A. Linzi

Introduction
QE in
valued
fields
The

Structures for relative quantifier elimination in valued fields

Alessandro Linzi

Logic4Peace

April 2022

Valued fields

A valued field is a field K with a valuation v, which is a map from K onto $v K \cup\{\infty\}$, where $(v K,+, 0, \leq)$ is an ordered abelian group and

- $v(x)=\infty$ if and only if $x=0$,
- $v(x y)=v(x)+v(y)$,
- $v(x+y) \geq \min \{v(x), v(y)\}$.

The ordered abelian group $v K$ is called the value group of the valued field (K, v).

Language of valued fields

Let (K, v) be a valued field. The valuation ring of v

$$
\mathcal{O}_{v}:=\{x \in K \mid v x \geq 0\}
$$

determines the valuation v (up to an isomorphism of the value group).

Language of valued fields

Let (K, v) be a valued field. The valuation ring of v

$$
\mathcal{O}_{v}:=\{x \in K \mid v x \geq 0\}
$$

determines the valuation v (up to an isomorphism of the value group).
The language of valued fields is the language of fields with a unary relation symbol \mathcal{O} (to be interpreted as the valuation ring).

Residue field
A. Linzi

The valuation ring of a valued field (K, v) has a unique maximal ideal

$$
\mathcal{M}_{v}:=\{x \in K \mid v x>0\} .
$$

The quotient $K v:=\mathcal{O}_{v} / \mathcal{M}_{v}$ is called the residue field of (K, v). The characteristic of $K v$ is called the residue characteristic of (K, v).
There are only three possibilities for the pair (char K, char $K v$), namely $(0,0),(0, p)$ or (p, p) where $p>0$ is a prime number.
We will consider the first two cases for henselian valued fields.

Example

A. Linzi

Introduction

QE in

valued
fields
The
structures
Elementary equivalence theorems

Let p be a prime number. We define the p-adic valuation v_{p} on \mathbb{Q}. For $x \in \mathbb{Q}^{\times}$we write

$$
x=p^{v_{p}(x)} \frac{a}{b}
$$

where $a, b \in \mathbb{Z}$ are not divisible by p.

Example

Let p be a prime number. We define the p-adic valuation v_{p} on \mathbb{Q}. For $x \in \mathbb{Q}^{\times}$we write

$$
x=p^{v_{p}(x)} \frac{a}{b}
$$

where $a, b \in \mathbb{Z}$ are not divisible by p.
A valuation v on a field K defines an ultrametric on K. One can then define Cauchy sequences and limits and consider completions.
The completion of \mathbb{Q} with respect to the p-adic valuation is denoted by \mathbb{Q}_{p} and is known as the field of p-adic numbers.

Example
A. Linzi

Let p be a prime number. We define the p-adic valuation v_{p} on \mathbb{Q}. For $x \in \mathbb{Q}^{\times}$we write

$$
x=p^{v_{p}(x)} \frac{a}{b}
$$

where $a, b \in \mathbb{Z}$ are not divisible by p.
A valuation v on a field K defines an ultrametric on K. One can then define Cauchy sequences and limits and consider completions.
The completion of \mathbb{Q} with respect to the p-adic valuation is denoted by \mathbb{Q}_{p} and is known as the field of p-adic numbers. As a complete valued field of rank 1, it is henselian. It is the prototype of p-adically closed fields as \mathbb{R} is the prototype of real closed fields.

Some history

■ MacIntyre (1976) shows quantifier elimination for the theory of p-adically closed fields in the language of valued fields extended with power predicates:

$$
P_{n}(x) \longleftrightarrow \exists y: y^{n}=x
$$

Some history

■ MacIntyre (1976) shows quantifier elimination for the theory of p-adically closed fields in the language of valued fields extended with power predicates:

$$
P_{n}(x) \longleftrightarrow \exists y: y^{n}=x
$$

■ Pas (1989) shows quantifier elimination for the theory of henselian valued fields of residue characteristic 0 , relative to the value group and the residue field, in the Denef-Pas language with angular component map.

Some history

- In 1991, Basarab obtains quantifier elimination for the theory of henselian valued fields of characteristic 0 , relative to the mixed structures.

QE in
valued fields

The
structures
Elementary equivalence theorems

Some history

- In 1991, Basarab obtains quantifier elimination for the theory of henselian valued fields of characteristic 0 , relative to the mixed structures.

■ In 1994, Kuhlmann simplifies the structures of Basarab introducing the structures of additive and multiplicative congruences (amc-structures).

Some history

Introduction
QE in
valued fields

The
structures
Elementary equivalence theorems

- In 1991, Basarab obtains quantifier elimination for the theory of henselian valued fields of characteristic 0 , relative to the mixed structures.

■ In 1994, Kuhlmann simplifies the structures of Basarab introducing the structures of additive and multiplicative congruences (amc-structures).
■ In 2011, Flenner simplifies the structures introduced by Kuhlmann even further, with the leading term structures ($R V$-structures).

$R V$-structures

Definition (Flenner)

Let (K, v) be a valued field and $\gamma \in v K_{\geq 0}$. The $R V$-structure of level γ of (K, v) is

$$
K^{\times} / 1+\mathcal{M}^{\gamma} \cup\{\mathbf{0}\}
$$

with its multiplicative structure and

$R V$-structures

Definition (Flenner)

Let (K, v) be a valued field and $\gamma \in v K_{\geq 0}$. The $R V$-structure of level γ of (K, v) is

$$
K^{\times} / 1+\mathcal{M}^{\gamma} \cup\{\mathbf{0}\}
$$

with its multiplicative structure and a ternary relation

$$
\begin{aligned}
& \oplus_{\gamma}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \Longleftrightarrow \\
& \quad \exists x, y, z \in K: r v_{\gamma}(x)=\mathbf{x} \wedge r v_{\gamma}(y)=\mathbf{y} \\
& \quad \wedge r v_{\gamma}(z)=\mathbf{z} \wedge x+y=z
\end{aligned}
$$

Multivalued operations

A hyperoperation (or multivalued operation) on a set $F \neq \emptyset$ is a function + which associates to every pair $(x, y) \in F \times F$ a non-empty subset of F, denoted by $x+y$.

Multivalued operations

Introduction

QE in

valued fields

The
structures

Elementary

 equivalence theoremsA hyperoperation (or multivalued operation) on a set $F \neq \emptyset$ is a function + which associates to every pair $(x, y) \in F \times F$ a non-empty subset of F, denoted by $x+y$.
If + is a hyperoperation on F and $A, B \subseteq F$, then we set

$$
A+B:=\bigcup_{a \in A, b \in B} a+b .
$$

If $x \in F$ we abbreviate $A+\{x\}=: A+x$.

Canonical hypergroups

A canonical hypergroup is a tuple $(F,+, 0)$, where + is a hyperoperation on F and 0 is an element of F such that the following axioms hold:

- the hyperoperation + is associative, i.e.,

$$
(x+y)+z=x+(y+z) \text { for all } x, y, z \in F,
$$

■ $x+y=y+x$ for all $x, y \in F$,
■ for every $x \in F$ there exists a unique $x^{\prime} \in F$ such that $0 \in x+x^{\prime}$ (the element x^{\prime} is denoted by $-x$),
■ $z \in x+y$ implies $y \in z-x:=z+(-x)$ for all $x, y, z \in F$.

Krasner's Hyperrings and hyperfields

A (commutative) hyperring is a tuple $(F,+, \cdot, 0)$ which satisfies the following axioms:

- $(F,+, 0)$ is a canonical hypergroup,
- (F, \cdot) is a commutative semigroup and 0 is an absorbing element, i.e., $x \cdot 0=0$ for all $x \in F$,
- the operation • is distributive over the hyperoperation + . That is, for all $x, y, z \in F$,

$$
x \cdot(y+z)=x \cdot y+x \cdot z
$$

A hyperfield is a hyperring such that $F^{\times}:=F \backslash\{0\}$ is a group under multiplication.

The factor construction

Given a field K and a subgroup T of K^{\times}, one can always construct a hyperfield, called the factor hyperfield of K modulo T, denoted by K_{T}.

The factor construction

Introduction
QE in
valued fields

The
structures
Elementary equivalence theorems

Given a field K and a subgroup T of K^{\times}, one can always construct a hyperfield, called the factor hyperfield of K modulo T, denoted by K_{T}. As a set it is $K^{\times} / T \cup\left\{[0]_{T}\right\}$. The hyperoperation is defined as follows:

$$
[x]_{T}+[y]_{T}:=\left\{[x+y t]_{T} \in K_{T} \mid t \in T\right\},
$$

where for $x \in K^{\times}$, the coset $x T$ is denoted by $[x]_{T}$.

The γ-valued hyperfields

Definition

Let (K, v) be a valued field and $\gamma \in v K_{\geq 0}$. The γ-valued hyperfield of (K, v) is the factor hyperfield $K_{1+\mathcal{M}^{\gamma}}$ also denoted by $\mathcal{H}_{\gamma}(K)$.
$\mathcal{H}_{\gamma}(K)$ is a valued hyperfield since $1+\mathcal{M}^{\gamma} \subseteq \mathcal{O}_{v}^{\times}=\operatorname{ker} v$.

The γ-valued hyperfields

Definition

Let (K, v) be a valued field and $\gamma \in v K_{\geq 0}$. The γ-valued hyperfield of (K, v) is the factor hyperfield $K_{1+\mathcal{M}^{\gamma}}$ also denoted by $\mathcal{H}_{\gamma}(K)$.
$\mathcal{H}_{\gamma}(K)$ is a valued hyperfield since $1+\mathcal{M}^{\gamma} \subseteq \mathcal{O}_{v}^{\times}=\operatorname{ker} v$. A hyperoperation + can be encoded by a ternary relation symbol:

$$
r_{+}(x, y, z) \quad \Longleftrightarrow \quad z \in x+y \text {. }
$$

Valued hyperfields and $R V$-structures

Let (K, v) be a valued field and $\gamma \in v K_{\geq 0}$. As sets, $\mathcal{H}_{\gamma}(K)$ and the $R V$-structure of level γ of (K, v) are the same thing.
The relation which encodes the hyperoperation of $\mathcal{H}_{\gamma}(K)$ is the same as Flenner's relation \oplus_{γ}.

Valued hyperfields and graded rings

Definition

Let (K, v) be a valued field. The graded ring associated to (K, v) is

$$
\operatorname{gr}_{v}(K):=\bigoplus_{\gamma \in v K} \mathcal{P}^{\gamma} / \mathcal{M}^{\gamma}
$$

where $\mathcal{P}^{\gamma}:=\{x \in K \mid v x \geq \gamma\}$.

Valued hyperfields and graded rings

Definition

Let (K, v) be a valued field. The graded ring associated to (K, v) is

$$
\operatorname{gr}_{v}(K):=\bigoplus_{\gamma \in v K} \mathcal{P}^{\gamma} / \mathcal{M}^{\gamma}
$$

where $\mathcal{P}^{\gamma}:=\{x \in K \mid v x \geq \gamma\}$.
There is a language $\mathcal{L}_{g r}$ extending the language of rings such that $\operatorname{gr}_{v}(K)$ is an $\mathcal{L}_{g r}$-structure and the hyperfield structure of $\mathcal{H}_{0}(K)$ is interpretable in $\mathrm{gr}_{v}(K)$.

The $(0,0)$ case

The $(0,0)$ case

Theorem

Let (L, w) and (F, u) be henselian valued fields of residue characteristic 0 and (K, v) a common valued subfield. The following are equivalent:

■ $(L, w) \equiv_{(K, v)}(F, u) ;$

The $(0,0)$ case

Theorem

Let (L, w) and (F, u) be henselian valued fields of residue characteristic 0 and (K, v) a common valued subfield. The following are equivalent:

- $(L, w) \equiv_{(K, v)}(F, u)$;

■ $\mathcal{H}_{0}(L) \equiv_{\mathcal{H}_{0}(K)} \mathcal{H}_{0}(F)$ as hyperfields;

The $(0,0)$ case

Theorem

Let (L, w) and (F, u) be henselian valued fields of residue characteristic 0 and (K, v) a common valued subfield. The following are equivalent:

- $(L, w) \equiv_{(K, v)}(F, u)$;

■ $\mathcal{H}_{0}(L) \equiv_{\mathcal{H}_{0}(K)} \mathcal{H}_{0}(F)$ as hyperfields;

- $R V(L) \equiv_{R V(K)} R V(F)$ (Flenner);

The $(0,0)$ case

Theorem

Let (L, w) and (F, u) be henselian valued fields of residue characteristic 0 and (K, v) a common valued subfield. The following are equivalent:

- $(L, w) \equiv_{(K, v)}(F, u)$;

■ $\mathcal{H}_{0}(L) \equiv_{\mathcal{H}_{0}(K)} \mathcal{H}_{0}(F)$ as hyperfields;

- $R V(L) \equiv_{R V(K)} R V(F)$ (Flenner);

■ $\operatorname{gr}_{w}(L) \equiv \operatorname{gr}_{v}(K) \operatorname{gr}_{u}(F)$ as $\mathcal{L}_{g r}$-structures.

The $(0, p)$ case

Theorem

Let (L, w) and (F, u) be henselian valued fields of characteristic 0 and residue characteristic $p>0$. Let (K, v) be a common valued subfield. The following are equivalent:

- $(L, w) \equiv_{(K, v)}(F, u)$;

The $(0, p)$ case

Theorem

Let (L, w) and (F, u) be henselian valued fields of characteristic 0 and residue characteristic $p>0$. Let (K, v) be a common valued subfield. The following are equivalent:

- $(L, w) \equiv_{(K, v)}(F, u)$;

■ $\mathcal{H}_{n \cdot v p}(L) \equiv_{\mathcal{H}_{n \cdot v p}(K)} \mathcal{H}_{n \cdot v p}(F)$ for all $n \in \mathbb{N}$;

The $(0, p)$ case

Theorem

Let (L, w) and (F, u) be henselian valued fields of characteristic 0 and residue characteristic $p>0$. Let (K, v) be a common valued subfield. The following are equivalent:

- $(L, w) \equiv_{(K, v)}(F, u)$;

■ $\mathcal{H}_{n \cdot v p}(L) \equiv_{\mathcal{H}_{n \cdot v p}(K)} \mathcal{H}_{n \cdot v p}(F)$ for all $n \in \mathbb{N}$;
■ $R V_{n \cdot v p}(L) \equiv_{R V_{n \cdot v p}(K)} R V_{n \cdot v p}(F)$ for all $n \in \mathbb{N}$ (Flenner).

The $(0, p)$ case

Theorem

Let (L, w) and (F, u) be henselian valued fields of characteristic 0 and residue characteristic $p>0$. Let (K, v) be a common valued subfield. The following are equivalent:

- $(L, w) \equiv_{(K, v)}(F, u)$;
- $\mathcal{H}_{n \cdot v p}(L) \equiv_{\mathcal{H}_{n \cdot v p}(K)} \mathcal{H}_{n \cdot v p}(F)$ for all $n \in \mathbb{N}$;

■ $R V_{n \cdot v p}(L) \equiv_{R V_{n \cdot v p}(K)} R V_{n \cdot v p}(F)$ for all $n \in \mathbb{N}$ (Flenner).

Remark

The graded rings are not sufficient in the mixed characteristic case.

References

■ M. Krasner: Approximation des corps valués complets de caractéristique $p \neq 0$ par ceux de caractéristique 0 , Colloque d'Algèbre supérieure, Bruxelles (1957), 129-206
■ S. A. Basarab: Relative elimination of quantifiers for Henselian valued fields, Annals of Pure and Applied Logic 53 (1991) 51-74
■ F.-V. Kuhlmann: Quantifier elimination for henselian fields relative to additive and multiplicative congruences, Israel Journal of Mathematics 85 (1994), 277-306
■ J. Flenner: Relative decidability and definability in henselian valued fields, J. Symbolic Logic, Volume 76, Issue 4 (2011), 1240-1260
■ J. Lee: Hyperfields, truncated DVRs and valued fields, J. Number Theory 212 (2020), 40-71

