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Interpretability logic

Provability logic GL: a modal logic which formalizes Gödel’s
provability predicate.

▶ □F reads “It is provable that F holds.”

▶ Hilbert-Bernays conditions and Löb’s theorem correspond to
axioms and inference rules of GL.

The interpretability predicate is a generalization of the provability
predicate. An arithmetical theory T interprets a theory T ′ if there
is a translation from T ′ to T such that the translation of each
theorem of T ′ is provable in T .

▶ A▷B reads “Some base theory T extended by A interprets T
extended by B.”

▶ Some known results on interpretability correspond to axioms
of the basic interpretability logic IL (Visser 1988) and its
extensions.

▶ ILM: A▷ B → (A ∧□C )▷ (B ∧□C ) (Montagna’s principle)
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Modal semantics

Veltman models:

▶ W ̸= ∅
▶ R ⊆ W ×W transitive and reverse well-founded

▶ for each w ∈ W , Sw ⊆ R[w ]× R[w ]
▶ if wRu then uSwu
▶ if uSwv and vSwz then uSwz
▶ if wRuRv then uSwv

Satisfaction: w ⊩ A▷ B if for all u s.t. wRu and u ⊩ A there is v
s.t. uSwv and v ⊩ B
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Generalized semantics

Generalized Veltman models:

▶ W ̸= ∅
▶ R ⊆ W ×W transitive and reverse well-founded
▶ for each w ∈ W , Sw ⊆ R[w ]× P(R[w ])

▶ if wRu then uSw{u}
▶ if uSwV and vSwZv for all v ∈ V then uSw (∪Zv )
▶ if wRuRv then uSw{v}

Satisfaction: w ⊩ A▷ B if for all u s.t. wRu and u ⊩ A there is V
s.t. uSwV and v ⊩ B for all v ∈ V



Bisimulation between Veltman models

Let W and W ′ be Veltman models. A bisimulation is
Z ⊆ W ×W ′ s.t.

(at) if wZw ′, then w ⊩ p iff w ′ ⊩ p, for all propositional letters p

(forth) if wZw ′ and wRu, then there is u′ s.t. w ′R ′u′ and uZu′ and
for all v ′ s.t. u′S ′

w ′v ′ there is v s.t. uSwv and vZv ′

(back) if wZw ′ and w ′R ′u′, then there is u s.t. wRu and uZu′ and for
all v s.t. uSwv there is v ′ s.t. u′S ′

w ′v ′ and vZv ′

Key properties:

▶ if wZw ′, then w and w ′ are modally equivalent

▶ the converse does not hold generally, but it holds in case of
image-finite Veltman models (an analogue of Hennessy-Milner
theorem, de Jonge 2004)
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Bisimulation between generalized Veltman models and
Veltman models

Let W be a generalized Veltman model and W ′ a Veltman model.
A bisimulation is Z ⊆ W ×W ′ s.t.

(at) if wZw ′, then w ⊩ p iff w ′ ⊩ p, for all propositional letters p

(forth) if wZw ′ and wRu, then there is u′ s.t. w ′R ′u′ and uZu′ and
for all v ′ s.t. u′S ′

w ′v ′ there is V s.t. uSwV and vZv ′ for all
v ∈ V ?

No! Too restrictive:

▶ requires all v ∈ V to be mutually modally equivalent, which
practically collapses generalized semantics to ordinary one

▶ Hennessy-Milner analogue does not hold
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w ′v ′ and vZv ′ for some
v ∈ V

Now, as desired:

▶ bisimilarity implies modal equivalence

▶ Hennessy-Milner analogue holds
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A bisimulation is Z ⊆ W ×W ′ s.t.

(at) if wZw ′, then w ⊩ p iff w ′ ⊩ p, for all propositional letters p

(forth) if wZw ′ and wRu, then there is a non-empty U ′ ⊆ W ′ s.t.
w ′R ′u′ and uZu′ for all u′ ∈ U ′ and for all f : U ′ → W ′ s.t.
u′S ′

w ′f (u′) for all u′ ∈ U ′ there is V s.t. uSwV and for all
v ∈ V there is u′ s.t. vZf (u′)
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w ′v ′ and vZv ′ for some
v ∈ V
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Example

Consider a generalized Veltman frame such that:

▶ W = {0, 1, 2, 3}, R = {(0, 1), (0, 2), (0, 3)}, 1S0{2, 3}
▶ 1 ⊩ p, 2 ⊩ q, 3 ⊩ r

Now, consider a Veltman frame as follows:

▶ W = {0′, 1′, 1′′, 2′, 3′}, R = {(0′, 1′), (0′, 1′′), (0′, 2′), (0′, 3′)},
1′S ′

0′2
′, 1′′S ′

0′3
′

▶ 1′ ⊩ p, 1′′ ⊩ p, 2′ ⊩ q, 3′ ⊩ r

Then Z = {(0, 0′), (1, 1′), (1, 1′′), (2, 2′), (3, 3′)} is a bisimulation.
Hence, 0 and 0′ are modally equivalent (as are all pairs in Z ).
With the more restrictive definition of bisimulation, we would not
have a bisimulation in this example, thus we can use it as a
counterexample for Hennessy-Milner analogue in that case.
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Obtaining a bisimilar model

It is straightforward to obtain a bisimilar generalized Veltman
model from a given Veltman model: we use the same W and R,
and define uS ′

wV iff uSwv for some v ∈ V .

The previous example is very simple, but already illustrates that
the opposite direction is much more involved. Exploring it is an
ongoing work.
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