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Proof theory is the area of theoretical computer science which studies proofs as mathe-
matical objects. However, unlike many other mathematical fields, proof theory is lacking a
representation for its basic objects able to capture the notion of identity. We are used to con-
sider proofs as expressions generated by sets of production rules we call proof systems; and
the main obstacle to understand when two proofs are the same is this syntactic representation
itself. Thus, depending on the chosen formalism, a proof can be represented by different syn-
tactic expressions. Moreover, even in the same proof system, there can not be a “natural way”
to identify a canonical representative. This condition makes it difficult to understand when two
proofs are the same object. As an example we show in Figure 1 a semantic tableau, a resolution
proof and a sequent calculus derivation for the same formula.

The standard approach to the question of proof identity is based on rule permutations. Two
proofs in the same proof system are considered the to be equal if they can be transformed into
each other by a series of simple rule permutation steps. However this can not be considered
as a solution since it relies on each specific syntax and, it is not suitable to compare proofs
presented in two different proof systems for the same logic.

Combinatorial proofs [6, 7] have been introduced by Hughes to address this problem in
classical logic. A combinatorial proof of a formula F' consist of a skew fibration f : € — &(F)
between a RB-cograph € [9] and the cograph &(F) representing the formula F. The notion
of cograph [4] and skew fibration [6, 10] are independent from the syntactic restrictions of
proof formalisms and are described by graph condition only. Moreover, the correctness of
combinatorial proofs can be checked in polynomial time on the size of a proof, i.e. they form a
proof system in the sense of Cook and Reckhow [3].

It has been shown in [7, 11, 1] how syntactic proofs in Gentzen sequent calculus, the deep
inference system SKS, semantic tableaux, and resolution can be translated into combinatorial
proofs. Figure 2 shows the combinatorial proof corresponding to the syntactic proofs in Figure 1.

In this talk we want to address the question whether the theory of combinatorial proofs can
be extended to modal logics.

In the literature, proof systems of various kinds have been defined for different modal logics
[2, 8, 12, 5]. However, the notion of proof equivalence in modal logic has never been studied.
Part of the problem of defining this notion is inheritance of the problem for proof equivalence
in classical logic.

We are presently working on the definition of the notion of proof equivalence for different
modal logics by means of combinatorial proof. The first step in this investigation is to give a
representation of proofs for the modal logic K, for which we show the sequent system LK-K in
Figure 3 and the deep infernce system KS-K in Figure 4.

We define a class of cograph, called RG-cograph, suitables to represent formulas with modal-
ities and similarly we extend the notion of RB-cograph which represent the linear part of a
classical proof, to the one of RGB-cographs.



Combinatorial Proofs for the Modal Logic K Acclavio and Strafburger

(avd)a(cvdyancnad [(aVb)A(CVd)/\E/\d_]A
pd N [avb][(cvd)acnad
- - = A
avbececad avbdind [a v b][c v d][e A d] vd
avb,7,cz ale@7 aﬂ [avb][] Res
AX AX
cc —d,d
W — w
- ¢cc,d d,c,d
F (@ Ab),ccd - (anb),dcd
F(@nab),(cad),cd

Figure 1: A semantic tableau, a resolution proof and a sequent calculus derivation of F' =

(@nb)v(Eend)yvevd

(€~ 4) v(dnd)
(@ab)v(cnrd)v(cvd)

Figure 2: The combinatorial proof corresponing to the proof in Figure 1
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Figure 3: Sequent system LK-K (cut free) for modal logic K. The first six rules on the left form

the sequent system MLLK
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Figure 4: Deep sequent system KS-K
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For these graphs, we recover a correctness criterion similar to the one given for RB-cographs
[9] by means of z-connectedness and ee-acyclicity (acyclic with respect of alternating paths).

In fact, given a RGB-cograph &(F') we are able to define for each [Fnode m a set P,
of modality-nodes by means of paths between “same-depth” nodes. Intuitively, each set P,
corresponds to an application of a K-rule. Then we define a RB-cograph 0(&(F)) from &(F)
by transforming each set P, into a RB-cograph d(F,,) and opportunely updating the edges
interacting with the nodes with P,,. Thus, a RGB-cograph &(F) corresponds to a correct
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Figure 5: The RGB-cograph &(F) of F=dveéev (dA (bAc)) v (enc)vO(ballava))
and its associated RB-cograph 0(&(F)).

derivation if the [Jnodes induce a partition over all modality-nodes and if the RB-cograph
0(B(F)) is e-connected and e-acyclic.

Using some features of the calculus of structures, we are able to represent K proofs in the
deep sequent system KS-K pushing all weakening and contraction rules at the end of a derivation.
This allows us to define combinatorial proof by means of axiom-preserving RG-skew fibrations
f: € &(F) from a RGB-cograph € to the RG-cograph of F.

These results allow us to define a notion of equivalence for proofs in K and give a direct
translation of the classical sequent calculus LK-K into combinatorial proofs and vice versa.
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