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Abstract

An algebra-valued model of set theory is called loyal to its algebra if the model and its
algebra have the same propositional logic; it is called faithful if all elements of the algebra
are truth values of a sentence of the language of set theory in the model. We observe that
non-trivial automorphisms of the algebra result in models that are not faithful and apply
this to construct three classes of illoyal models: the tail stretches, the transposition twists,
and the maximal twists.

The construction of algebra-valued models of set theory starts from an algebra A and a model
V of set theory and forms an A-valued model of set theory that reflects both the set theory of
V and the logic of A. This construction is the natural generalisation of Boolean-valued models,
Heyting-valued models, lattice-valued models, and orthomodular-valued models (Bell, 2011;
Grayson, 1979; Ozawa, 2017; Titani, 1999) and was developed by Lowe and Tarafder (2015).

Recently, Passmann (2018) introduced the terms “loyalty” and “faithfulness” while studying
the precise relationship between the logic of the algebra A and the logical phenomena witnessed
in the A-valued model of set theory. The model constructed by Lowe and Tarafder (2015) is
both loyal and faithful to PSs.

In this talk, we shall give elementary constructions to produce illoyal models by stretching
and twisting Boolean algebras. After we give the basic definitions, we remind the audience of the
construction of algebra-valued models of set theory. We then introduce our main technique: a
non-trivial automorphisms of an algebra A excludes values from being truth values of sentences
in the A-valued model of set theory. Finally, we apply this technique to produce three classes
of models: tail stretches, transposition twists, and maximal twists. This talk is based on Lowe
et al. (2018).

1 Basic definitions

Algebras. Let A be a set of logical connectives; we shall assume that {A,V,0,1} C A C
{A,V,—,—,0,1}. An algebra A with underlying set A is called a A-algebra if it has one operation
for each of the logical connectives in A such that (A, A,V,0,1) is a distributive lattice; we can
define < on A by z <y if and only if t Ay = 2. An element a € A is an atom if it is <-minimal
in A\{0}; we write At(A) for the set of atoms in A. If A = {A,V,—,0,1}, we call A an
implication algebra and if A = {A,V,— —,0,1}, we call A an implication-negation algebra.

We call a A-algebra A with underlying set A complete if for every X C A, the <-supremum
and <-infimum exist; in this case, we write \/ X and A X for these elements of A. A complete
A-algebra A is called atomic if for every a € A, there is an X C At(A) such that a = \/ X.

*This research was partially supported by the Marie Sklodowska-Curie fellowship REGPROP (706219) funded
by the European Commission at the Universitdt Hamburg. The authors would like to thank Nick Bezhanishvili
and Lorenzo Galeotti for various discussions about Heyting algebras and their logics.



Constructing illoyal algebra-valued models of set theory Lowe, Passmann and Tarafder

Boolean algebras B = (B, A,V,—,0,1) and a Heyting algebras H = (H, A, V,—,0,1) are defined
as usual.

On an atomic distributive lattice A = (A, A,V,0,1), we have a canonical definition for
a negation operation, the complementation negation: since A is atomic, every element a €
A is uniquely represented by a set X C At(A) such that @ = \/ X. Then we define the
complementation negation by —.(\/ X) := \/{t € At(A); t ¢ X}.

Homomorphisms, assignments, & translations. For any two A-algebras A and B, a
map f : A — B is called a A-homomorphism if it preserves all connectives in A; it is called
a A-isomorphism if it is a bijective A-homomorphism; isomorphisms from A to A are called
A-automorphisms.

Since the propositional formulas £, are generated from the propositional variables P, we can
think of any A-homomorphism defined on £, as a function on P, homomorphically extended
to all of Lo. If A is a A-algebra with underlying set A, we say that A-homomorphisms ¢ :
LA — A are A-assignments; if S is a set of non-logical symbols, we say that A-homomorphisms
T : Lp — Senty g are S-translations.

Using assignments, we can define the propositional logic of A as

L(A) :={p € La; t(p) =1 for all A-assignments ¢}.

Note that if B is a Boolean algebra, then L(B) = CPC.

Algebra-valued structures and their propositional logic. If A is a A-algebra and S is
a set of non-logical symbols, then any A-homomorphism [-] : Senty s — A will be called an
A-valued S-structure. Note that if S C S and [-] is an A-valued S-structure, then [-][Sentx g/
is an A-valued S’-structure. We define the propositional logic of -] as

L([-]) :={¢ € La; [T(v)] =1 for all S-translations T'}.

Note that if T is an S-translation and [-] is an A-valued S-structure, then ¢ — [T(¢)] is an
A-assignment, so

L(A) € L([-D- (1)
Clearly, ran([-]) € A is closed under all operations in A (since [-] is a homomorphism) and
thus defines a sub-A-algebra Ay of A. The A-assignments that are of the form ¢ — [T'()]
are exactly the Apj-assignments, so we obtain L([-]) = L(A[p).

Loyalty & faithfulness. An A-valued S-structure [-] is called loyal to A if the converse
of (1) holds, ie., L(A) = L([-] = 1); it is called faithful to A if for every a € A, there is a
¢ € Senty 5 such that [] = a; equivalently, if Apj = A. The two notions central for our paper
were introduced by Passmann (2018).

Lemma 1. If [-] is faithful to A, then it is loyal to A.

Algebra-valued models of set theory. We will work with the general construction of
an algebra-valued model of set theory following Lowe and Tarafder (2015), where the precise
definitions can be found.

If V is a model of set theory and A is any set, then we construct a universe of names
Name(V, A) by transfinite recursion. We then let Sy, 4 be the set of non-logical symbols con-
sisting of the binary relation symbol € and a constant symbol for every name in Name(V, A).
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If A is a A-algebra with underlying set A, we can now define a map [-]* assigning to each
v € Lps, , & truth value in A by recursion, see Lowe and Tarafder (2015) for the precise
definitions. As set theorists are usually interested in the restriction to Senty g, we shall use the
notation [-]a to refer to this restricted A-valued {€}-structure.

The results for algebra-valued models of set theory were originally proved for Boolean alge-
bras, then extended to Heyting algebras:

Theorem 2. If V is a model of set theory, B = (B,A,V,—,—,0,1) is a Boolean algebra or
Heyting algebra, and ¢ is any aziom of ZF, then [¢]s = 1.

Lemma 3. Let H = (H,A,V,—,0,1) be a Heyting algebra and V be a model of set theory.
Then [-]5*™e is faithful to H (and hence, loyal to H).

Automorphisms and algebra-valued models of set theory. Given a model of set theory
V and any A-algebras A and B and a A-homomorphism f : A — B, we can define a map f :
Name(V, A) — Name(V,B) by €-recursion such that f([e(u1,...,un)]a) = [o(f(u1), ..., f(un))]s
for all ¢ € L, (e} with n free variables and uy, ..., u, € Name(V,A). In particular, if f : A — B
is a complete A-isomorphism and ¢ € Senty (¢, then f([¢]a) = [¢]s. Hence, if f: A — Aisa

complete A-automorphism with f(a) # a, then there is no ¢ € Senty fcy such that [p]a = a.

Proposition 4. If A = (A, A,V,0,1) is an atomic distributive lattice and a € A\{0,1}, then
there is a {N\,V, "¢, 0, 1}-automorphism f of A such that f(a) # a.

Note that every [-]p is loyal but not faithful for any non-trivial atomic Boolean algebra B.

2 Stretching and twisting the loyalty of Boolean algebras

In this section, we start from an atomic, complete Boolean algebra B and modify it, to get an
algebra A that gives rise to an illoyal [-]4. The first construction is the well-known construction
of tail extensions of Boolean algebras to obtain a Heyting algebra. The other two constructions
are negation twists: in these, we interpret B as a Boolean implication algebra via the definition
a —b:=—-a VDb, and then add a new, twisted negation to it that changes its logic.

What can be considered a negation? When twisting the negation, we need to define a
sensible negation. Dunn (1995) lists Hazen’s subminimal negation as the bottom of his Kite
of Negations: only the rule of contraposition, i.e., a < b implies —=b < —a, is required. In the
following, we shall use this as a necessary requirement to be a reasonable candidate for negation.

Tail stretches Let B = (B,A,V,—,—,0,1) be a Boolean algebra and let 1* ¢ B be an
additional element that we add to the top of B to form the tail stretch H as follows: H :=
BU{1*}, the complete lattice structure of H is the order sum of B and the one element lattice
{1*}, and —* is defined as follows:!

a—b if a,b € B such that a £ b,
a—*b:= 1* if a,b € B witha <borif b=1%
b if a =1%.

n M, we use the (Heyting algebra) definition —gh := h —* 0 to define a negation; note that if 0 # b € B,
b = —b, but —y0 = 1* # 1 = —0.
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Transposition twists Let B be an atomic Boolean algebra, a,b € At(B) with a # b, and 7
be the transposition that transposes a and b. We now define a twisted negation by

—(\/ X) == \/{r(t) € At(B); t ¢ X}

and let the 7-twist of B be B, := (B, A,V, —, ~x,0,1).2 We observe that the twisted negation
- satisfies the rule of contraposition.

Maximal twists Again, let B be an atomic Boolean algebra with more than two elements
and define the maximal negation by

y._ [ 1 ifb#1and
TmPT N 0 ifb=1

for every b € B. We let the mazimal twist of B be By, := (B,A,V,—,—m,0,1); once more
observe that the maximal negation —,, satisfies the rule of contraposition.

The following is our main result, which is proved by providing non-trivial automorphisms
for each of the three constructions.

Theorem 5. If B is a Boolean algebra, then its tail stretch, its transposition twist and its
mazximal twist are not loyal. In particular, the logics of the transposition twist and of the
mazimal twist is CPC.
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