mathbf{I})) \circ \mathbf{I}
$$

Ackermann Lemma

$$
\frac{X \vdash \phi}{X \vdash(\mathbf{I} \bullet(\sim \phi \circ \mathbf{I})) \circ \mathbf{I}}
$$

Display Property

$$
\frac{X \vdash \phi}{\sim \phi \vdash(\mathbf{I} \bullet(X \circ \mathbf{I})) \circ \mathbf{I}}
$$

Ackermann Lemma $\frac{X \vdash \phi}{Y \vdash(\mathbf{I} \bullet(X \circ \mathbf{I})) \circ \mathbf{I}}$
Equivalent Rule

$$
\frac{X \vdash Y \circ \mathbf{I}}{Y \vdash(\mathbf{I} \bullet(X \circ \mathbf{I})) \circ \mathbf{I}}
$$

Summary

A general method to introduce cut-free calculi, starting from
■ Hilbert axioms (hypersequent and display calculi)

- Frame conditions (labelled calculi)

The method

- provides a unified treatment of very different formalisms
- provides (infinitely many) new cut-free systems
- subsumes many results proved for individual logics
(Some) Open problems \& work in progress I

(Some) Open problems \& work in progress I

■ Conquering higher levels in the hierarchies.
By now:
class \mathcal{P}_{3} for hypersequent calculi

\mathcal{I}_{2} for display calculi and $\forall \exists$ for labelled calculi

(Some) Open problems \& work in progress I

■ Conquering higher levels in the hierarchies.
By now:
class \mathcal{P}_{3} for hypersequent calculi

\mathcal{I}_{2} for display calculi and $\forall \exists$ for labelled calculi
Observation 1: All (axiomatizable) intermediate logics are within the classes $\mathcal{N}_{3} / \mathcal{I}_{3}$ (Zakharyaschev's canonical formulas)

(Some) Open problems \& work in progress I

■ Conquering higher levels in the hierarchies.
By now:
class \mathcal{P}_{3} for hypersequent calculi

\mathcal{I}_{2} for display calculi and $\forall \exists$ for labelled calculi
Observation 1: All (axiomatizable) intermediate logics are within the classes $\mathcal{N}_{3} / \mathcal{I}_{3}$ (Zakharyaschev's canonical formulas)
Ex. $\left(\mathrm{Bd}_{2}\right) \phi \vee(\phi \rightarrow(\psi \vee(\psi \rightarrow \xi))) \in \mathcal{I}_{2}$

(Some) Open problems \& work in progress I

■ Conquering higher levels in the hierarchies.
By now:
class \mathcal{P}_{3} for hypersequent calculi

\mathcal{I}_{2} for display calculi and $\forall \exists$ for labelled calculi
Observation 1: All (axiomatizable) intermediate logics are within the classes $\mathcal{N}_{3} / \mathcal{I}_{3}$ (Zakharyaschev's canonical formulas)
Ex. $\left(\mathrm{Bd}_{2}\right) \phi \vee(\phi \rightarrow(\psi \vee(\psi \rightarrow \xi))) \in \mathcal{I}_{2}$
Observation 2: Though $\left(\mathrm{Bd}_{2}\right) \notin \mathcal{P}_{3}$ we could find a logical rule

$$
\frac{G\left|\Gamma^{\prime}, \Gamma \Rightarrow \Delta^{\prime} \quad G\right| \Gamma, A \Rightarrow B, \Delta}{G\left|\Gamma^{\prime} \Rightarrow \Delta^{\prime}\right| \Gamma \Rightarrow A \rightarrow B, \Delta}\left(b d_{2}\right)^{*}
$$

(Some) Open problems \& work in progress II

■ First-order, modal logics, ...
■ Extending the method to other (all?) general-purpose formalisms

■ "Applications" of the generated calculi: E.g.

- completeness of the formalized logics w.r.t. a semantics with truth-values in $[0,1]$ (hypersequent calculi)
- decidability via suitable translations into nested sequents (display logic)
- ...

(Some) Open problems \& work in progress II

■ First-order, modal logics, ...
■ Extending the method to other (all?) general-purpose formalisms

■ "Applications" of the generated calculi: E.g.

- completeness of the formalized logics w.r.t. a semantics with truth-values in $[0,1]$ (hypersequent calculi)
- decidability via suitable translations into nested sequents (display logic)
- ...
"Non-classical Proofs: Theory, Applications and Tools", research project 2012-2017 (START prize - Austrian Research Fund)

