Analytic calculi for non-classical logics: the Baha'i method

Agata Ciabattoni

Vienna University of Technology (TU Vienna)

Non-classical logics provide languages for reasoning, e.g., about dynamic data structures, resources, algebraic structures, vague or inconsistent information ...

They are often described/introduced by adding suitable properties to known systems:

- Hilbert axioms
- Semantic conditions

Non-classical logics provide languages for reasoning, e.g., about dynamic data structures, resources, algebraic structures, vague or inconsistent information ...

They are often described/introduced by adding suitable properties to known systems:

- Hilbert axioms
- Semantic conditions

Example: Gödel logic is obtained from intuitionistic logic

- by adding the Hilbert axiom $(\phi
 ightarrow \psi) \lor (\psi
 ightarrow \phi)$, or
- by imposing on intuitionistic frames the strong connectedness of the accessibility relation ≤, i.e.
 ∀x∀y∀z((x ≤ y ∧ x ≤ z) → (y ≤ z ∨ z ≤ y)).

The applicability/usefulness of non-classical logics strongly depends on the availability of analytic calculi.

Analytic calculi are

- useful for establishing various properties of logics
- key for developing automated reasoning methods.

Sequent Calculus

(Gentzen 1934)

Sequents

$$A_1,\ldots,A_n\Rightarrow B_1,\ldots,B_m$$

Axioms

E.g., $A \Rightarrow A$

Rules Logical, Structural and

$$\frac{\Gamma \Rightarrow A \quad A, \Delta \Rightarrow \Pi}{\Gamma, \Delta \Rightarrow \Pi} \ Cut$$

+ Cut-free sequent calculi have been successfully used

- to prove decidability, interpolation, consistency, ...
- to give syntactic proofs of algebraic properties for which (in particular cases) semantic methods are not known or do not work well
- Many useful and interesting logics have no cut-free sequent calculus

+ Cut-free sequent calculi have been successfully used

- to prove decidability, interpolation, consistency, ...
- to give syntactic proofs of algebraic properties for which (in particular cases) semantic methods are not known or do not work well
- Many useful and interesting logics have no cut-free sequent calculus

A large range of extensions of sequent calculus have been introduced

Extensions of the sequent calculus

Syntactic Formalisms

- hypersequent calculus (Avron, TU Vienna, ...)
- display calculus (Belnap, Wansing, Goré, ...)
- nested sequents (Guglielmi, Brünnler, Fitting, ...)

...

....

Semantic Formalisms

- labelled systems (Gabbay, Negri, Viganó, ...)
- many placed sequents (TU Vienna) finite valued logics
- sequents of relations (TU Vienna) many-valued logics

Extensions of the sequent calculus

Syntactic Formalisms

- hypersequent calculus (Avron, TU Vienna, ...)
- display calculus (Belnap, Wansing, Goré, ...)
- nested sequents (Guglielmi, Brünnler, Fitting, ...)

...

....

Semantic Formalisms

- labelled systems (Gabbay, Negri, Viganó, ...)
- many placed sequents (TU Vienna) finite valued logics
- sequents of relations (TU Vienna) many-valued logics

Long standing dispute?!

The definition of analytic calculi is usually logic-tailored. Steps:

- (i) choosing a framework
- (ii) looking for the "right" inference rule(s)
- (iii) proving cut-elimination

The definition of analytic calculi is usually logic-tailored. Steps:

(i) choosing a framework

(ii) looking for the "right" inference rule(s)

(iii) proving cut-elimination

Our Dream

- Define analytic calculi for non-classical logics in a systematic and algorithmic way
- Characterize the expressive power of the various frameworks

The Baha'i method

A general method to introduce analytic calculi for large classes of logics which works for syntactic and semantic formalisms and provide a unifying perspective of them.

(with N. Galatos and K. Terui)

The Baha'i faith believes in the unity of all religion. One God and many prophets: Buddha, Krishna, Jesus, Mohammed, ... (cf. Lonely Planet)

The Baha'i method

A general method to introduce analytic calculi for large classes of logics which works for syntactic and semantic formalisms and provide a unifying perspective of them.

- (Step 1): Classification of the properties (axioms, frame conditions ...)
- **(Step 2): Transformation procedure**: from conditions to structural rules that preserve cut-elimination when added to the base calculus
- (Step 3): Completion of the generated rules (when needed)

The formulas (Hilbert axioms, semantics conditions..) are **classified** according to the

polarity of their connectives/quantifiers

- (J.-M. Andreoli, 1992)
 - *Positive* polarity: rule introducing the connective/quantifier on the *left* is invertible
 - Negative polarity: rule introducing the connective/quantifier on the *right* is invertible

Step 2: transformation procedure

Given a base cut-free calculus $\mathcal{C}.$ The algorithm is based on:

Ingredient 1

The use of the invertible rules of $\ensuremath{\mathcal{C}}$

Ingredient 2: Ackermann Lemma

An algebraic equation $t \le u$ is equivalent to a quasiequation $u \le x \implies t \le x$, and also to $x \le t \implies x \le u$, where x is a fresh variable not occurring in t, u.

Step 2: transformation procedure

Given a base cut-free calculus $\mathcal{C}.$ The algorithm is based on:

Ingredient 1

The use of the invertible rules of $\ensuremath{\mathcal{C}}$

Ingredient 2: Ackermann Lemma

An algebraic equation $t \le u$ is equivalent to a quasiequation $u \le x \implies t \le x$, and also to $x \le t \implies x \le u$, where x is a fresh variable not occurring in t, u.

Example: the sequent $A \vdash B$ is equivalent to

$$\frac{\Gamma \vdash A, \Delta}{\Gamma \vdash B, \Delta} \qquad \qquad \frac{\Gamma, B \vdash \Delta}{\Gamma, A \vdash \Delta}$$

 $(\Gamma, \Delta \text{ fresh metavariables for lists of formulas})$

Logics between intuitionistic and classical logic

Semantic approach

 imposing on intuitionistic Kripke frames additional conditions on the (transitive and reflexive) accessibility relation ≤

Syntactic approach

 extending intuitionistic propositional calculus with Hilbert axioms

LJ + axioms/frame conditions = no cut-elimination!

The Bahai's method at work

- hypersequent calculus
- labelled sequent calculus
- display calculus

(-, N. Galatos and K. Terui). Annals of Pure and Applied Logic, 2012.

(-, N. Galatos and K. Terui). LICS 2008.

Hypersequent calculus

(Avron'87) It is obtained by embedding sequents into hypersequents $\Gamma_1 \Rightarrow \Pi_1 | \dots | \Gamma_n \Rightarrow \Pi_n$ where all $\Gamma_i \Rightarrow \Pi_i$ are ordinary sequents (components). It is obtained by embedding sequents into hypersequents

```
\Gamma_1 \Rightarrow \Pi_1 | \ldots | \Gamma_n \Rightarrow \Pi_n
```

where all $\Gamma_i \Rightarrow \Pi_i$ are ordinary sequents (components). E.g. Rules

$$\frac{G|\Gamma \Rightarrow A \quad G|A, \Delta \Rightarrow \Pi}{G|\Gamma, \Delta \Rightarrow \Pi} Cut \quad \frac{G|A \Rightarrow A}{G|A \Rightarrow A} Identity$$
$$\frac{G|\Gamma \Rightarrow A \quad G|B, \Delta \Rightarrow \Pi}{G|\Gamma, A \to B, \Delta \Rightarrow \Pi} \to I \quad \frac{G|A, \Gamma \Rightarrow B}{G|\Gamma \Rightarrow A \to B} \to r$$

It is obtained by embedding sequents into hypersequents

```
\Gamma_1 \Rightarrow \Pi_1 \mid \ldots \mid \Gamma_n \Rightarrow \Pi_n
```

where all $\Gamma_i \Rightarrow \Pi_i$ are ordinary sequents (components). E.g. Rules

$$\frac{G|\Gamma \Rightarrow A \quad G|A, \Delta \Rightarrow \Pi}{G|\Gamma, \Delta \Rightarrow \Pi} Cut \quad \frac{G|A \Rightarrow A}{G|A \Rightarrow A} Identity$$
$$\frac{G|\Gamma \Rightarrow A \quad G|B, \Delta \Rightarrow \Pi}{G|\Gamma, A \to B, \Delta \Rightarrow \Pi} \to I \quad \frac{G|A, \Gamma \Rightarrow B}{G|\Gamma \Rightarrow A \to B} \to r$$

and, to manipulate the additional layer of structure,

$$\frac{G}{G \mid \Gamma \Rightarrow A} \text{ (ew)} \quad \frac{G \mid \Gamma' \Rightarrow B \mid \Gamma \Rightarrow A \mid G'}{G \mid \Gamma \Rightarrow A \mid \Gamma' \Rightarrow B \mid G'} \text{ (ee)} \quad \frac{G \mid \Gamma \Rightarrow A \mid \Gamma \Rightarrow A}{G \mid \Gamma \Rightarrow A} \text{ (ec)}$$

Example: Gödel logic (= IL + (
$$\phi \rightarrow \psi$$
) \lor ($\psi \rightarrow \phi$))

$$\frac{G | \Delta_1, \Gamma_1 \Rightarrow \Pi_1 \quad G | \Delta_2, \Gamma_2 \Rightarrow \Pi_2}{G | \Delta_2, \Gamma_1 \Rightarrow \Pi_1 | \Delta_1, \Gamma_2 \Rightarrow \Pi_2}$$
(com)
(Avron '91)

hypersequent calculi

For intermediate logics

- Base system: hypersequent version of Gentzen LJ calculus
- Properties of intermediate logics: Hilbert axioms
- Generated Rules: structural hypersequent rules
- labelled sequent calculi
- display calculi

(Step 1): Classification of axioms based on the polarity of connectives/quantifiers

(Step 2): Transformation procedure

(Step 3): Completion of the generated rules

Definition (Classification based on LJ)

The classes $\mathcal{P}_n, \mathcal{N}_n$ of positive and negative axioms are:

- $\mathcal{P}_0 ::= \mathcal{N}_0 ::=$ atomic formulas
- $\mathcal{P}_{n+1} ::= \mathcal{N}_n \mid \mathcal{P}_{n+1} \lor \mathcal{P}_{n+1} \mid \mathcal{P}_{n+1} \land \mathcal{P}_{n+1} \mid \bot$
- $\mathcal{N}_{n+1} ::= \mathcal{P}_n \mid \mathcal{P}_{n+1} \to \mathcal{N}_{n+1} \mid \mathcal{N}_{n+1} \land \mathcal{N}_{n+1} \mid \top$

Our Result

Theorem

Any axiom within the class \mathcal{P}_3 can be transformed into equivalent structural hypersequent rules that preserve cut-elimination once added to LJ.

Some examples

From axioms to hypersequent rules II

Example (Jankov logic: Axiom $\sim \phi \lor \sim \sim \phi$)	
Equivalent to	$\boxed{G \mid \Rightarrow \sim \phi \mid \Rightarrow \sim \sim \phi}$
Invertibility	$G \phi \Rightarrow \sim \phi \Rightarrow$
Ackermann Lemma 1	$\frac{G \mid \Gamma' \Rightarrow \sim \phi}{G \mid \phi \Rightarrow \mid \Gamma' \Rightarrow}$
Invertibility	$\frac{G \mid \Gamma', \phi \Rightarrow}{G \mid \phi \Rightarrow \mid \Gamma' \Rightarrow}$
Ackermann Lemma 2	$\begin{array}{c c} G \mid \Gamma \Rightarrow \phi & G \mid \Gamma', \phi \Rightarrow \\ \hline G \mid \Gamma \Rightarrow \mid \Gamma' \Rightarrow \end{array}$
Equivalent rule	$\frac{G \mid \Gamma, \Gamma' \Rightarrow}{G \mid \Gamma \Rightarrow \mid \Gamma' \Rightarrow}$

Our theorem

Any axiom within the class \mathcal{P}_3 can be transformed into equivalent structural hypersequent rules that preserve cut-elimination once added to LJ.

Our system: Axiomcalc

http://www.logic.at/people/lara/axiomcalc.html

The Bahai's method at work II

- hypersequent calculus
- labelled sequent calculus
- display calculus

(-, P. Maffezioli and L. Spendier). Tableaux 2013.

From frame conditions to labelled calculi

Definition (Semantics)

- Intuitionistic frame 𝔅 = ⟨X, ≤⟩ where X is a non-empty set and ≤ is a reflexive and transitive (accessibility) relation on X.
- Intuitionistic model $\mathfrak{M} = \langle \mathfrak{F}, \Vdash \rangle$
- I⊢ (forcing): relation between elements of X and atomic formulas

Example

- Jankov logic: $\forall x \forall y \forall z ((x \leq y \land x \leq z) \rightarrow \exists w (y \leq w \land z \leq w))$
- Gödel logic: $\forall x \forall y \forall z ((x \leq y \land x \leq z) \rightarrow (y \leq z \lor z \leq y))$
- $\blacksquare Bd_2: \forall x \forall y \forall z ((x \leqslant y \land y \leqslant z) \rightarrow (y \leqslant x \lor z \leqslant y))$

Labelled calculi (Kanger 1957, ...):

- Extension of standard sequent calculi in which the semantics is explicit part of the syntax
- Each formula α receives a label x, e.g. x : α
- Labels occur also in expressions of the (reflexive and transitive) accessibility relation $x \leq y$

 $x \Vdash \alpha$ (x "forces" α) represented as $x : \alpha$

Labelled calculi for intermediate logics

Labelled calculus *G3I* for intuitionistic logic (Negri):

$$\begin{aligned} x \leqslant y, x : p, \Gamma \Rightarrow \Delta, y : p \\ \frac{x : \alpha, x : \beta, \Gamma \Rightarrow \Delta}{x : \alpha \land \beta, \Gamma \Rightarrow \Delta} (\land, l) & \frac{\Gamma \Rightarrow \Delta, x : \alpha \land \Gamma \Rightarrow \Delta, x : \beta}{\Gamma \Rightarrow \Delta, x : \alpha \land \beta} (\land, r) \\ \frac{x : \alpha, \Gamma \Rightarrow \Delta}{x : \alpha \lor \beta, \Gamma \Rightarrow \Delta} (\lor, l) & \frac{\Gamma \Rightarrow \Delta, x : \alpha \land \beta}{\Gamma \Rightarrow \Delta, x : \alpha \lor \beta} (\lor, r) \\ \frac{x \leqslant y, x : \alpha \to \beta, \Gamma \Rightarrow \Delta, y : \alpha \land x \leqslant y, x : \alpha \to \beta, y : \beta, \Gamma \Rightarrow \Delta}{x \leqslant y, x : \alpha \to \beta, \Gamma \Rightarrow \Delta} (\rightarrow, l) \\ \frac{x \leqslant x, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} (Ref) & \frac{x \leqslant z, x \leqslant y, y \leqslant z, \Gamma \Rightarrow \Delta}{x \leqslant y, y \leqslant z, \Gamma \Rightarrow \Delta} (Trans) \end{aligned}$$

The Baha'i method for labelled calculus

- hypersequent calculi
- labelled sequent calculi
 For intermediate logics
 - Base system: Labelled calculus G31
 - Properties of intermediate logics: frame conditions (first-order formulas of classical logic)
 - Generated Rules: structural labelled rules
- display calculi

From frame conditions to labelled rules

Classification of frame conditions:

- Observation: Frame conditions are formulas of classical logic
- Polarities: \exists : positive \forall : negative

Definition

- formulas in Σ_0, Π_0 are quantifier-free
- if ϕ is equivalent to $\exists \overline{x}\psi$ were $\psi \in \Pi_n$ then $\phi \in \Sigma_{n+1}$
- if ϕ is equivalent to $\forall \overline{x}\psi$ were $\psi \in \Sigma_n$ then $\phi \in \Pi_{n+1}$

From frame conditions to labelled rules

Classification of frame conditions:

- Observation: Frame conditions are formulas of classical logic
- Polarities: \exists : positive \forall : negative

Definition

- formulas in Σ_0, Π_0 are quantifier-free
- if ϕ is equivalent to $\exists \overline{x}\psi$ were $\psi \in \Pi_n$ then $\phi \in \Sigma_{n+1}$
- if ϕ is equivalent to $\forall \overline{x}\psi$ were $\psi \in \Sigma_n$ then $\phi \in \Pi_{n+1}$

Theorem

Any formula within the class Π_2 (i.e. $\forall \overline{x} \exists \overline{y} \psi$) can be transformed into a set of equivalent structural rules that preserve cut-elimination when added to G3I (with additional axioms $x \leq y, \Gamma \Rightarrow \Delta, x \leq y$).

Example (Jankov logic)

Frame condition	$(\forall xyz(x \leq y \land x \leq z)) \rightarrow \exists y(y \leq y \land z \leq y))$
	$(\forall xyz(x \leqslant y \land x \leqslant z) \rightarrow \exists w(y \leqslant w \land z \leqslant w))$
Invertibility	$\Rightarrow \forall xyz((x \leqslant y \land x \leqslant z) \rightarrow \exists w(y \leqslant w \land z \leqslant w))$
Ackermann Lemma	$x' \leqslant y', x' \leqslant z' \Rightarrow \exists w(y' \leqslant w \land z' \leqslant w)$
Invertibility	$\frac{\exists w(y' \leqslant w \land z' \leqslant w), \Gamma \Rightarrow \Delta}{x' \leqslant y', x' \leqslant z', \Gamma \Rightarrow \Delta}$
	$x \leq y, x \leq z, 1 \Rightarrow \Delta$
Invertibility	$y' \leqslant w' \wedge z' \leqslant w', \Gamma \Rightarrow \Delta$
mvertibility	$x' \leqslant y', x' \leqslant z', \Gamma \Rightarrow \Delta$
F : I . I	$y'\leqslant w',z'\leqslant w',\Gamma\Rightarrow\Delta$
Equivalent rule	$x' \leqslant y', x' \leqslant z', \Gamma \Rightarrow \Delta$

Relationships with the state of the art

Frame conditions following the "geometric axiom scheme"

$$\forall \overline{x} (\neg P_1 \lor \cdots \lor \neg P_m \lor \exists \overline{y}_1 (\bigwedge Q_1) \lor \cdots \lor \exists \overline{y}_n (\bigwedge Q_n))$$

can be converted into structural rules (S. Negri, 2004)

$$\frac{\overline{Q}_{1}[y_{1}/x_{1}],\overline{P},\Gamma\Rightarrow\Delta}{\overline{P},\Gamma\Rightarrow\Delta} \xrightarrow{} \overline{Q}_{k}[y_{k}/x_{k}],\overline{P},\Gamma\Rightarrow\Delta}$$

 $(\overline{Q}_i, \overline{P} \text{ are sets of atoms})$ that preserve cut-elimination

Relationships with the state of the art

Frame conditions following the "geometric axiom scheme"

$$\forall \overline{x} (\neg P_1 \lor \cdots \lor \neg P_m \lor \exists \overline{y}_1 (\bigwedge Q_1) \lor \cdots \lor \exists \overline{y}_n (\bigwedge Q_n))$$

can be converted into structural rules (S. Negri, 2004)

$$\frac{\overline{Q}_{1}[y_{1}/x_{1}],\overline{P},\Gamma\Rightarrow\Delta}{\overline{P},\Gamma\Rightarrow\Delta} \xrightarrow{} \overline{Q}_{k}[y_{k}/x_{k}],\overline{P},\Gamma\Rightarrow\Delta}$$

 $(\overline{Q}_i, \overline{P} \text{ are sets of atoms})$ that preserve cut-elimination

- These formulas are $\in \Pi_2$
- Our rules for geometric formulas are the same

Relationships with the state of the art

Frame conditions following the "geometric axiom scheme"

$$\forall \overline{x} (\neg P_1 \lor \cdots \lor \neg P_m \lor \exists \overline{y}_1 (\bigwedge Q_1) \lor \cdots \lor \exists \overline{y}_n (\bigwedge Q_n))$$

can be converted into structural rules (S. Negri, 2004)

$$\frac{\overline{Q}_{1}[y_{1}/x_{1}], \overline{P}, \Gamma \Rightarrow \Delta}{\overline{P}, \Gamma \Rightarrow \Delta} \cdots \quad \overline{Q}_{k}[y_{k}/x_{k}], \overline{P}, \Gamma \Rightarrow \Delta}$$

 $(\overline{Q}_i, \overline{P} \text{ are sets of atoms})$ that preserve cut-elimination

- These formulas are $\in \Pi_2$
- Our rules for geometric formulas are the same

Are there frame conditions $\in \Pi_2$ that are not equivalent to any geometric formula?

The Bahai's method at work III

- hypersequent calculus
- labelled sequent calculus
- display calculus
- (-, R. Ramanayake). WOLLIC 2013.

Gentzen Sequent:
$$A_1, \ldots, A_n \Rightarrow B_1, \ldots, B_m$$

 $(A_1 \land \ldots \land A_n \Rightarrow B_1 \lor \ldots \lor B_m)$

Belnap's idea ('82) : look at \Rightarrow as a deducibility relation between finite possible complex data (structures)

Gentzen Sequent: $A_1, \ldots, A_n \Rightarrow B_1, \ldots, B_m$ $(A_1 \land \ldots \land A_n \Rightarrow B_1 \lor \ldots \lor B_m)$

Belnap's idea ('82) : look at \Rightarrow as a deducibility relation between finite possible complex data (structures)

Definition (Display Sequent)

 $X \Rightarrow Y$, where X, Y are structures which are built from formulae using structural connectives.

Gentzen Sequent: $A_1, \ldots, A_n \Rightarrow B_1, \ldots, B_m$ $(A_1 \land \ldots \land A_n \Rightarrow B_1 \lor \ldots \lor B_m)$

Belnap's idea ('82) : look at \Rightarrow as a deducibility relation between finite possible complex data (structures)

Definition (Display Sequent)

 $X \Rightarrow Y$, where X, Y are structures which are built from formulae using structural connectives.

Display property: given a display sequent $X \Rightarrow Y$ and any occurrence of a substructure Z in the sequent, that occurrence can be displayed as $Z \Rightarrow U$ or as $U \Rightarrow Z$ using structural rules.

Example: Display calculus δ HB for Bi-Int

```
(Kamide and Wansing 2012)
```

I is ⊥

• is "," on the RHS (=
$$\lor$$
) and \rightarrow^d on the LHS

 \blacksquare \circ is \rightarrow on the RHS and \wedge on the LHS

(Some of the) Logical rules:

$$\frac{1 \vdash X}{\top \vdash X} \top I \qquad \qquad \frac{X \vdash 1}{X \vdash \bot} \bot r$$

$$\frac{X \vdash A \qquad X \vdash B}{X \vdash A \land B} \land r \qquad \qquad \frac{A \vdash X \qquad B \vdash X}{A \lor B \vdash X} \lor I$$

$$\frac{X \vdash A \qquad Y \vdash B}{A \rightarrow B \vdash X \circ Y} \rightarrow I \qquad \qquad \frac{X \vdash A \circ B}{X \vdash A \rightarrow B} \rightarrow r \frac{B \bullet A \vdash X}{B \rightarrow_d A \vdash X} \rightarrow_d I$$

$$\frac{X \vdash B \qquad Y \vdash A}{X \bullet Y \vdash B \rightarrow_d A} \rightarrow_d r$$

Example: Display calculus δ HB for Bi-Int

(Kamide and Wansing 2012)

I is ⊥

- is "," on the RHS (= \lor) and \rightarrow^d on the LHS
- \blacksquare \circ is \rightarrow on the RHS and \wedge on the LHS

Display rules

$Y \vdash X \circ Z$	$X \bullet Y \vdash Z$	$I \circ X \vdash Y$	$X \vdash Y \bullet I$
$X \circ Y \vdash Z$	$X \vdash Y \bullet Z$	$X \vdash Y$	$X \vdash Y$
$X \vdash Y \circ Z$	$X \bullet Z \vdash Y$	$X \circ I \vdash Y$	$X \vdash I \bullet Y$

Structural rules

$\frac{X \vdash Y}{X \vdash Y \bullet Z}$	$\frac{X \vdash Y}{X \circ Z \vdash Y}$	$\frac{X \vdash Y \bullet Z}{X \vdash Z \bullet Y}$	$\frac{X \circ Z \vdash Y}{Z \circ X \vdash Y}$
$\frac{X \vdash Y \bullet Y}{X \vdash Y}$	$\frac{X \circ X \vdash Y}{X \vdash Y}$	$\frac{X \vdash (Y \bullet Z) \bullet U}{X \vdash Y \bullet (Z \bullet U)}$	$\frac{(X \circ Y) \circ Z \vdash U}{X \circ (Y \circ Z) \vdash U}$

The Baha'i method for display calculus

- hypersequent calculi
- labelled sequent calculi
- display calculi

For intermediate logics

- Base system: the calculus δHB for (Bi)intuitionistic logic in (Kamide and Wansing 2012)
- Properties of intermediate logics: Hilbert axioms
- Generated Rules: structural display rules

(Step 1): Classification of axioms based on the polarity of connectives

(Step 2): Transformation procedure

(Step 3): Completion of the generated rules

In the calculus δHB for intuitionistic logic all rules for connectives are invertible but (\rightarrow, I) Classification:

$$\begin{split} \mathcal{I}_0 &::= \text{atomic formulae} \\ \mathcal{I}_{n+1} &::= \bot \mid \top \mid \mathcal{I}_n \rightarrow \mathcal{I}_{n+1} \mid \mathcal{I}_{n+1} \wedge \mathcal{I}_{n+1} \mid \mathcal{I}_{n+1} \lor \mathcal{I}_{n+1} \end{split}$$

In the calculus δHB for intuitionistic logic all rules for connectives are invertible but (\rightarrow, I) Classification:

 $\mathcal{I}_0 ::= \text{atomic formulae}$ $\mathcal{I}_{n+1} ::= \bot \mid \top \mid \mathcal{I}_n \to \mathcal{I}_{n+1} \mid \mathcal{I}_{n+1} \land \mathcal{I}_{n+1} \mid \mathcal{I}_{n+1} \lor \mathcal{I}_{n+1}$

Theorem

Each axiom within the class \mathcal{I}_2 can be transformed into equivalent structural display rules which preserve cut-elimination when added to δHB .

From Hilbert axioms to display rules

I is \perp , $ullet$ is \vee (RHS) and \rightarrow^d (LHS), \circ is \rightarrow (RHS) and \wedge (LHS)			
Example (Jankov logic – Axiom $\sim \phi \lor \sim \sim \phi$)			
Invertibility	$\boxed{\mathbf{I} \bullet (\sim \phi \circ \mathbf{I}) \vdash \phi \circ \mathbf{I}}$		
Display Property	$\phi \vdash (I \bullet (\sim \phi \circ I)) \circ I$		
Ackermann Lemma	$\frac{X \vdash \phi}{X \vdash (\mathbf{I} \bullet (\sim \phi \circ \mathbf{I})) \circ \mathbf{I}}$		
Display Property	$\frac{X \vdash \phi}{\sim \phi \vdash (\mathbf{I} \bullet (X \circ \mathbf{I})) \circ \mathbf{I}}$		
Ackermann Lemma	$\frac{X \vdash \phi \qquad Y \vdash \sim \phi}{Y \vdash (\mathbf{I} \bullet (X \circ \mathbf{I})) \circ \mathbf{I}}$		
Equivalent Rule	$\frac{X \vdash Y \circ \mathbf{I}}{Y \vdash (\mathbf{I} \bullet (X \circ \mathbf{I})) \circ \mathbf{I}}$		

A general method to introduce cut-free calculi, starting from

- Hilbert axioms (hypersequent and display calculi)
- Frame conditions (labelled calculi)

The method

- provides a unified treatment of very different formalisms
- provides (infinitely many) new cut-free systems
- subsumes many results proved for individual logics

Conquering higher levels in the hierarchies. By now:

 \mathcal{I}_2 for display calculi and $\forall \exists$ for labelled calculi

Conquering higher levels in the hierarchies. By now:

 \mathcal{I}_2 for display calculi and $\forall \exists$ for labelled calculi Observation 1: All (axiomatizable) intermediate logics are within the classes $\mathcal{N}_3/\mathcal{I}_3$ (Zakharyaschev's canonical formulas)

Conquering higher levels in the hierarchies. By now:

 \mathcal{I}_2 for display calculi and $\forall \exists$ for labelled calculi Observation 1: All (axiomatizable) intermediate logics are within the classes $\mathcal{N}_3/\mathcal{I}_3$ (Zakharyaschev's canonical formulas)

Ex. (Bd₂) $\phi \lor (\phi \to (\psi \lor (\psi \to \xi))) \in \mathcal{I}_2$

Conquering higher levels in the hierarchies. By now:

 \mathcal{I}_2 for display calculi and $\forall \exists$ for labelled calculi Observation 1: All (axiomatizable) intermediate logics are within the classes N_3/I_3 (Zakharyaschev's canonical formulas) Ex. (Bd₂) $\phi \lor (\phi \to (\psi \lor (\psi \to \xi))) \in \mathcal{I}_2$ Observation 2: Though $(Bd_2) \notin \mathcal{P}_3$ we could find a logical rule

$$\frac{G \mid \Gamma', \Gamma \Rightarrow \Delta' \qquad G \mid \Gamma, A \Rightarrow B, \Delta}{G \mid \Gamma' \Rightarrow \Delta' \mid \Gamma \Rightarrow A \rightarrow B, \Delta} (bd_2)^*$$

- First-order, modal logics, ...
- Extending the method to other (all?) general-purpose formalisms
- "Applications" of the generated calculi: E.g.
 - completeness of the formalized logics w.r.t. a semantics with truth-values in [0, 1] (hypersequent calculi)
 - decidability via suitable translations into nested sequents (display logic)

...

- First-order, modal logics, ...
- Extending the method to other (all?) general-purpose formalisms
- "Applications" of the generated calculi: E.g.
 - completeness of the formalized logics w.r.t. a semantics with truth-values in [0, 1] (hypersequent calculi)
 - decidability via suitable translations into nested sequents (display logic)

...

"Non-classical Proofs: Theory, Applications and Tools", research project 2012-2017 (START prize – Austrian Research Fund)