COORDINATISING AFFINE SPATIAL LOGICS

Adam Trybus

adam.trybus@gmail.com

Institute of Philosophy University of Zielona Gora

Logic4Peace 2022

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com Coordinatising Affine Spatial Logics

The general result is as follows [...] assuming [...] a conic [...], we may by means of this conic, by descriptive constructions, divide any line [...] into an infinite series of infnitesimal elements, which are (as a defnition of distance) assumed to be equal; the number of elements between two points [...] measures the distance between the two points [...].

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

The general result is as follows [...] assuming [...] a conic [...], we may by means of this conic, by descriptive constructions, divide any line [...] into an infinite series of infnitesimal elements, which are (as a defnition of distance) assumed to be equal; the number of elements between two points [...] measures the distance between the two points [...].

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

- Moritz Pasch, a German mathematician
- empirical, natural geometry with an observer at centre
- non-numerical ordering relation of betweenness important

イロト イヨト イヨト イヨト

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

- Moritz Pasch, a German mathematician
- empirical, natural geometry with an observer at centre
- non-numerical ordering relation of betweenness important

イロト イヨト イヨト イヨト

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

- Moritz Pasch, a German mathematician
- empirical, natural geometry with an observer at centre
- non-numerical ordering relation of betweenness important

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

- Moritz Pasch, a German mathematician
- empirical, natural geometry with an observer at centre
- non-numerical ordering relation of betweenness important

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

- Moritz Pasch, a German mathematician
- empirical, natural geometry with an observer at centre
- non-numerical ordering relation of betweenness important

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

- Moritz Pasch, a German mathematician
- empirical, natural geometry with an observer at centre
- non-numerical ordering relation of betweenness important

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

- Bertrand Russell
- An Essay on the Foundations of Geometry (1897)
- The Principles of Mathematics (1903)

< < >> < <</>

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

Bertrand Russell

- An Essay on the Foundations of Geometry (1897)
- The Principles of Mathematics (1903)

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

Bertrand Russell

- An Essay on the Foundations of Geometry (1897)
- The Principles of Mathematics (1903)

AN ESSAY ON THE FOUNDATIONS OF GEOMETRY BY BERTRAND A. W. RUSSELL, M.A. FELLOW OF TREATTY COLLEGE, CAMORINGE, CAMBRIDGE: AT THE UNIVERSITY PRESS. 1897 L48 Rights reserved.)

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

Bertrand Russell

- An Essay on the Foundations of Geometry (1897)
- The Principles of Mathematics (1903)

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

RUSSELL ON GEOMETRY

- About Cayley: "He showed that, with the ordinary notion of distance, it can be rendered projective [...]. Not content with this, he suggested a new definition of distance [...]; with this definition, the properties usually known as metrical become projective [...]." (FoG)
- About Pasch: "The present subject [i.e. descriptive geometry] is admirably set forth by Pasch [...] with whose empirical pseudo-philosophical reasons for preferring it to projective Geometry, however, I by no means agree." (PoM)

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

RUSSELL ON GEOMETRY

- About Cayley: "He showed that, with the ordinary notion of distance, it can be rendered projective [...]. Not content with this, he suggested a new definition of distance [...]; with this definition, the properties usually known as metrical become projective [...]." (FoG)
- About Pasch: "The present subject [i.e. descriptive geometry] is admirably set forth by Pasch [...] with whose empirical pseudo-philosophical reasons for preferring it to projective Geometry, however, I by no means agree." (PoM)

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

IMPORTANCE OF RUSSELL

Russell took the mathematical work and turned it into a philosophical argument

 qualitative, descriptive geometry is the most important, primary one

this geometry is nowadays known as affine

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

IMPORTANCE OF RUSSELL

- Russell took the mathematical work and turned it into a philosophical argument
- qualitative, descriptive geometry is the most important, primary one

this geometry is nowadays known as affine

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

IMPORTANCE OF RUSSELL

- Russell took the mathematical work and turned it into a philosophical argument
- qualitative, descriptive geometry is the most important, primary one
- this geometry is nowadays known as affine

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

WHAT IS AFFINE GEOMETRY?

DEFINITION

An (n-dimensional) affine transformation of \mathbb{R}^n is a function $\tau : \mathbb{R}^n \to \mathbb{R}^n$ of the form

$$\tau(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b},$$

where **A** is an invertible $n \times n$ matrix and $b \in \mathbb{R}^n$.

We say that two regions are affine-equivalent if there is an affine transformation from one region to another (this notion naturally extends to sequences of regions). Properties unchanged under affine tranformations are called affine-invariant.

AFFINE TRANSFORMATIONS CTD.

THEOREM

An affine transformation maps straight lines to straight lines, preserves parallelism and ratios of lengths along parallel straight lines. The set of affine transformations forms a group under the operation of composition of functions.

Image source: J.P. de Vries, Object Recognition: A Shape-Based Approach Using Artificial Neural Networks

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

AFFINE PROPERTIES

DEFINITION

A set $S \in \mathbb{R}^n$ is called *convex* if for all $\lambda_1, \lambda_2 \in \mathbb{R}$, such that $\lambda_1, \lambda_2 \ge 0$ and $\lambda_1 + \lambda_2 = 1$ and for all $x \in S$,

$$\lambda_1 x + \lambda_2 y \in S.$$

Convexity is an affine-invariant property. (So is set inclusion.)

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

- the forefather of region-based geometry
- The Axioms of Descriptive Geometry
- such ideas were developed further in 1970s

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

- the forefather of region-based geometry
- The Axioms of Descriptive Geometry
- such ideas were developed further in 1970s

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

- the forefather of region-based geometry
- The Axioms of Descriptive Geometry
- such ideas were developed further in 1970s

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

- the forefather of region-based geometry
- The Axioms of Descriptive Geometry
- such ideas were developed further in 1970s

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

- the forefather of region-based geometry
- The Axioms of Descriptive Geometry
- such ideas were developed further in 1970s

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

- the forefather of region-based geometry
- The Axioms of Descriptive Geometry
- such ideas were developed further in 1970s

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

- more that 100 years after the publication of Russell's *The Foundations of Geometry*, a group of CS researchers took interest in a similar approach to geometry
- the field they established began to be known as Qualitative Spatial Reasoning
- the emphasis was on formalising and analysing commonsensical, non-numerical part of geometry
- the hope: to mimic human-like spatial reasoning in formal settings

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

- more that 100 years after the publication of Russell's *The Foundations of Geometry*, a group of CS researchers took interest in a similar approach to geometry
- the field they established began to be known as Qualitative Spatial Reasoning
- the emphasis was on formalising and analysing commonsensical, non-numerical part of geometry
- the hope: to mimic human-like spatial reasoning in formal settings

Adam Trybus adam.trybus@gmail.com

- more that 100 years after the publication of Russell's *The Foundations of Geometry*, a group of CS researchers took interest in a similar approach to geometry
- the field they established began to be known as Qualitative Spatial Reasoning
- the emphasis was on formalising and analysing commonsensical, non-numerical part of geometry
- the hope: to mimic human-like spatial reasoning in formal settings

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

- more that 100 years after the publication of Russell's *The Foundations of Geometry*, a group of CS researchers took interest in a similar approach to geometry
- the field they established began to be known as Qualitative Spatial Reasoning
- the emphasis was on formalising and analysing commonsensical, non-numerical part of geometry
- the hope: to mimic human-like spatial reasoning in formal settings

regions rather than points became the primitive entities

- a number of logical formalisms were proposed involving qualitative relations among regions
- Region Connection Calculus and its derivative RCC8 are perhaps the best-known ones
- an attempt has been made to connect to previous developments, including Whitehead's ideas

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

- regions rather than points became the primitive entities
- a number of logical formalisms were proposed involving qualitative relations among regions
- Region Connection Calculus and its derivative RCC8 are perhaps the best-known ones
- an attempt has been made to connect to previous developments, including Whitehead's ideas

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

- regions rather than points became the primitive entities
- a number of logical formalisms were proposed involving qualitative relations among regions
- Region Connection Calculus and its derivative RCC8 are perhaps the best-known ones
- an attempt has been made to connect to previous developments, including Whitehead's ideas

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

- regions rather than points became the primitive entities
- a number of logical formalisms were proposed involving qualitative relations among regions
- Region Connection Calculus and its derivative RCC8 are perhaps the best-known ones
- an attempt has been made to connect to previous developments, including Whitehead's ideas

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics
FEW BONES TO PICK

Russell's contribution was not recognized

- the entire area focused on logical systems with topological interpretations
- only a small portion of research devoted to affine spatial logics

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

FEW BONES TO PICK

- Russell's contribution was not recognized
- the entire area focused on logical systems with topological interpretations
- only a small portion of research devoted to affine spatial logics

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

FEW BONES TO PICK

- Russell's contribution was not recognized
- the entire area focused on logical systems with topological interpretations
- only a small portion of research devoted to affine spatial logics

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

AFFINE SPATIAL LOGICS — THE SETUP

DEFINITION

Let *S* be a subset of some topological space. We denote the interior of *S* by S^0 and the closure of *S* by S^- . *S* is called regular open if $S = (S)^{-0}$.

The following result is standard.

PROPOSITION

The set of regular open sets in *X* forms a Boolean algebra RO(X) with top and bottom defined by 1 = X and $0 = \emptyset$, and Boolean operations defined by $a \cdot b = a \cap b$, $a + b = (a \cup b)^{-0}$ and $-a = (X \setminus a)^0$.

Adam Trybus adam.trybus@gmail.com

AFFINE SPATIAL LOGICS — THE SETUP

DEFINITION

Let *S* be a subset of some topological space. We denote the interior of *S* by S^0 and the closure of *S* by S^- . *S* is called regular open if $S = (S)^{-0}$.

The following result is standard.

PROPOSITION

The set of regular open sets in *X* forms a Boolean algebra RO(X) with top and bottom defined by 1 = X and $0 = \emptyset$, and Boolean operations defined by $a \cdot b = a \cap b$, $a + b = (a \cup b)^{-0}$ and $-a = (X \setminus a)^0$.

- by a regular open rational polygon we mean a Boolean combination in RO(ℝ²) of finitely many half-planes bounded by lines with rational coefficients in ℝ².
- ► we denote the set of all regular open rational polygons in ℝ² by *ROQ*(ℝ²).
- ▶ $ROQ(\mathbb{R}^2)$ is a Boolean subalgebra of $RO(\mathbb{R}^2)$.
- the notion of regular open rational polygon can be easily extended to that of a polytope, when considering dimensions greater than 2. In general, we write *ROQ*(ℝⁿ), n ∈ N, to denote the set of all regular open rational polytopes of dimension n.

Adam Trybus adam.trybus@gmail.com

- by a regular open rational polygon we mean a Boolean combination in RO(ℝ²) of finitely many half-planes bounded by lines with rational coefficients in ℝ².
- ► we denote the set of all regular open rational polygons in ℝ² by ROQ(ℝ²).
- ▶ $ROQ(\mathbb{R}^2)$ is a Boolean subalgebra of $RO(\mathbb{R}^2)$.
- the notion of regular open rational polygon can be easily extended to that of a polytope, when considering dimensions greater than 2. In general, we write *ROQ*(ℝⁿ), n ∈ ℕ, to denote the set of all regular open rational polytopes of dimension *n*.

Adam Trybus adam.trybus@gmail.com

- by a regular open rational polygon we mean a Boolean combination in RO(ℝ²) of finitely many half-planes bounded by lines with rational coefficients in ℝ².
- ► we denote the set of all regular open rational polygons in ℝ² by ROQ(ℝ²).
- ▶ $ROQ(\mathbb{R}^2)$ is a Boolean subalgebra of $RO(\mathbb{R}^2)$.
- the notion of regular open rational polygon can be easily extended to that of a polytope, when considering dimensions greater than 2. In general, we write *ROQ*(ℝⁿ), n ∈ N, to denote the set of all regular open rational polytopes of dimension n.

Adam Trybus adam.trybus@gmail.com

- by a regular open rational polygon we mean a Boolean combination in RO(ℝ²) of finitely many half-planes bounded by lines with rational coefficients in ℝ².
- ► we denote the set of all regular open rational polygons in ℝ² by ROQ(ℝ²).
- ▶ $ROQ(\mathbb{R}^2)$ is a Boolean subalgebra of $RO(\mathbb{R}^2)$.
- the notion of regular open rational polygon can be easily extended to that of a polytope, when considering dimensions greater than 2. In general, we write *ROQ*(ℝⁿ), n ∈ ℕ, to denote the set of all regular open rational polytopes of dimension n.

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

FIRST-ORDER AFFINE SPATIAL LOGICS

We are interested in structures defined as follows:

DEFINITION Let $\mathfrak{M}^n = \langle ROQ(\mathbb{R}^n), \mathfrak{conv}^{\mathfrak{M}}, \leq^{\mathfrak{M}} \rangle$, where

$$\leq^{\mathfrak{M}} = \{ \langle a, b \rangle \in ROQ(\mathbb{R}^n) \times ROQ(\mathbb{R}^n) \mid a \subseteq b \}; \\ \mathfrak{conv}^{\mathfrak{M}} = \{ a \in ROQ(\mathbb{R}^n) \mid a \text{ is convex} \}.$$

LINWERSYTET ZELONOGÓRSK

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

$$\mathfrak{M}^3 = \langle \textit{ROQ}(\mathbb{R}^3), \mathfrak{conv}^\mathfrak{M}, \leq^\mathfrak{M} \rangle$$

<ロ> <回> <回> <回> < 回</p>

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

Coordinatising Affine Spatial Logics

 $\mathfrak{conv}(x) \wedge \mathfrak{conv}(-x)$

$$\mathfrak{hs}_n(x_1,\ldots,x_n):=\bigwedge_{\substack{1\leq i\leq n}}\mathfrak{conv}(x_i)\wedge\mathfrak{conv}(-x_i)\wedge\bigwedge_{\substack{1\leq i\leq n,\\1\leq j\leq n,\\i\neq j}}x_i\neq x_j\wedge x_i\neq -x_j$$

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

Coordinatising Affine Spatial Logics

Coordinatising Affine Spatial Logics

$$\mathfrak{hs}_2(x,y) \land ((x \cdot y = 0 \lor x \cdot -y = 0) \lor (-x \cdot y = 0 \lor -x \cdot -y = 0))$$

$$\mathfrak{hs}_2(x,y) \wedge \neg ((x \cdot y = 0 \lor x \cdot -y = 0) \lor (-x \cdot y = 0 \lor -x \cdot -y = 0))$$

-

- ⇒ →

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

Coordinatising Affine Spatial Logics

<ロ> <回> <回> <回> < 回</p>

Adam Trybus adam.trybus@gmail.com

Adam Trybus adam.trybus@gmail.com

<ロ> <回> <回> <回> < 回</p>

Adam Trybus adam.trybus@gmail.com

$\operatorname{line}(y_1, y_2) \wedge \operatorname{line}(y_1, y_3) \wedge \operatorname{line}(y_2, y_3)$

1. a sheaf 2. a prism 3. a corner

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

Adam Trybus adam.trybus@gmail.com

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

★ E > < E >

A B +
A B +
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Adam Trybus adam.trybus@gmail.com

-

A B +
A B +
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Adam Trybus adam.trybus@gmail.com

-

A B +
A B +
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

Coordinatising Affine Spatial Logics

Coordinatising Affine Spatial Logics
$$\neg \exists x \neg \exists y \neg \exists z (((x = y_1 \lor x = -y_1) \land (y = y_2 \lor y = -y_2) \land (z = y_3 \lor z = -y_3))$$
$$\land (x \cdot y \cdot z = 0))$$

corner(x, y, z)

 $\mathfrak{frame}(y_1, y_2, y_3, y') :=$ $\mathfrak{corner}(y_1, y_2, y_3) \land \mathfrak{line}(y_1, y') \land \mathfrak{line}(y_2, y') \land \mathfrak{line}(y_3, y')$

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

Coordinatising Affine Spatial Logics

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

$\overline{\textbf{OA}} + \overline{\textbf{OB}} = \overline{\textbf{OC}}$

$\overline{\textbf{OA}}\cdot\overline{\textbf{OB}}=\overline{\textbf{OC}}$

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

University of Zielona Gora

University of Zielona Gora

University of Zielona Gora

Coordinatising Affine Spatial Logics

Coordinatising Affine Spatial Logics

THEOREM

Assuming the coordinate frame setup above and all the introduced shorthands, let *m* be a line crossing one of the axes at a point **M**. Then there exists a formula satisfiable in \mathfrak{M}^3 if and only if $\overline{\mathbf{OM}} = n\overline{\mathbf{OI}}, n \in \mathbb{Q}$.

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

THEOREM

Fix a tuple satisfying the frame (y_1, y_2, y_3, y') formula. Let $h, h' \in ROQ(\mathbb{R}^3)$ be half-spaces. Then there is a formula ϕ satisfiable in \mathfrak{M}^3 , such that (1) h satisfies this formula and (2) if h' satisfies the formula, then h' = h.

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

THEOREM Every $r \in ROQ(\mathbb{R}^3)$ satisfies an affine-complete formula in \mathfrak{M}^3 .

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com

- affine geometry remains closer to our every-day experiences than projective geometry (or topology for that matter) and still it retains the status of non-qualitative
- despite being singled out as an independent entity relatively recently, affine geometry seems to have played an important role since the early days of formal geometry
- finally, affine spatial logics proved to be really expressive, more so than other spatial systems
- the next step: axiomatising the three-dimensional affine spatial logic

Adam Trybus adam.trybus@gmail.com Coordinatising Affine Spatial Logics

- affine geometry remains closer to our every-day experiences than projective geometry (or topology for that matter) and still it retains the status of non-qualitative
- despite being singled out as an independent entity relatively recently, affine geometry seems to have played an important role since the early days of formal geometry
- finally, affine spatial logics proved to be really expressive, more so than other spatial systems
- the next step: axiomatising the three-dimensional affine spatial logic

- affine geometry remains closer to our every-day experiences than projective geometry (or topology for that matter) and still it retains the status of non-qualitative
- despite being singled out as an independent entity relatively recently, affine geometry seems to have played an important role since the early days of formal geometry
- finally, affine spatial logics proved to be really expressive, more so than other spatial systems
- the next step: axiomatising the three-dimensional affine spatial logic

Adam Trybus adam.trybus@gmail.com

Coordinatising Affine Spatial Logics

- affine geometry remains closer to our every-day experiences than projective geometry (or topology for that matter) and still it retains the status of non-qualitative
- despite being singled out as an independent entity relatively recently, affine geometry seems to have played an important role since the early days of formal geometry
- finally, affine spatial logics proved to be really expressive, more so than other spatial systems
- the next step: axiomatising the three-dimensional affine spatial logic

Thank you

Research financially supported by the Polish National Science Centre (grant No. 2017/26/D/HS1/00200).

University of Zielona Gora

Adam Trybus adam.trybus@gmail.com