Admissibility and unifiability in contact logics

Philippe Balbiani¹ and Çiğdem Gencer²

¹Institut de recherche en informatique de Toulouse CNRS — Université de Toulouse
²Department of Mathematics and Computer Science Istanbul Kültür University

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Overview

- 1. Introduction
- 2. Syntax and semantics of contact logics
- 3. Axiomatization and decidability of contact logics

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 4. Admissibility: definitions
- 5. Admissibility: useful lemmas
- 6. Admissibility: decidability
- 7. Unifiability
- 8. Conclusion and open problems

Unifiability in *L*: Given a formula $\phi(x_1, \ldots, x_n)$

► Determine whether there exists formulas ψ₁,...,ψ_n such that φ(ψ₁,...,ψ_n) ∈ L

- Ghilardi, S.: Unification in intuitionistic logic. Journal of Symbolic Logic 64 (1999) 859–880.
- Ghilardi, S.: Best solving modal equations. Annals of Pure and Applied Logic 102 (2000) 183–198.
- Rybakov, V.: A criterion for admissibility of rules in the model system S4 and the intuitionistic logic. Algebra and Logic 23 (1984) 369–384.
- Rybakov, V.: Admissibility of Logical Inference Rules. Elsevier (1997).

Admissibility in *L*: Given an inference rule $\frac{\phi(x_1,...,x_n)}{\psi(x_1,...,x_n)}$

▶ Determine whether for all formulas χ_1, \ldots, χ_n , if $\phi(\chi_1, \ldots, \chi_n) \in L$, $\psi(\chi_1, \ldots, \chi_n) \in L$

- Ghilardi, S.: Unification in intuitionistic logic. Journal of Symbolic Logic 64 (1999) 859–880.
- Ghilardi, S.: Best solving modal equations. Annals of Pure and Applied Logic 102 (2000) 183–198.
- Rybakov, V.: A criterion for admissibility of rules in the model system S4 and the intuitionistic logic. Algebra and Logic 23 (1984) 369–384.
- Rybakov, V.: Admissibility of Logical Inference Rules. Elsevier (1997).

Contact logics: Logics for reasoning about the contact relations between regular subsets in a topological space **Syntax:**

- Regular regions (x, y, etc)
- Boolean operations: empty region (0), complement of a region (−a), union of two regions (a ⊔ b)
- ▶ Binary predicates: contact (C(a, b)), equality ($a \equiv b$)

- Dimov, G., Vakarelov, D.: Contact algebras and region-based theory of space: a proximity approach — I. Fundamenta Informaticæ74 (2006) 209–249.
- Vakarelov, D.: Region-based theory of space: algebras of regions, representation theory, and logics. In: Mathematical Problems from Applied Logic. Logics for the XXIst Century. II. Springer (2007) 267–348.

Contact logics: Logics for reasoning about the contact relations between regular subsets in a topological space **Semantics:**

- Contact algebras of regions
- Contact algebras of some classes of topological spaces
- Kripke structures regarded as adjancency spaces

- Dimov, G., Vakarelov, D.: Contact algebras and region-based theory of space: a proximity approach — I.
 Fundamenta Informaticæ74 (2006) 209–249.
- Vakarelov, D.: Region-based theory of space: algebras of regions, representation theory, and logics. In: Mathematical Problems from Applied Logic. Logics for the XXIst Century. II. Springer (2007) 267–348.

Terms:

▶ a, b ::= x ∈ AT | 0 | −a | (a ⊔ b)

Formulas:

▶ $\phi, \psi ::= \bot \mid \neg \phi \mid (\phi \lor \psi) \mid \mathbf{C}(\mathbf{a}, \mathbf{b}) \mid \mathbf{a} \equiv \mathbf{b}$

Intuitive readings of terms and formulas:

- 0: empty region
- -a: complement of region a
- **a** \sqcup **b**: union of regions *a* and *b*
- **C**(**a**, **b**): regions *a* and *b* are in contact

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• $\mathbf{a} \equiv \mathbf{b}$: regions *a* and *b* are equal

Terms:

▶ $a, b ::= x \in AT \mid \mathbf{0} \mid -\mathbf{a} \mid (\mathbf{a} \sqcup \mathbf{b})$

Formulas:

$$\blacktriangleright \phi, \psi ::= \bot \mid \neg \phi \mid (\phi \lor \psi) \mid \mathbf{C}(\mathbf{a}, \mathbf{b}) \mid \mathbf{a} \equiv \mathbf{b}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Examples:

Frames: $\mathcal{F} = (W, R)$

- W is a nonempty set of points
- R is a binary relation on W

Models:
$$\mathcal{M} = (W, R, V)$$

▶ (*W*, *R*) is a frame

► $V : x \in AT \mapsto V(x) \subseteq W$ interprets all atomic terms Interpretation of terms in model $\mathcal{M} = (W, R, V)$:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

•
$$(x)^{\mathcal{M}} = V(x)$$

• $(0)^{\mathcal{M}} = \emptyset$
• $(-a)^{\mathcal{M}} = W \setminus (a)^{\mathcal{M}}$
• $(a \sqcup b)^{\mathcal{M}} = (a)^{\mathcal{M}} \cup (b)^{\mathcal{M}}$

Frames: $\mathcal{F} = (W, R)$

- W is a nonempty set of points
- R is a binary relation on W

Models:
$$\mathcal{M} = (W, R, V)$$

- (W, R) is a frame
- ► $V: x \in AT \mapsto V(x) \subseteq W$ interprets all atomic terms

Satisfiability of formulas in model $\mathcal{M} = (W, R, V)$:

 $\blacktriangleright \ \mathcal{M} \not\models \bot$

•
$$\mathcal{M} \models \neg \phi$$
 iff $\mathcal{M} \not\models \phi$

- $\mathcal{M} \models \phi \lor \psi$ iff either $\mathcal{M} \models \phi$, or $\mathcal{M} \models \psi$
- ▶ $\mathcal{M} \models C(a, b)$ iff $((a)^{\mathcal{M}} \times (b)^{\mathcal{M}}) \cap R \neq \emptyset$
- $\mathcal{M} \models a \equiv b \text{ iff } (a)^{\mathcal{M}} = (b)^{\mathcal{M}}$

Terms:

Formulas:

▶
$$\phi, \psi ::= \bot \mid \neg \phi \mid (\phi \lor \psi) \mid \mathbf{C}(\mathbf{a}, \mathbf{b}) \mid \mathbf{a} \equiv \mathbf{b}$$

Translation: τ : $\phi \mapsto \tau(\phi) \in \mathcal{L}(\Box, [U])$

$$\tau(\bot) = \bot \tau(\neg \phi) = \neg \tau(\phi)$$

$$\blacktriangleright \tau(\phi \lor \psi) = \tau(\phi) \lor \tau(\psi)$$

$$\blacktriangleright \ \tau(C(a,b)) = \langle U \rangle (a \land \Diamond b)$$

$$\bullet \ \tau(a \equiv b) = [U](a \leftrightarrow b)$$

Proposition (soundness of τ):

•
$$\mathcal{M} \models \phi \text{ iff } \mathcal{M} \models \tau(\phi)$$

Terms:

▶ $a, b ::= x \in AT \mid \mathbf{0} \mid -\mathbf{a} \mid (\mathbf{a} \sqcup \mathbf{b})$

Formulas:

▶
$$\phi, \psi ::= \bot \mid \neg \phi \mid (\phi \lor \psi) \mid \mathbf{C}(\mathbf{a}, \mathbf{b}) \mid \mathbf{a} \equiv \mathbf{b}$$

Proposition (correspondence):

Axiomatization and decidability of contact logics

Axiomatization: Let λ_0 be the axiomatic system consisting of

$$\phi \rightarrow (\psi \rightarrow \phi)$$
 $(\phi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi))$
...
 $a \sqcup (b \sqcup c) \equiv (a \sqcup b) \sqcup c$

1

▶
$$a \sqcup b \equiv b \sqcup a$$

. .

▶ ...

- ► $C(a,b) \rightarrow a \not\equiv 0$
- ► $C(a, b) \rightarrow b \not\equiv 0$
- $\blacktriangleright \ C(a,b) \land a \leq c \rightarrow C(c,b)$
- $\blacktriangleright \ C(a,b) \land b \leq c \rightarrow C(a,c)$
- $\blacktriangleright \ C(a \sqcup b, c) \to C(a, c) \lor C(b, c)$
- $\blacktriangleright \ C(a,b\sqcup c) \to C(a,b) \lor C(a,c)$
- Modus ponens

Axiomatization and decidability of contact logics

Proposition:

 $\blacktriangleright\ \lambda_0$ is complete with respect to the class of all frames

Proposition:

- λ₀ + a ≠ 0 → C(a, a) is complete with respect to the class of all reflexive frames
- λ₀ + C(a, b) → C(a, c) ∨ C(−c, b) is complete with respect to the class of all dense frames
- λ₀ + a ≠ 0 ∧ −a ≠ 0 → C(a, −a) is complete with respect to the class of all connected frames
- λ₀ + C(a, a) ∨ C(-a, -a) is complete with respect to the class of all non-2-colourable frames
- λ₀ + a □ b ≠ 0 → C(a, b) ∨ C(−b, b) is complete with respect to the class of all looping frames

Axiomatization and decidability of contact logics

Remark: Contact logic has a Kripke-type semantics

- Standard translation into a first-order language
- Bounded morphism
- Bisimulation
- Canonical model construction
- Canonicity
- Sahlqvist theorem
- Filtration method

Proposition:

- If C is a class of frames definable by a first-order sentence with at most 2 variables, C-satisfiability is decidable in nondeterministic exponential time
- If there exists a finite set Γ of axiom schemas such that
 λ = λ₀ + Γ, λ is decidable

Admissibility: definitions

Let λ be an extension of λ_0

Inference rules: $\frac{\phi(x_1,...,x_n)}{\psi(x_1,...,x_n)}$ Admissibility: $\frac{\phi(x_1,...,x_n)}{\psi(x_1,...,x_n)}$ is λ -admissible iff • for all terms a_1, \ldots, a_n , if $\phi(a_1, \ldots, a_n) \in \lambda$, $\psi(a_1,\ldots,a_n)\in\lambda$ **Proposition:** If $\frac{\phi(x_1,...,x_n)}{\psi(x_1,...,x_n)}$ is λ -admissible • $\lambda + \frac{\phi(x_1,...,x_n)}{\psi(x_1,...,x_n)}$ and λ have the same theorems Examples: • $\frac{C(x,y)}{C(y,y)}$ is admissible in λ_0

•
$$\frac{x \neq 0 \land y \neq 0 \rightarrow C(x,y)}{x \neq 0 \land y \neq 0 \rightarrow x \sqcap y \neq 0}$$
 is admissible in $\lambda_0 + a \neq 0 \rightarrow C(a,a)$

Admissibility: useful lemmas

Let λ be an extension of λ_0

- **Remark:** $\frac{\phi(x_1,...,x_n)}{\psi(x_1,...,x_n)}$ is non- λ -admissible iff
 - there exists (a₁,..., a_n) in the set A_n of all *n*-tuples of terms such that φ(a₁,..., a_n) ∈ λ and ψ(a₁,..., a_n) ∉ λ

Equivalence relation \cong_{λ}^{n} on A_{n} : $(a_{1}, \ldots, a_{n}) \cong_{\lambda}^{n} (b_{1}, \ldots, b_{n})$ iff

▶ for all formulas $\phi(x_1, \ldots, x_n)$, $\phi(a_1, \ldots, a_n) \in \lambda$ iff $\phi(b_1, \ldots, b_n) \in \lambda$

Lemma: \cong_{λ}^{n} has finitely many equivalence classes on A_{n} **Remark:** λ -admissibility is decidable if λ is decidable and

A complete set of representatives for each class on A_n modulo ≃ⁿ_λ can be effectively computed

Admissibility: useful lemmas

Let λ be an extension of λ_0

Remark: λ -admissibility is decidable if λ is decidable and

► a complete set of representatives for each class on A_n modulo ≃ⁿ_λ can be effectively computed

Equivalence relation \simeq_{λ}^{n} on A_{n} : $(a_{1}, \ldots, a_{n}) \simeq_{\lambda}^{n} (b_{1}, \ldots, b_{n})$ iff

▶ for all *C*-free formulas $\phi(x_1, \ldots, x_n)$, $\phi(a_1, \ldots, a_n) \in \lambda$ iff $\phi(b_1, \ldots, b_n) \in \lambda$

Lemma: $\cong_{\lambda}^{n} \subseteq \simeq_{\lambda}^{n}$ **Lemma:** \simeq_{λ}^{n} has finitely many equivalence classes on A_{n} **Lemma:** If λ is balanced, $\cong_{\lambda}^{n} \supseteq \simeq_{\lambda}^{n}$

Admissibility: decidability

Let λ be an extension of λ_0

Lemma: If λ is decidable

► a complete set of representatives for each class on A_n modulo ≃ⁿ_λ can be effectively computed

Proposition: If λ is decidable and λ is balanced

λ-admissibility is decidable

Proof: Given $\frac{\phi(x_1,...,x_n)}{\psi(x_1,...,x_n)}$

- compute a complete set (a¹₁,...,a¹_n),...,(a^N₁,...,a^N_n) of representatives for each class on A_n modulo ≃ⁿ_λ
- if there exists a positive integer k such that k ≤ N, φ(a^k₁,...,a^k_n) ∈ λ and ψ(a^k₁,...,a^k_n) ∉ λ, return *false*, else return *true*

Unifiability

Let λ be an extension of λ_0

Unifiability: $\phi(x_1, \ldots, x_n)$ is λ -unifiable iff

• there exists terms a_1, \ldots, a_n such that $\phi(a_1, \ldots, a_n) \in \lambda$

Proposition: The following conditions are equivalent when λ is consistent

- $\phi(x_1,\ldots,x_n)$ is λ -unifiable
- $\frac{\phi(x_1,...,x_n)}{\perp}$ is non- λ -admissible

Examples:

 C(a, b) → c ≠ 0 is unifiable in λ₀ when either a and c are BA-unifiable, or b and c are BA-unifiable

►
$$a_1 \neq 0 \land a_2 \neq 0 \rightarrow C(a_3, a_4)$$
 is unifiable in
 $\lambda_0 + a \neq 0 \rightarrow C(a, a)$ when a_1, a_2, a_3 and a_4 are
BA-unifiable

Unifiability

Let λ be an extension of λ_0

Unifiability: $\phi(x_1, \ldots, x_n)$ is λ -unifiable iff

▶ there exists terms a_1, \ldots, a_n such that $\phi(a_1, \ldots, a_n) \in \lambda$

Lemma: The following conditions are equivalent

- $\phi(x_1,\ldots,x_n)$ is λ -unifiable
- there exists $\epsilon_1, \ldots, \epsilon_n \in \{0, 1\}^n$ such that $\phi(\epsilon_1, \ldots, \epsilon_n) \in \lambda$

Proposition: λ -unifiability is *NP*-complete **Proposition:** The following conditions are equivalent when $C(1, 1) \in \lambda$

- $\phi(x_1, \ldots, x_n)$ is non- λ -unifiable
- ► $\phi(x_1,...,x_n) \rightarrow \bigvee \{x_i \neq 0 \land x_i \neq 1: 1 \le i \le n\} \in \lambda$

Conclusion and open problems

Conclusion:

1. **Proposition:** If λ is decidable and λ is balanced

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- λ -admissibility is decidable
- 2. **Proposition:** λ -unifiability is *NP*-complete

Conclusion and open problems

Open problems:

- 1. Exact complexity of λ -admissibility?
- 2. Construction of bases of λ -admissible inference rules?
- 3. Unification type of λ ?
- 4. Decidability/complexity of λ -admissibility with parameters?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

5. Decidability/complexity of λ -unifiability with parameters?

Conclusion and open problems

- Dimov, G., Vakarelov, D.: Contact algebras and region-based theory of space: a proximity approach — I. Fundamenta Informaticæ74 (2006) 209–249.
- Ghilardi, S.: Unification in intuitionistic logic. Journal of Symbolic Logic 64 (1999) 859–880.
- 3. Ghilardi, S.: *Best solving modal equations.* Annals of Pure and Applied Logic **102** (2000) 183–198.
- Rybakov, V.: A criterion for admissibility of rules in the model system S4 and the intuitionistic logic. Algebra and Logic 23 (1984) 369–384.
- 5. Rybakov, V.: Admissibility of Logical Inference Rules. Elsevier (1997).
- Vakarelov, D.: Region-based theory of space: algebras of regions, representation theory, and logics. In: Mathematical Problems from Applied Logic. Logics for the XXIst Century. II. Springer (2007) 267–348.