Bisimulations between Veltman models and generalized Veltman models

Tin Perkov
University of Zagreb
(supported by Croatian Science Foundation under the projects UIP-05-2017-9219 and IP-01-2018-7459) Foundation

Logic4Peace, 2022

Interpretability logic

Provability logic GL: a modal logic which formalizes Gödel's provability predicate.

Interpretability logic

Provability logic GL: a modal logic which formalizes Gödel's provability predicate.

- $\square F$ reads "It is provable that F holds."

Interpretability logic

Provability logic GL: a modal logic which formalizes Gödel's provability predicate.

- $\square F$ reads "It is provable that F holds."
- Hilbert-Bernays conditions and Löb's theorem correspond to axioms and inference rules of GL.

Interpretability logic

Provability logic GL: a modal logic which formalizes Gödel's provability predicate.

- $\square F$ reads "It is provable that F holds."
- Hilbert-Bernays conditions and Löb's theorem correspond to axioms and inference rules of GL.
The interpretability predicate is a generalization of the provability predicate.

Interpretability logic

Provability logic GL: a modal logic which formalizes Gödel's provability predicate.

- $\square F$ reads "It is provable that F holds."
- Hilbert-Bernays conditions and Löb's theorem correspond to axioms and inference rules of GL.
The interpretability predicate is a generalization of the provability predicate. An arithmetical theory T interprets a theory T^{\prime} if there is a translation from T^{\prime} to T such that the translation of each theorem of T^{\prime} is provable in T.

Interpretability logic

Provability logic GL: a modal logic which formalizes Gödel's provability predicate.

- $\square F$ reads "It is provable that F holds."
- Hilbert-Bernays conditions and Löb's theorem correspond to axioms and inference rules of GL.
The interpretability predicate is a generalization of the provability predicate. An arithmetical theory T interprets a theory T^{\prime} if there is a translation from T^{\prime} to T such that the translation of each theorem of T^{\prime} is provable in T.
- $A \triangleright B$ reads "Some base theory T extended by A interprets T extended by B."

Interpretability logic

Provability logic GL: a modal logic which formalizes Gödel's provability predicate.

- $\square F$ reads "It is provable that F holds."
- Hilbert-Bernays conditions and Löb's theorem correspond to axioms and inference rules of GL.
The interpretability predicate is a generalization of the provability predicate. An arithmetical theory T interprets a theory T^{\prime} if there is a translation from T^{\prime} to T such that the translation of each theorem of T^{\prime} is provable in T.
- $A \triangleright B$ reads "Some base theory T extended by A interprets T extended by B."
- Some known results on interpretability correspond to axioms of the basic interpretability logic IL (Visser 1988) and its extensions.

Interpretability logic

Provability logic GL: a modal logic which formalizes Gödel's provability predicate.

- $\square F$ reads "It is provable that F holds."
- Hilbert-Bernays conditions and Löb's theorem correspond to axioms and inference rules of GL.
The interpretability predicate is a generalization of the provability predicate. An arithmetical theory T interprets a theory T^{\prime} if there is a translation from T^{\prime} to T such that the translation of each theorem of T^{\prime} is provable in T.
- $A \triangleright B$ reads "Some base theory T extended by A interprets T extended by B."
- Some known results on interpretability correspond to axioms of the basic interpretability logic IL (Visser 1988) and its extensions.
- ILM: $A \triangleright B \rightarrow(A \wedge \square C) \triangleright(B \wedge \square C)$ (Montagna's principle)

Modal semantics

Veltman models:

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded

Modal semantics

Veltman models:

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
- for each $w \in W, S_{w} \subseteq R[w] \times R[w]$

Modal semantics

Veltman models:

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
- for each $w \in W, S_{w} \subseteq R[w] \times R[w]$
- if $w R u$ then $u S_{w} u$

Modal semantics

Veltman models:

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
- for each $w \in W, S_{w} \subseteq R[w] \times R[w]$
- if $w R u$ then $u S_{w} u$
- if $u S_{w} v$ and $v S_{w} z$ then $u S_{w} z$

Modal semantics

Veltman models:

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
- for each $w \in W, S_{w} \subseteq R[w] \times R[w]$
- if $w R u$ then $u S_{w} u$
- if $u S_{w} v$ and $v S_{w} z$ then $u S_{w} z$
- if $w R u R v$ then $u S_{w} v$

Modal semantics

Veltman models:

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
- for each $w \in W, S_{w} \subseteq R[w] \times R[w]$
- if $w R u$ then $u S_{w} u$
- if $u S_{w} v$ and $v S_{w} z$ then $u S_{w} z$
- if $w R u R v$ then $u S_{w} v$

Satisfaction: $w \Vdash A \triangleright B$ if for all u s.t. $w R u$ and $u \Vdash A$ there is v s.t. $u S_{w} v$ and $v \Vdash B$

Generalized semantics

Generalized Veltman models:

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
- for each $w \in W, S_{w} \subseteq R[w] \times \mathcal{P}(R[w])$
- if $w R u$ then $u S_{w}\{u\}$
- if $u S_{w} V$ and $v S_{w} Z_{v}$ for all $v \in V$ then $u S_{w}\left(\cup Z_{v}\right)$
- if $w R u R v$ then $u S_{w}\{v\}$

Satisfaction: $w \Vdash A \triangleright B$ if for all u s.t. $w R u$ and $u \Vdash A$ there is V s.t. $u S_{w} V$ and $v \Vdash B$ for all $v \in V$

Bisimulation between Veltman models

Let W and W^{\prime} be Veltman models. A bisimulation is
$Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p

Bisimulation between Veltman models

Let W and W^{\prime} be Veltman models. A bisimulation is
$Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p (forth) if $w Z w^{\prime}$ and $w R u$, then there is u^{\prime} s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$

Bisimulation between Veltman models

Let W and W^{\prime} be Veltman models. A bisimulation is
$Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p
(forth) if $w Z w^{\prime}$ and $w R u$, then there is u^{\prime} s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ and for all v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ there is v s.t. $u S_{w} v$ and $v Z v^{\prime}$

Bisimulation between Veltman models

Let W and W^{\prime} be Veltman models. A bisimulation is
$Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p (forth) if $w Z w^{\prime}$ and $w R u$, then there is u^{\prime} s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ and for all v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ there is v s.t. $u S_{w} v$ and $v Z v^{\prime}$
(back) if $w Z w^{\prime}$ and $w^{\prime} R^{\prime} u^{\prime}$, then there is u s.t. $w R u$ and $u Z u^{\prime}$ and for all v s.t. $u S_{w} v$ there is v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ and $v Z v^{\prime}$

Bisimulation between Veltman models

Let W and W^{\prime} be Veltman models. A bisimulation is
$Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p (forth) if $w Z w^{\prime}$ and $w R u$, then there is u^{\prime} s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ and for all v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ there is v s.t. $u S_{w} v$ and $v Z v^{\prime}$
(back) if $w Z w^{\prime}$ and $w^{\prime} R^{\prime} u^{\prime}$, then there is u s.t. $w R u$ and $u Z u^{\prime}$ and for all v s.t. $u S_{w} v$ there is v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ and $v Z v^{\prime}$
Key properties:

- if $w Z w^{\prime}$, then w and w^{\prime} are modally equivalent

Bisimulation between Veltman models

Let W and W^{\prime} be Veltman models. A bisimulation is
$Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p (forth) if $w Z w^{\prime}$ and $w R u$, then there is u^{\prime} s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ and for all v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ there is v s.t. $u S_{w} v$ and $v Z v^{\prime}$
(back) if $w Z w^{\prime}$ and $w^{\prime} R^{\prime} u^{\prime}$, then there is u s.t. $w R u$ and $u Z u^{\prime}$ and for all v s.t. $u S_{w} v$ there is v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ and $v Z v^{\prime}$
Key properties:

- if $w Z w^{\prime}$, then w and w^{\prime} are modally equivalent
- the converse does not hold generally, but it holds in case of image-finite Veltman models (an analogue of Hennessy-Milner theorem, de Jonge 2004)

Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p

Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p (forth) if $w Z w^{\prime}$ and $w R u$, then

Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p (forth) if $w Z w^{\prime}$ and $w R u$, then there is u^{\prime} s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$

Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p (forth) if $w Z w^{\prime}$ and $w R u$, then there is u^{\prime} s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ and for all v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ there is V s.t. $u S_{w} V$ and $v Z v^{\prime}$ for all $v \in V$?

Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p (forth) if $w Z w^{\prime}$ and $w R u$, then there is u^{\prime} s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ and for all v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ there is V s.t. $u S_{w} V$ and $v Z v^{\prime}$ for all $v \in V$?
No! Too restrictive

Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p (forth) if $w Z w^{\prime}$ and $w R u$, then there is u^{\prime} s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ and for all v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ there is V s.t. $u S_{w} V$ and $v Z v^{\prime}$ for all $v \in V$?
No! Too restrictive:

- requires all $v \in V$ to be mutually modally equivalent, which practically collapses generalized semantics to ordinary one

Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p (forth) if $w Z w^{\prime}$ and $w R u$, then there is u^{\prime} s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ and for all v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ there is V s.t. $u S_{w} V$ and $v Z v^{\prime}$ for all $v \in V$?
No! Too restrictive:

- requires all $v \in V$ to be mutually modally equivalent, which practically collapses generalized semantics to ordinary one
- Hennessy-Milner analogue does not hold

Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p (forth) if $w Z w^{\prime}$ and $w R u$, then

Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p
(forth) if $w Z w^{\prime}$ and $w R u$, then there is a non-empty $U^{\prime} \subseteq W^{\prime}$ s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ for all $u^{\prime} \in U^{\prime}$

Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p
(forth) if $w Z w^{\prime}$ and $w R u$, then there is a non-empty $U^{\prime} \subseteq W^{\prime}$ s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ for all $u^{\prime} \in U^{\prime}$ and for all $f: U^{\prime} \rightarrow W^{\prime}$ s.t. $u^{\prime} S_{w^{\prime}}^{\prime} f\left(u^{\prime}\right)$ for all $u^{\prime} \in U^{\prime}$ there is V s.t. $u S_{w} V$ and for all $v \in V$ there is u^{\prime} s.t. $v Z f\left(u^{\prime}\right)$

Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p
(forth) if $w Z w^{\prime}$ and $w R u$, then there is a non-empty $U^{\prime} \subseteq W^{\prime}$ s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ for all $u^{\prime} \in U^{\prime}$ and for all $f: U^{\prime} \rightarrow W^{\prime}$ s.t. $u^{\prime} S_{w^{\prime}}^{\prime} f\left(u^{\prime}\right)$ for all $u^{\prime} \in U^{\prime}$ there is V s.t. $u S_{w} V$ and for all $v \in V$ there is u^{\prime} s.t. $v Z f\left(u^{\prime}\right)$
(back) if $w Z w^{\prime}$ and $w^{\prime} R^{\prime} u^{\prime}$, then there is u s.t. $w R u$ and $u Z u^{\prime}$ and for all V s.t. $u S_{w} V$ there is v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ and $v Z v^{\prime}$ for some $v \in V$

Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p
(forth) if $w Z w^{\prime}$ and $w R u$, then there is a non-empty $U^{\prime} \subseteq W^{\prime}$ s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ for all $u^{\prime} \in U^{\prime}$ and for all $f: U^{\prime} \rightarrow W^{\prime}$ s.t. $u^{\prime} S_{w^{\prime}}^{\prime} f\left(u^{\prime}\right)$ for all $u^{\prime} \in U^{\prime}$ there is V s.t. $u S_{w} V$ and for all $v \in V$ there is u^{\prime} s.t. $v Z f\left(u^{\prime}\right)$
(back) if $w Z w^{\prime}$ and $w^{\prime} R^{\prime} u^{\prime}$, then there is u s.t. $w R u$ and $u Z u^{\prime}$ and for all V s.t. $u S_{w} V$ there is v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ and $v Z v^{\prime}$ for some $v \in V$

Now, as desired:

- bisimilarity implies modal equivalence

Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p
(forth) if $w Z w^{\prime}$ and $w R u$, then there is a non-empty $U^{\prime} \subseteq W^{\prime}$ s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ for all $u^{\prime} \in U^{\prime}$ and for all $f: U^{\prime} \rightarrow W^{\prime}$ s.t. $u^{\prime} S_{w^{\prime}}^{\prime} f\left(u^{\prime}\right)$ for all $u^{\prime} \in U^{\prime}$ there is V s.t. $u S_{w} V$ and for all $v \in V$ there is u^{\prime} s.t. $v Z f\left(u^{\prime}\right)$
(back) if $w Z w^{\prime}$ and $w^{\prime} R^{\prime} u^{\prime}$, then there is u s.t. $w R u$ and $u Z u^{\prime}$ and for all V s.t. $u S_{w} V$ there is v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ and $v Z v^{\prime}$ for some $v \in V$

Now, as desired:

- bisimilarity implies modal equivalence
- Hennessy-Milner analogue holds

Example

Consider a generalized Veltman frame such that:

- $W=\{0,1,2,3\}, R=\{(0,1),(0,2),(0,3)\}, 1 S_{0}\{2,3\}$
- $1 \Vdash p, 2 \Vdash q, 3 \Vdash r$

Example

Consider a generalized Veltman frame such that:

- $W=\{0,1,2,3\}, R=\{(0,1),(0,2),(0,3)\}, 1 S_{0}\{2,3\}$
- $1 \Vdash p, 2 \Vdash q, 3 \Vdash r$

Now, consider a Veltman frame as follows:

- $W=\left\{0^{\prime}, 1^{\prime}, 1^{\prime \prime}, 2^{\prime}, 3^{\prime}\right\}, R=\left\{\left(0^{\prime}, 1^{\prime}\right),\left(0^{\prime}, 1^{\prime \prime}\right),\left(0^{\prime}, 2^{\prime}\right),\left(0^{\prime}, 3^{\prime}\right)\right\}$, $1^{\prime} S_{0^{\prime}}^{\prime} 2^{\prime}, 1^{\prime \prime} S_{0^{\prime}}^{\prime} 3^{\prime}$
$-1^{\prime} \Vdash p, 1^{\prime \prime} \Vdash p, 2^{\prime} \Vdash q, 3^{\prime} \Vdash r$

Example

Consider a generalized Veltman frame such that:

- $W=\{0,1,2,3\}, R=\{(0,1),(0,2),(0,3)\}, 1 S_{0}\{2,3\}$
- $1 \Vdash p, 2 \Vdash q, 3 \Vdash r$

Now, consider a Veltman frame as follows:

- $W=\left\{0^{\prime}, 1^{\prime}, 1^{\prime \prime}, 2^{\prime}, 3^{\prime}\right\}, R=\left\{\left(0^{\prime}, 1^{\prime}\right),\left(0^{\prime}, 1^{\prime \prime}\right),\left(0^{\prime}, 2^{\prime}\right),\left(0^{\prime}, 3^{\prime}\right)\right\}$, $1^{\prime} S_{0^{\prime}}^{\prime} 2^{\prime}, 1^{\prime \prime} S_{0^{\prime}}^{\prime} 3^{\prime}$
$-1^{\prime} \Vdash p, 1^{\prime \prime} \Vdash p, 2^{\prime} \Vdash q, 3^{\prime} \Vdash r$
Then $Z=\left\{\left(0,0^{\prime}\right),\left(1,1^{\prime}\right),\left(1,1^{\prime \prime}\right),\left(2,2^{\prime}\right),\left(3,3^{\prime}\right)\right\}$ is a bisimulation.

Example

Consider a generalized Veltman frame such that:

- $W=\{0,1,2,3\}, R=\{(0,1),(0,2),(0,3)\}, 1 S_{0}\{2,3\}$
- $1 \Vdash p, 2 \Vdash q, 3 \Vdash r$

Now, consider a Veltman frame as follows:

- $W=\left\{0^{\prime}, 1^{\prime}, 1^{\prime \prime}, 2^{\prime}, 3^{\prime}\right\}, R=\left\{\left(0^{\prime}, 1^{\prime}\right),\left(0^{\prime}, 1^{\prime \prime}\right),\left(0^{\prime}, 2^{\prime}\right),\left(0^{\prime}, 3^{\prime}\right)\right\}$, $1^{\prime} S_{0^{\prime}}^{\prime} 2^{\prime}, 1^{\prime \prime} S_{0^{\prime}}^{\prime} 3^{\prime}$
$-1^{\prime} \Vdash p, 1^{\prime \prime} \Vdash p, 2^{\prime} \Vdash q, 3^{\prime} \Vdash r$
Then $Z=\left\{\left(0,0^{\prime}\right),\left(1,1^{\prime}\right),\left(1,1^{\prime \prime}\right),\left(2,2^{\prime}\right),\left(3,3^{\prime}\right)\right\}$ is a bisimulation. Hence, 0 and 0^{\prime} are modally equivalent (as are all pairs in Z).

Example

Consider a generalized Veltman frame such that:

- $W=\{0,1,2,3\}, R=\{(0,1),(0,2),(0,3)\}, 1 S_{0}\{2,3\}$
- $1 \Vdash p, 2 \Vdash q, 3 \Vdash r$

Now, consider a Veltman frame as follows:

- $W=\left\{0^{\prime}, 1^{\prime}, 1^{\prime \prime}, 2^{\prime}, 3^{\prime}\right\}, R=\left\{\left(0^{\prime}, 1^{\prime}\right),\left(0^{\prime}, 1^{\prime \prime}\right),\left(0^{\prime}, 2^{\prime}\right),\left(0^{\prime}, 3^{\prime}\right)\right\}$, $1^{\prime} S_{0^{\prime}}^{\prime} 2^{\prime}, 1^{\prime \prime} S_{0^{\prime}}^{\prime} 3^{\prime}$
$-1^{\prime} \Vdash p, 1^{\prime \prime} \Vdash p, 2^{\prime} \Vdash q, 3^{\prime} \Vdash r$
Then $Z=\left\{\left(0,0^{\prime}\right),\left(1,1^{\prime}\right),\left(1,1^{\prime \prime}\right),\left(2,2^{\prime}\right),\left(3,3^{\prime}\right)\right\}$ is a bisimulation.
Hence, 0 and 0^{\prime} are modally equivalent (as are all pairs in Z).
With the more restrictive definition of bisimulation, we would not have a bisimulation in this example, thus we can use it as a counterexample for Hennessy-Milner analogue in that case.

Obtaining a bisimilar model

It is straightforward to obtain a bisimilar generalized Veltman model from a given Veltman model: we use the same W and R, and define $u S_{w}^{\prime} V$ iff $u S_{w} v$ for some $v \in V$.

Obtaining a bisimilar model

It is straightforward to obtain a bisimilar generalized Veltman model from a given Veltman model: we use the same W and R, and define $u S_{w}^{\prime} V$ iff $u S_{w} v$ for some $v \in V$.
The previous example is very simple, but already illustrates that the opposite direction is much more involved. Exploring it is an ongoing work.

