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1 Terminology and Notation

By first-order language corresponding to a basic modal language I mean a
first-order language with identity symbol '=', whose only non-logical constant
is a binary relation symbol 'R'. Following [1], I use the symbol ‘I for the
semantic relation in modal logic, and the symbol ' for the semantic relation
in first-order logic.

We call a formula « in the basic modal language first-order definable if there
is a formula ¢ in the corresponding first-order language s.t. for any Kripke

frame F, F Ik o iffl F | ¢. Equivalently, « is first-order definable if «

characterizes an elementary class of structures in the sense of model theory.

Following Chellas [4] T write T for the system “K + T.,” B for the system
“T 4+ B,” and so on.
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2 Motivation

The system “T 4 {7 (henceforth T7) is placed at a central location in the
lattice of the normal systems of modal logic:

N
\/
|

T.

The surrounding systems are given in terms of first-order definable modal
formulas, so it is a natural question to ask whether j is also first-order defin-

able.!

Another motivation comes from Brown’s Logic of Ability, [2]. Brown has
introduced a formal system, V. aiming to capture the notion of “reliable
ability,” and defined various “reliable extensions” of this system with sound
and complete axiomatizations in parallel to the extension of the modal system
K to D, T, and B. But a reliable extension that would stand to V as S4
stands to K resisted to be given a sound and complete axiomatization. Now,
the formula that is expected to yield the desired system has close affinity to
our formula {. The hope was that a first-order definition of { would throw
light on how to give a sound and complete axiomatization for the required
extension of V.

3 Proof

We obtain the result by complicating the construction introduced in [5].

We define a sequence of frames F,, = (W, R,) s.t. F, = O¢p D OOOOp
for all ¢, « > 1, but when G is a nonprincipal ultrafilter on N, [[F,./G [~

O¢p > 000G .

T learned about the status of the system T+t from Prof. Thomas McKay’s lectures on
Modal Logic. The question of this paper was also posed to me by him. The diagrams are
drawn by Paul Taylor’s Commutative Diagrams macro.




Put Wn == {U)l} U {U)Q} U {11)371, ceey w372n+1} U {11)471, ce ,U)472n+1} and define
R, on W, as follows:

wy R, ws;

wy Ryws;, for 1 <@ < 2n41;

wyR,ws;, for 1 <@ < 2n41;

ws 1 Ryway and ws g Ry 0;

wz i Rywy i1, ws i Rywy g, for 1 <1< 2n 4 1;

w3,2n+1Rnw4,2n and w3,2n+1Rnw4,2n+1;

wy i Rywyy, for 1 <g < 2n 4 1.
We shall call a world which is denoted by ‘w; ;" an ith-level world.
Cramm 1: F, EOOp > O0OEO.

Before starting to prove the claim, it will help to look at a picture of Fi:

Wy — Wy

RNAN

w3 1 W33
Wy, 1 w4 ,3

Proof. Suppose a frame F,, is given. We want to show that for every world
w in F,, under every valuation V, we have V(O¢p D OQ0O¢p, w) = T.

Case of wa;, for 1 << 2n+ 1:

Suppose for a valuation V., V(O$p, wy,;) = T'. Since the 4th-level worlds are
R-related to themselves and only to themselves, we first get V(OOOp, wy,;) =
T and then get V(OOOOp, wy,;) = T. Case done.



Case of ws;, for 1 <1< 2n 4 1:

Suppose for a valuation V, V(OOp,ws,;) = T. Then for all j s.t. ws,;Rw,;,
V(Op,ws;) =T. But since the 4th level worlds are R-related to themselves

and only to themselves, we obtain V($UOOp, wye ;) = T. Hence, V(OGO p, ws ;) =
T.

Case of wa:

V(OOp,wy) =T = V(Op.ws,) =T for all i
= for each i there is some j; s.t. V(p,wy,) = T
= V(Op,way,) =T
= V(OO0p,wy,) =T
= V(OOOp, ws,) = T, for all 5.
= V(O0O0p, wy) =T

Case of wy:

Before examining this case we first note the following

LEMMA: For any modal formula ¢, for any natural number n > 1, and for
any valuation V,

() f V(Op,ws;) =T forall i, 1 < i <2n+1, then V(p,ws;) =T in at
least n + 1 of the 4th-level worlds; and

(il) if V(Op,ws,;) = F for all i, 1 <1 < 2n 41, then V(p,wy;) = F in at
least n + 1 of the 4th-level worlds.

In order to prove the case of wy, we’ll show that there is no valuation V' s.t.

V(OOp,wr) =T and V(OGOOp, wy) = F. Note that
(1) V(O&p,wr) =T = V(Opyws,) =T forall i, 1 <i <2n 4 1.

On the other hand, V(OQGOOp, wy) = F entails that either V(OOOp, ws ;) =
F for some i, 1 <i <2n+1 or V(OOOp,wy) = F.

Subcase 1. V(OOp,wy) = T and V($OOp, ws;) = F for some i, 1 < ¢ <
2n + 1.

V(OOOp, ws,;) = F for some i = for all j s.t. ws,;Rwy;, V(OOp,wy ) =
= for all j s.t. ws;Rwy;, V(Op,wy, ) = F
= for all j s.t. ws,;Rwy;, V(p,wy,;) = F
= V(Qp, wgﬂ') = F.

F
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This contradicts with (1) above.
Subcase 2. V(OOp,wy) =T and V(OGOOp, we) = F.

By V(OOp,wy) =T and (1), V(Op,ws,) =T for all i, 1 <i¢ < 2n+ 1, and
hence by Lemma (i), there are at least (n + 1)-many ¢ s.t. V(p,wa;) =T.

On the other hand,

V(QOOOp, wy) = F = V(OOp,ws,;) = F foralli, 1 <i<2n+1
= V(Op,wy,;) = F for at least n + 1 ¢ (by Lemma (ii)
= V(p,wy;) = F for at least n 4+ 1 ¢

Now, on the one hand, we have p True in at least n + 1 of the 4th-level
worlds, and on the other hand, we have p False in at least n 4+ 1 of the 4th-
level worlds. Since there are altogether 2n + 1 4th-level worlds, this means
that, under the given valuation p is both T" and F' in at least one 4th-level
world. Contradiction.

This completes the proof of Claim 1.

CLAIM 2: For a free ultrafilter G on N, [[ F,./G = OOp D OSOOp.

Proof. By considerations similar to those given in Boolos and Jeffrey [3,
pp-194-95] and Los’s Theorem, the new structure looks as follows:

wy —= W

w31 ws 2 w3 —1 W3, W3, +1W3, 442 : Wz —2 W3, 1
w41 Wy 2 Wy, —1 Wyq,p Wy, +1W4, 442 : w4 —2 Wy, 1

&

The order type of the 3rd-level (4th-level) worlds is w+ (w* + w)f + w*, where
0 is some dense linear ordering with no end-points. Let now V' be a valuation
on [[ F./G, subject to the following (partial) initial conditions:

L. V(pywsy) =T,

2. V(p,wsp) = T, V(p,wsz) and V(p,wsz) are F' and V(p,ws4) and
V(p,wys) are T, and so on throughout the initial segment of type w of
the 4th-level worlds;



3. continuing on the middle segment of type (w*+w)f with V(p,w,,) and
V(p,wa 1) as T and V(p,wy q2) and V(p, ws ,43) as F, and so on;

4. finally, V(p,wa—1) =T, V(p,ws—2) and V(p,ws _3) are ' and V(p, wy,
_4) and V(p,wy,_5) are T, and so on throughout the final segment of
type w”.

Certainly, there are valuations V' with the above assignment of truth values
to propositional letters. Thus by (2), and the structure of [[ F,,/G, we have
V(Op,ws,) =T for all places p in the order type w+ (w* 4+ w)f +w*, and by
(1), we have V({$p,we) = T, and these two results yield V(OOp,wy) = T.
On the other hand, since under the valuation V' the truth value assignment
to p at the 4th-level worlds has the pattern

TFFTTFFTT... ... TTFFTTFFITEFF... ... TTFFTTFFT,

V(OOp,ws,) = F for each place o in the order type w 4 (w* + w)f + w*.
Hence, V(OOOp, we) = F. But then, V(OOOOp, wy) = F, also. Hence
V(O¢p D O0OGp) = F and hence [[ F,./G E OOp D OOTOD.

This completes the proof of the claim 2.

Now, since we have {n : F, E OO¢p D O00OOp} = N € G, we have
shown that the class of models of the modal formula OOp O OGOOp is

not closed under ultraproducts. Hence by Corollary 7 in [5], it follows that
O¢p D OGO is not first-order definable.

This completes the proof of the main thesis of this paper.

We conclude by providing a
Proof of the Lemma on page 3:

Since for each 3rd-level world there are only two R-accessible 4th-level worlds,
by our assumption that V (e, ws;) =T forall i, 1 <@ < 2n+ 1, ¢ cannot
be F' at both wy; and w4z, and neither at both w4 2,41 and w4z, and for
the same reason, ¢ cannot be [ in more than two consecutive worlds—
consecutive, that is, with respect to the index ¢ in wy;; in fact, if V' assigns
the value I to ¢ at wy,; and wy ;41 then V must assign the value T' to ¢
in at least two consecutive worlds, namely in wy ;42 and w4 y3, for all s,
1 << 2n —1, in order to maintain the condition that V({w,ws;) =T for
all o, 1 <0 <2n+1.

Thus, in order to maximize the number of the 4th-level worlds at which V'
assigns F' to ¢ and minimize the number of the 4th-level worlds at which V/



assigns T' to ¢, we must have at least two consecutive F's and at most two
consecutive T's alternating throughout.

Now there are two cases when V (g, ws,;) =T forall i, 1 <i < 2n+ 1.
Case 1: V(Qp,waq) =T.

In order to keep the number of worlds at which V assigns T' to ¢ at minimum,
let us assume that V(p,ws2) = F = V(p,wss). But then this must be
followed by at least two consecutive assignments of T's, which in turn cannot
be followed by more than two consecutive assignments of F's, and so on. Thus
we have a finite sequence of T's and F's starting with T followed by a number

of blocks of the form FFT'T, finally terminating with a tail of length < 4.
The logical possibilities for such sequences are as follows:

T FFTT - FFTT
T FFTT - FFT
T FFTT - FF

T FFTT - F

The second and fourth possibilities involve an even number of worlds, so they
fall outside the range of our hypothesis that there are 2n 4+ 1-many 3rd level
(4th level) worlds.

Since V({p, ws2n+1) = T, the third case cannot hold, as we have mentioned
at the beginning of this proof. So the only viable possibility is the first one.
Since we assume that the length of this sequence is 2n + 1, for some n > 1,
the number of T's and F's coming after the initial 7" is 2n. Since, moreover,
the number of T's and F's that follow the initial 17" are equal, there are exactly
n T's after the initial T'. Therefore there are n + 1 T's in the first sequence
above.

Case 2: V(p,waq) = F.

Again by definition of R,, and the assumption, V (p, w4 2) and V (¢, wy3) must
be T'. According to our min/max strategy, we assume that V assigns F' to ¢
in the next two worlds. The logically possible forms of the sequences of F's
and T's under this strategy is as follows:

FTTFF - TTFF
FTTFF - TTF
FTTFF - TT
FTIFEF - T



The first logical possibility cannot hold as we argued for the 3rd line in case
1 above, and the second and fourth possibilities fall outside the range of our
hypothesis, since they involve an even number of worlds. There remains the
third possibility.

Let k& be the number of the blocks of the form T'T'F F' in the third possibility.
Then, 4k 4+ 3 = 2n 4+ 1. Hence, n = 2k 4+ 1. Now, since there are k blocks of
the form TT'F'F', there are 2k + 2 T's. But since 2k +1=n,2k4+2=n+1.

Therefore, there are n + 1 T's in the third sequence above.

We see that in either case there are n + 1 worlds at which V' assigns T' to p.
But recall that we gave the computations for cases 1 and 2 by minimizing the
number of worlds at which V assigns T to p. Therefore, under the assumption
of the lemma, there are at least n + 1 4th level worlds at which V assigns T
to ¢. This completes the proof of the Lemma (i). A dual argument works
for the second part of the Lemma.

An open question: Recall that the McKinsey formula, 'O00p D $Op', is not
first-order definable, but Lemmon (and Scott) [6] show that the conjunc-
tion of the McKinsey formula with K is first-order definable under a certain
constraint. The question arises whether such a partial improvement is pos-
sible for (1), i.e., whether T7 is first-order definable under an appropriate
constraint.
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