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Introduction and Motivation
Aim

▶ Kosta Došen argued in his papers Inferential Semantics
(2015) and On the Paths of Categories (2016) that the
propositions as types paradigm is less suited for general
proof theory because – unlike categorial proof theory
based – it makes prominent (categorical) proofs over
(hypothetical) inferences

▶ One specific instance of this, Došen points out, is that the
Curry-Howard isomorphism makes the associativity of
deduction composition invisible. I will argue that this is not
necessarily the case [Pezlar, 2020]
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Introduction and Motivation
Motivating quote 1

The typed lambda coding of the Curry-Howard correspon-
dence [. . . ] and the categorial coding in cartesian closed
categories are equivalent in a very precise sense. [. . . ].
The import of the two formalisms is however not exactly
the same. The typed lambda calculus suggests something
different about the subject matter than category theory.
It makes prominent the proofs t : B—and we think im-
mediately of the categorical ones, without hypotheses—
while category theory is about the inferences f : A ⊢ B.
[Došen, 2015]
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Introduction and Motivation
Motivating quote 2

. . . [I]n the Curry-Howard correspondence, one designates
deductions by typed lambda terms, which is congenial with
understanding proofs in the categorical, and not the hy-
pothetical, i.e. categorial, way [. . . ], then composition of
deductions is represented by substitution. With that, the
associativity of composition becomes invisible, unless one
introduces, as it is sometimes done, an explicit substitution
operator. [Došen, 2016]
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Preliminary Notes

▶ general proof theory
▶ propositions as types principle
▶ categorial proof theory
▶ composition of deductions
▶ associativity
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Preliminary Notes
General proof theory

▶ general proof theory (vs. reductive theory):

. . . proofs are studied in their own right in the hope of
understanding their nature . . . [Prawitz, 1972]

Proofs and their representations by formal deriva-
tions are treated as principal objects of study, not
as mere tools for analyzing the consequence relation.
[Kreisel, 1971]
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Preliminary Notes
Propositions as types

▶ see [Curry and Feys, 1958], [Howard, 1980],
[De Bruijn, 1968]

▶ a proposition as the collection (type) of its proofs
▶ proving a proposition as inhabiting a type
▶ proofs as programs
▶ simplification of proofs as evaluation of programs

Example:

[A ∧ B]1
∧ELA
→I1(A ∧ B)→ A

x : [A ∧ B]1

fst(x) : A
λx.fst(x) : (A ∧ B)→ A
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Preliminary Notes
Categorial proof theory

▶ see [Došen, 1996], [Došen, 2001], [Lambek, 1974],
[Lambek and Scott, 1986]

▶ Curry-Howard-Lambek correspondence
▶ objects interpreted as types/propositions and arrows as

terms/proofs
▶ f : A ⊢ B as a code for a deduction that starts with premise

A and ends with conclusion B
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Preliminary Notes
Composition of deductions

▶ categorial proof theory: composition of deductions =
composition of arrows

f : A→ B g : B→ C
ArrComp

g ◦ f : A→ C
▶ proposition as types: composition of deductions =

substitution
Γ ⊢ a : A x : A,∆ ⊢ b : B

subs-ND
Γ,∆ ⊢ b[a/x] : B

▶ Example:
Γ ⊢ A ∧ B A ∧ B ⊢ B

Γ ⊢ B
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Preliminary Notes
Associativity of deductions

▶ Associativity of deduction composition = permutation of cut

. . . the binary operation of composition [. . . ] which in
terms of deductions is a simple form of cut of sequent
systems. . . [Došen, 2016]

f : A→ B g : B→ C
g ◦ f : A→ C h : C→ D

h ◦ (g ◦ f ) : A→ D
f : A→ B

g : B→ C h : C→ D
h ◦ g : B→ D

(h ◦ g) ◦ f : A→ D

h ◦ (g ◦ f ) = (h ◦ g) ◦ f
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Composition of Deductions
Deductions 1/4

▶ Došen: “Curry-Howard correspondence makes prominent
proofs, while categorial proof theory is about deductions”

▶ systems built around the propositions as types principle,
such as, e.g., constructive type theory ([Martin-Löf, 1984],
CTT), are about deductions as well, they just have a
different name for them: hypothetical judgments
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Composition of Deductions
Deductions: 2/4

▶ In CTT, we start with categorical judgments

a : A

and generalize them into hypothetical judgments

x : A ⊢ b(x) : B(x)

i.e., judgments depending on some assumptions, while the
meaning of the latter is explained w.r.t. the former

▶ However, that does not mean that hypothetical notions are
dispensible in CTT
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Composition of Deductions
Deductions: 3/4

Consider, e.g., the rule for implication introduction:

x : A
b(x) : B

→-intro
λx.b(x) : A→ B

where the deduction premise:

x : A
b(x) : B

is nothing other than a hypothetical judgment, i.e., a judgment
with a context, that can be also written as x : A ⊢ b(x) : B
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Composition of Deductions
Deductions: 4/4

The relationship between ⊢ and→, when A and B are
considered as propositions, can be schematized as follows:

x : A ⊢ b(x) : B︸           ︷︷           ︸
hypothetical judgment, sequent, deduction

⇒ λx.b(x) : A→ B︸             ︷︷             ︸
categorical judgment, formula, proof︸                                                                                     ︷︷                                                                                     ︸

“deduction theorem”

▶ structural vs. logical information
▶ when considering a rule for composing deductions, we

should think of hypothetical judgments and not of
categorical ones
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Composition of Deductions
Composing deductions: 1/8

A ∧ B ⊢ A ∧ B A ∧ B ⊢ A
A ∧ B ⊢ A A ⊢ A ∨ B

A ∧ B ⊢ A ∨ B
(1)

A ∧ B ⊢ A ∧ B
A ∧ B ⊢ A A ⊢ A ∨ B

A ∧ B ⊢ A ∨ B
A ∧ B ⊢ A ∨ B

(2)
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Composition of Deductions
Composing deductions: 2/8

c : A ∧ B ⊢ c : A ∧ B x : A ∧ B ⊢ fst(x) : A
c : A ∧ B ⊢ fst(c) : A d : A ⊢ inl(d) : A ∨ B

c : A ∧ B ⊢ inl(fst(c)) : A ∨ B

c : A ∧ B ⊢ c : A ∧ B
x : A ∧ B ⊢ fst(x) : A d : A ⊢ inl(d) : A ∨ B

c : A ∧ B ⊢ inl(fst(x)) : A ∨ B
c : A ∧ B ⊢ inl(fst(c)) : A ∨ B

Clearly inl(fst(c)) = inl(fst(c)) : A ∨ B, but no associativity
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Composition of Deductions
Composing deductions: 3/8

Composition of arrows in category theory corresponds to
substitution in constructive type theory: the arrows are
interpreted as terms, objects as types:

x : A ⊢ b(x) : B y : B ⊢ c(y) : C
CompDed

x : A ⊢ c(b(x)) : C

We can rewrite c(b(x)) as (c ◦ b)(x)
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Composition of Deductions
Composing deductions: 4/8

x : A ⊢ b(x) : B y : B ⊢ c(y) : C
x : A ⊢ (c ◦ b)(x) : C z : C ⊢ d(z) : D

x : A ⊢ (d ◦ (c ◦ b))(x) : D

x : A ⊢ b(x) : B
y : B ⊢ c(y) : C z : C ⊢ d(z) : D

y : B ⊢ (c ◦ b)(y) : D
x : A ⊢ ((d ◦ c) ◦ b)(x) : D
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Composition of Deductions
Composing deductions: 5/8

▶ There is, however, a problem with the CompDed rule as
presented

▶ the y in c(y) in the second premise of the CompDed rule has
to be free, otherwise the compositionality breaks down

▶ yet we cannot generally guarantee that c contains a free
variable

▶ we need to find a more general way to represent
deductions of the general form “from A can be deduced B”
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Composition of Deductions
Composing deductions: 6/8

▶ we can achieve this with the higher-order presentation of
CTT (see, e.g., [Nordström et al., 2001]) by using the
notion of functional abstraction

▶ it allows us to express and generalize the functional
content of hypothetical judgments (deductions) such as
x : A ⊢ b : B

▶ assuming A and B are types, we can form a new type (A)B,
which can be populated by the following rule for functional
abstraction:

x : A ⊢ b : B
(x)b : (A)B
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Composition of Deductions
Composing deductions: 7/8

▶ deductions can be treated as objects of higher-order
function types. Changing the rule CompDed accordingly, we
get:

f : (A)B g : (B)C
CompDed*

(g ◦ f ) : (A)C

where (g ◦ f )(x) : C is defined in a standard manner as
g(f (x)) : C in the context x : A.
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Composition of Deductions
Composing deductions: 8/8

f : (A ∧ B)A ∧ B fst : (A ∧ B)A
fst ◦ f : (A ∧ B)A inl : (A)A ∨ B

inl ◦ (fst ◦ f ) : (A ∧ B)A ∨ B
(3)

f : (A ∧ B)A ∧ B
fst : (A ∧ B)A inl : (A)A ∨ B

inl ◦ fst : (A ∧ B)A ∨ B
(inl ◦ fst) ◦ f : (A ∧ B)A ∨ B

(4)

For different permutations of cut we have different yet
equivalent proof objects: (inl ◦ (fst ◦ f )) = ((inl ◦ fst) ◦ f ).
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Conclusion

▶ contrary to Došen’s claims, the propositions-as-types
paradigm does not favour categorical proofs over
inferences

▶ associativity of deduction composition does not have to
become invisible

▶ we have demonstrated this in CTT, where deductions are
understood in terms of hypothetical judgments

▶ from these hypothetical judgments we can derive
higher-order judgments that we can compose and keep
track of their associativity
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Conclusion

Thank you for your attention.
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