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Valued fields

A valued field is a field K with a valuation v, which is a map
from K onto vK ∪ {∞}, where (vK,+, 0,≤) is an ordered
abelian group and

v(x) =∞ if and only if x = 0,
v(xy) = v(x) + v(y),
v(x+ y) ≥ min{v(x), v(y)}.

The ordered abelian group vK is called the value group of
the valued field (K, v).
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Language of valued fields

Let (K, v) be a valued field. The valuation ring of v

Ov := {x ∈ K | vx ≥ 0}

determines the valuation v (up to an isomorphism of the
value group).

The language of valued fields is the language of fields with a
unary relation symbol O (to be interpreted as the valuation
ring).
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Residue field

The valuation ring of a valued field (K, v) has a unique
maximal ideal

Mv := {x ∈ K | vx > 0}.

The quotient Kv := Ov/Mv is called the residue field of
(K, v). The characteristic of Kv is called the residue
characteristic of (K, v).
There are only three possibilities for the pair
(charK, charKv), namely (0, 0), (0, p) or (p, p) where p > 0
is a prime number.
We will consider the first two cases for henselian valued
fields.
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Example

Let p be a prime number. We define the p-adic valuation vp
on Q. For x ∈ Q× we write

x = pvp(x)
a

b

where a, b ∈ Z are not divisible by p.

A valuation v on a field K defines an ultrametric on K. One
can then define Cauchy sequences and limits and consider
completions.
The completion of Q with respect to the p-adic valuation is
denoted by Qp and is known as the field of p-adic numbers.
As a complete valued field of rank 1, it is henselian. It is the
prototype of p-adically closed fields as R is the prototype of
real closed fields.
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Some history

MacIntyre (1976) shows quantifier elimination for the
theory of p-adically closed fields in the language of
valued fields extended with power predicates:

Pn(x)←→ ∃y : yn = x.

Pas (1989) shows quantifier elimination for the theory of
henselian valued fields of residue characteristic 0,
relative to the value group and the residue field, in the
Denef-Pas language with angular component map.
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Some history

In 1991, Basarab obtains quantifier elimination for the
theory of henselian valued fields of characteristic 0,
relative to the mixed structures.

In 1994, Kuhlmann simplifies the structures of Basarab
introducing the structures of additive and multiplicative
congruences (amc-structures).
In 2011, Flenner simplifies the structures introduced by
Kuhlmann even further, with the leading term
structures (RV -structures).



A. Linzi

Introduction

QE in
valued
fields

The
structures

Elementary
equivalence
theorems

Some history

In 1991, Basarab obtains quantifier elimination for the
theory of henselian valued fields of characteristic 0,
relative to the mixed structures.
In 1994, Kuhlmann simplifies the structures of Basarab
introducing the structures of additive and multiplicative
congruences (amc-structures).

In 2011, Flenner simplifies the structures introduced by
Kuhlmann even further, with the leading term
structures (RV -structures).



A. Linzi

Introduction

QE in
valued
fields

The
structures

Elementary
equivalence
theorems

Some history

In 1991, Basarab obtains quantifier elimination for the
theory of henselian valued fields of characteristic 0,
relative to the mixed structures.
In 1994, Kuhlmann simplifies the structures of Basarab
introducing the structures of additive and multiplicative
congruences (amc-structures).
In 2011, Flenner simplifies the structures introduced by
Kuhlmann even further, with the leading term
structures (RV -structures).



A. Linzi

Introduction

QE in
valued
fields

The
structures

Elementary
equivalence
theorems

RV -structures

Definition (Flenner)

Let (K, v) be a valued field and γ ∈ vK≥0. The
RV -structure of level γ of (K, v) is

K×/1 +Mγ ∪ {0}

with its multiplicative structure and

a ternary relation

⊕γ(x,y, z)⇐⇒
∃x, y, z ∈ K : rvγ(x) = x ∧ rvγ(y) = y

∧ rvγ(z) = z ∧ x+ y = z
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Multivalued operations

A hyperoperation (or multivalued operation) on a set F 6= ∅ is
a function + which associates to every pair (x, y) ∈ F × F a
non-empty subset of F , denoted by x+ y.

If + is a hyperoperation on F and A,B ⊆ F , then we set

A+B :=
⋃

a∈A,b∈B
a+ b.

If x ∈ F we abbreviate A+ {x} =: A+ x.
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Canonical hypergroups

A canonical hypergroup is a tuple (F,+, 0), where + is a
hyperoperation on F and 0 is an element of F such that the
following axioms hold:

the hyperoperation + is associative, i.e.,
(x+ y) + z = x+ (y + z) for all x, y, z ∈ F ,
x+ y = y + x for all x, y ∈ F ,
for every x ∈ F there exists a unique x′ ∈ F such that
0 ∈ x+ x′ (the element x′ is denoted by −x),
z ∈ x+ y implies y ∈ z − x := z + (−x) for all
x, y, z ∈ F .
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Krasner’s Hyperrings and hyperfields

A (commutative) hyperring is a tuple (F,+, ·, 0) which
satisfies the following axioms:

(F,+, 0) is a canonical hypergroup,
(F, ·) is a commutative semigroup and 0 is an absorbing
element, i.e., x · 0 = 0 for all x ∈ F ,
the operation · is distributive over the hyperoperation
+. That is, for all x, y, z ∈ F ,

x · (y + z) = x · y + x · z

A hyperfield is a hyperring such that F× := F \ {0} is a
group under multiplication.
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The factor construction

Given a field K and a subgroup T of K×, one can always
construct a hyperfield, called the factor hyperfield of K
modulo T , denoted by KT .

As a set it is K×/T ∪ {[0]T }.
The hyperoperation is defined as follows:

[x]T + [y]T := {[x+ yt]T ∈ KT | t ∈ T},

where for x ∈ K×, the coset xT is denoted by [x]T .
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The γ-valued hyperfields

Definition
Let (K, v) be a valued field and γ ∈ vK≥0 . The γ-valued
hyperfield of (K, v) is the factor hyperfield K1+Mγ also
denoted by Hγ(K).

Hγ(K) is a valued hyperfield since 1 +Mγ ⊆ O×v = ker v.

A hyperoperation + can be encoded by a ternary relation
symbol:

r+(x, y, z) ⇐⇒ z ∈ x+ y.
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Valued hyperfields and RV -structures

Let (K, v) be a valued field and γ ∈ vK≥0 .
As sets, Hγ(K) and the RV -structure of level γ of (K, v) are
the same thing.
The relation which encodes the hyperoperation of Hγ(K) is
the same as Flenner’s relation ⊕γ .
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Valued hyperfields and graded rings

Definition
Let (K, v) be a valued field. The graded ring associated to
(K, v) is

grv(K) :=
⊕
γ∈vK

Pγ/Mγ ,

where Pγ := {x ∈ K | vx ≥ γ}.

There is a language Lgr extending the language of rings such
that grv(K) is an Lgr-structure and the hyperfield structure
of H0(K) is interpretable in grv(K).



A. Linzi

Introduction

QE in
valued
fields

The
structures

Elementary
equivalence
theorems

Valued hyperfields and graded rings

Definition
Let (K, v) be a valued field. The graded ring associated to
(K, v) is

grv(K) :=
⊕
γ∈vK

Pγ/Mγ ,

where Pγ := {x ∈ K | vx ≥ γ}.

There is a language Lgr extending the language of rings such
that grv(K) is an Lgr-structure and the hyperfield structure
of H0(K) is interpretable in grv(K).



A. Linzi

Introduction

QE in
valued
fields

The
structures

Elementary
equivalence
theorems

The (0, 0) case

Theorem
Let (L,w) and (F, u) be henselian valued fields of residue
characteristic 0 and (K, v) a common valued subfield. The
following are equivalent:

(L,w) ≡(K,v) (F, u);
H0(L) ≡H0(K) H0(F ) as hyperfields;
RV (L) ≡RV (K) RV (F ) (Flenner);
grw(L) ≡grv(K) gru(F ) as Lgr-structures.
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The (0, p) case

Theorem
Let (L,w) and (F, u) be henselian valued fields of
characteristic 0 and residue characteristic p > 0. Let (K, v)
be a common valued subfield. The following are equivalent:

(L,w) ≡(K,v) (F, u);

Hn·vp(L) ≡Hn·vp(K) Hn·vp(F ) for all n ∈ N;
RVn·vp(L) ≡RVn·vp(K) RVn·vp(F ) for all n ∈ N (Flenner).

Remark
The graded rings are not sufficient in the mixed
characteristic case.



A. Linzi

Introduction

QE in
valued
fields

The
structures

Elementary
equivalence
theorems

The (0, p) case

Theorem
Let (L,w) and (F, u) be henselian valued fields of
characteristic 0 and residue characteristic p > 0. Let (K, v)
be a common valued subfield. The following are equivalent:

(L,w) ≡(K,v) (F, u);
Hn·vp(L) ≡Hn·vp(K) Hn·vp(F ) for all n ∈ N;

RVn·vp(L) ≡RVn·vp(K) RVn·vp(F ) for all n ∈ N (Flenner).

Remark
The graded rings are not sufficient in the mixed
characteristic case.



A. Linzi

Introduction

QE in
valued
fields

The
structures

Elementary
equivalence
theorems

The (0, p) case

Theorem
Let (L,w) and (F, u) be henselian valued fields of
characteristic 0 and residue characteristic p > 0. Let (K, v)
be a common valued subfield. The following are equivalent:

(L,w) ≡(K,v) (F, u);
Hn·vp(L) ≡Hn·vp(K) Hn·vp(F ) for all n ∈ N;
RVn·vp(L) ≡RVn·vp(K) RVn·vp(F ) for all n ∈ N (Flenner).

Remark
The graded rings are not sufficient in the mixed
characteristic case.



A. Linzi

Introduction

QE in
valued
fields

The
structures

Elementary
equivalence
theorems

The (0, p) case

Theorem
Let (L,w) and (F, u) be henselian valued fields of
characteristic 0 and residue characteristic p > 0. Let (K, v)
be a common valued subfield. The following are equivalent:

(L,w) ≡(K,v) (F, u);
Hn·vp(L) ≡Hn·vp(K) Hn·vp(F ) for all n ∈ N;
RVn·vp(L) ≡RVn·vp(K) RVn·vp(F ) for all n ∈ N (Flenner).

Remark
The graded rings are not sufficient in the mixed
characteristic case.



A. Linzi

Introduction

QE in
valued
fields

The
structures

Elementary
equivalence
theorems

References

M. Krasner: Approximation des corps valués complets
de caractéristique p 6= 0 par ceux de caractéristique 0,
Colloque d’Algèbre supérieure, Bruxelles (1957), 129-206
S. A. Basarab: Relative elimination of quantifiers for
Henselian valued fields, Annals of Pure and Applied
Logic 53 (1991) 51-74
F.-V. Kuhlmann: Quantifier elimination for henselian
fields relative to additive and multiplicative congruences,
Israel Journal of Mathematics 85 (1994), 277-306
J. Flenner: Relative decidability and definability in
henselian valued fields, J. Symbolic Logic, Volume 76,
Issue 4 (2011), 1240-1260
J. Lee: Hyperfields, truncated DVRs and valued fields, J.
Number Theory 212 (2020), 40-71


	Introduction
	QE in valued fields
	The structures
	Elementary equivalence theorems

