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Introduction

Unifiability in L: Given a formula φ(x1, . . . , xn)

I Determine whether there exists formulas ψ1, . . . , ψn such
that φ(ψ1, . . . , ψn) ∈ L

References:
I Ghilardi, S.: Unification in intuitionistic logic. Journal of

Symbolic Logic 64 (1999) 859–880.
I Ghilardi, S.: Best solving modal equations. Annals of Pure

and Applied Logic 102 (2000) 183–198.
I Rybakov, V.: A criterion for admissibility of rules in the

model system S4 and the intuitionistic logic. Algebra and
Logic 23 (1984) 369–384.

I Rybakov, V.: Admissibility of Logical Inference Rules.
Elsevier (1997).



Introduction

Admissibility in L: Given an inference rule φ(x1,...,xn)
ψ(x1,...,xn)

I Determine whether for all formulas χ1, . . . , χn, if
φ(χ1, . . . , χn) ∈ L, ψ(χ1, . . . , χn) ∈ L

References:
I Ghilardi, S.: Unification in intuitionistic logic. Journal of

Symbolic Logic 64 (1999) 859–880.
I Ghilardi, S.: Best solving modal equations. Annals of Pure

and Applied Logic 102 (2000) 183–198.
I Rybakov, V.: A criterion for admissibility of rules in the

model system S4 and the intuitionistic logic. Algebra and
Logic 23 (1984) 369–384.

I Rybakov, V.: Admissibility of Logical Inference Rules.
Elsevier (1997).



Introduction

Contact logics: Logics for reasoning about the contact
relations between regular subsets in a topological space
Syntax:

I Regular regions (x , y , etc)
I Boolean operations: empty region (0), complement of a

region (−a), union of two regions (a t b)
I Binary predicates: contact (C(a,b)), equality (a ≡ b)

References:
I Dimov, G., Vakarelov, D.: Contact algebras and

region-based theory of space: a proximity approach — I.
Fundamenta Informaticæ74 (2006) 209–249.

I Vakarelov, D.: Region-based theory of space: algebras of
regions, representation theory, and logics. In:
Mathematical Problems from Applied Logic. Logics for the
XXIst Century. II. Springer (2007) 267–348.



Introduction

Contact logics: Logics for reasoning about the contact
relations between regular subsets in a topological space
Semantics:

I Contact algebras of regions
I Contact algebras of some classes of topological spaces
I Kripke structures regarded as adjancency spaces

References:
I Dimov, G., Vakarelov, D.: Contact algebras and

region-based theory of space: a proximity approach — I.
Fundamenta Informaticæ74 (2006) 209–249.

I Vakarelov, D.: Region-based theory of space: algebras of
regions, representation theory, and logics. In:
Mathematical Problems from Applied Logic. Logics for the
XXIst Century. II. Springer (2007) 267–348.



Syntax and semantics of contact logics

Terms:
I a,b ::= x ∈ AT | 0 | −a | (a t b)

Formulas:
I φ, ψ ::= ⊥ | ¬φ | (φ ∨ ψ) | C(a,b) | a ≡ b

Intuitive readings of terms and formulas:
I 0: empty region
I −a: complement of region a
I a t b: union of regions a and b
I C(a,b): regions a and b are in contact
I a ≡ b: regions a and b are equal



Syntax and semantics of contact logics

Terms:
I a,b ::= x ∈ AT | 0 | −a | (a t b)

Formulas:
I φ, ψ ::= ⊥ | ¬φ | (φ ∨ ψ) | C(a,b) | a ≡ b

Examples:
I x 6≡ 0→ C(x , x)

I C(x , y)→ C(x , z) ∨ C(−z, y)

I x 6≡ 0 ∧ −x 6≡ 0→ C(x ,−x)

I C(x , x) ∨ C(−x ,−x)

I x u y 6≡ 0→ C(x , y) ∨ C(−y , y)



Syntax and semantics of contact logics

Frames: F = (W ,R)

I W is a nonempty set of points
I R is a binary relation on W

Models: M = (W ,R,V )

I (W ,R) is a frame
I V : x ∈ AT 7→ V (x) ⊆W interprets all atomic terms

Interpretation of terms in modelM = (W ,R,V ):
I (x)M = V (x)

I (0)M = ∅
I (−a)M = W \ (a)M

I (a t b)M = (a)M ∪ (b)M



Syntax and semantics of contact logics

Frames: F = (W ,R)

I W is a nonempty set of points
I R is a binary relation on W

Models: M = (W ,R,V )

I (W ,R) is a frame
I V : x ∈ AT 7→ V (x) ⊆W interprets all atomic terms

Satisfiability of formulas in modelM = (W ,R,V ):
I M 6|= ⊥
I M |= ¬φ iffM 6|= φ

I M |= φ ∨ ψ iff eitherM |= φ, orM |= ψ

I M |= C(a,b) iff ((a)M × (b)M) ∩ R 6= ∅
I M |= a ≡ b iff (a)M = (b)M



Syntax and semantics of contact logics

Terms:
I a,b ::= x ∈ AT | 0 | −a | (a t b)

Formulas:
I φ, ψ ::= ⊥ | ¬φ | (φ ∨ ψ) | C(a,b) | a ≡ b

Translation: τ : φ 7→ τ(φ) ∈ L(�, [U])

I τ(⊥) = ⊥
I τ(¬φ) = ¬τ(φ)

I τ(φ ∨ ψ) = τ(φ) ∨ τ(ψ)

I τ(C(a,b)) = 〈U〉(a ∧ ♦b)

I τ(a ≡ b) = [U](a↔ b)

Proposition (soundness of τ ):
I M |= φ iffM |= τ(φ)



Syntax and semantics of contact logics

Terms:
I a,b ::= x ∈ AT | 0 | −a | (a t b)

Formulas:
I φ, ψ ::= ⊥ | ¬φ | (φ ∨ ψ) | C(a,b) | a ≡ b

Proposition (correspondence):
I F |= x 6≡ 0→ C(x,x) iff F is reflexive
I F |= C(x,y)→ C(x, z) ∨ C(−z,y) iff F is dense
I F |= x 6≡ 0 ∧ −x 6≡ 0→ C(x,−x) iff F is connected
I F |= C(x,x) ∨ C(−x,−x) iff F is non-2-colourable
I F |= x u y 6≡ 0→ C(x,y) ∨ C(−y,y) iff F is looping



Axiomatization and decidability of contact logics

Axiomatization: Let λ0 be the axiomatic system consisting of
I φ→ (ψ → φ)

I (φ→ (ψ → χ))→ ((φ→ ψ)→ (φ→ χ))

I . . .

I a t (b t c) ≡ (a t b) t c
I a t b ≡ b t a
I . . .

I C(a,b)→ a 6≡ 0
I C(a,b)→ b 6≡ 0
I C(a,b) ∧ a ≤ c → C(c,b)

I C(a,b) ∧ b ≤ c → C(a, c)

I C(a t b, c)→ C(a, c) ∨ C(b, c)

I C(a,b t c)→ C(a,b) ∨ C(a, c)

I Modus ponens



Axiomatization and decidability of contact logics

Proposition:
I λ0 is complete with respect to the class of all frames

Proposition:
I λ0 + a 6≡ 0→ C(a,a) is complete with respect to the class

of all reflexive frames
I λ0 + C(a,b)→ C(a,c) ∨ C(−c,b) is complete with respect

to the class of all dense frames
I λ0 + a 6≡ 0 ∧ −a 6≡ 0→ C(a,−a) is complete with respect

to the class of all connected frames
I λ0 + C(a,a) ∨ C(−a,−a) is complete with respect to the

class of all non-2-colourable frames
I λ0 + a u b 6≡ 0→ C(a,b) ∨ C(−b,b) is complete with

respect to the class of all looping frames



Axiomatization and decidability of contact logics

Remark: Contact logic has a Kripke-type semantics
I Standard translation into a first-order language
I Bounded morphism
I Bisimulation
I Canonical model construction
I Canonicity
I Sahlqvist theorem
I Filtration method

Proposition:
I If C is a class of frames definable by a first-order sentence

with at most 2 variables, C-satisfiability is decidable in
nondeterministic exponential time

I If there exists a finite set Γ of axiom schemas such that
λ = λ0 + Γ, λ is decidable



Admissibility: definitions

Let λ be an extension of λ0

Inference rules: φ(x1,...,xn)
ψ(x1,...,xn)

Admissibility: φ(x1,...,xn)
ψ(x1,...,xn)

is λ-admissible iff
I for all terms a1, . . . ,an, if φ(a1, . . . ,an) ∈ λ,
ψ(a1, . . . ,an) ∈ λ

Proposition: If φ(x1,...,xn)
ψ(x1,...,xn)

is λ-admissible

I λ+ φ(x1,...,xn)
ψ(x1,...,xn)

and λ have the same theorems

Examples:
I C(x ,y)

C(y ,x) is admissible in λ0

I x 6≡0∧y 6≡0→C(x ,y)
x 6≡0∧y 6≡0→xuy 6≡0 is admissible in λ0 + a 6≡ 0→ C(a,a)



Admissibility: useful lemmas

Let λ be an extension of λ0

Remark: φ(x1,...,xn)
ψ(x1,...,xn)

is non-λ-admissible iff
I there exists (a1, . . . ,an) in the set An of all n-tuples of

terms such that φ(a1, . . . ,an) ∈ λ and ψ(a1, . . . ,an) 6∈ λ
Equivalence relation ∼=n

λ on An: (a1, . . . ,an) ∼=n
λ (b1, . . . ,bn) iff

I for all formulas φ(x1, . . . , xn), φ(a1, . . . ,an) ∈ λ iff
φ(b1, . . . ,bn) ∈ λ

Lemma: ∼=n
λ has finitely many equivalence classes on An

Remark: λ-admissibility is decidable if λ is decidable and
I a complete set of representatives for each class on An

modulo ∼=n
λ can be effectively computed



Admissibility: useful lemmas

Let λ be an extension of λ0

Remark: λ-admissibility is decidable if λ is decidable and
I a complete set of representatives for each class on An

modulo ∼=n
λ can be effectively computed

Equivalence relation 'n
λ on An: (a1, . . . ,an) 'n

λ (b1, . . . ,bn) iff
I for all C-free formulas φ(x1, . . . , xn), φ(a1, . . . ,an) ∈ λ iff
φ(b1, . . . ,bn) ∈ λ

Lemma: ∼=n
λ⊆'n

λ

Lemma: 'n
λ has finitely many equivalence classes on An

Lemma: If λ is balanced, ∼=n
λ⊇'n

λ



Admissibility: decidability

Let λ be an extension of λ0

Lemma: If λ is decidable
I a complete set of representatives for each class on An

modulo 'n
λ can be effectively computed

Proposition: If λ is decidable and λ is balanced
I λ-admissibility is decidable

Proof: Given φ(x1,...,xn)
ψ(x1,...,xn)

I compute a complete set (a1
1, . . . ,a

1
n), . . . , (aN

1 , . . . ,a
N
n ) of

representatives for each class on An modulo 'n
λ

I if there exists a positive integer k such that k ≤ N,
φ(ak

1, . . . ,a
k
n) ∈ λ and ψ(ak

1, . . . ,a
k
n) 6∈ λ, return false, else

return true



Unifiability

Let λ be an extension of λ0

Unifiability: φ(x1, . . . , xn) is λ-unifiable iff
I there exists terms a1, . . . ,an such that φ(a1, . . . ,an) ∈ λ

Proposition: The following conditions are equivalent when λ is
consistent

I φ(x1, . . . , xn) is λ-unifiable
I φ(x1,...,xn)

⊥ is non-λ-admissible
Examples:

I C(a,b)→ c 6≡ 0 is unifiable in λ0 when either a and c are
BA-unifiable, or b and c are BA-unifiable

I a1 6≡ 0 ∧ a2 6≡ 0→ C(a3,a4) is unifiable in
λ0 + a 6≡ 0→ C(a,a) when a1, a2, a3 and a4 are
BA-unifiable



Unifiability

Let λ be an extension of λ0

Unifiability: φ(x1, . . . , xn) is λ-unifiable iff
I there exists terms a1, . . . ,an such that φ(a1, . . . ,an) ∈ λ

Lemma: The following conditions are equivalent
I φ(x1, . . . , xn) is λ-unifiable
I there exists ε1, . . . , εn ∈ {0,1}n such that φ(ε1, . . . , εn) ∈ λ

Proposition: λ-unifiability is NP-complete
Proposition: The following conditions are equivalent when
C(1,1) ∈ λ

I φ(x1, . . . , xn) is non-λ-unifiable
I φ(x1, . . . , xn)→

∨
{xi 6≡ 0 ∧ xi 6≡ 1: 1 ≤ i ≤ n} ∈ λ



Conclusion and open problems

Conclusion:
1. Proposition: If λ is decidable and λ is balanced

I λ-admissibility is decidable

2. Proposition: λ-unifiability is NP-complete



Conclusion and open problems

Open problems:
1. Exact complexity of λ-admissibility?
2. Construction of bases of λ-admissible inference rules?
3. Unification type of λ?
4. Decidability/complexity of λ-admissibility with parameters?
5. Decidability/complexity of λ-unifiability with parameters?



Conclusion and open problems
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