de Finetti coherence in infinitary logic

Serafina Lapenta

University of Salerno

Logic 4 Peace

S. Lapenta (UNISA)

- 1. Probability in Łukasiewicz logic
- 2. A well behaved infinitary logic
- 3. A Dutch-book theorem
- 4. An application to statistical models

MV-algebras

- Algebraic counterpart of Łukasiewicz logic,
- Unit interval of lattice ordered groups with strong unit,
- A generalization of boolean algebras.

For $x, y \in [0, 1]$ define

$$x \oplus y = \min(x + y, 1)$$
 and $\neg x = 1 - x, 0, 1$

A is an MV-algebra iff $A \in HSP([0,1])$

Probability on MV-algebras: states

A an MV-algebra, s:A
ightarrow [0,1] such that

•
$$s(1) = 1$$
,

• $s(x \oplus y) = s(x) + s(y)$ when $x \odot y = 0$.

Mundici D., *Averaging the Truth-Value in Łukasiewicz Logic*, Studia Logica 55 (1995) 113-127.

$$\mathcal{S}(A) = \{ s : A \rightarrow [0,1] \mid s \text{ is a state of } A \}$$

Important properties:

States of A form a compact convex subset of $[0,1]^A$

S(A) is the topological closure of conv(Hom(A, [0, 1])), where the topology is the product topology on $[0, 1]^A$.

If Max(A) is the set of maximal ideal of A, topologized with the usual hull-kernel topology,

there is an affine homeomorphism (that is, it preserves convex combinations) between S(A) and $\mathcal{M}(Max(A))$, where $\mathcal{M}(Max(A))$ is the space of Borel probability measures on Max(A).

On algebras of functions,

$$s(f) = \int_{Max(A)} f d\mu,$$

de Finetti's foundation of probability

De Finetti's theory of subjective probability is based on the notion of **coherence**:

two players, bookmaker (B) and gambler (G), wage on a certain class of events of interest.

A system of bets is coherent if there is no way for ${\bf B}$ to incur in a sure loss, i.e.

if there is no way for **G** to arrange her stakes in order to win money independently of the result of the events involved in the bet.

Take an integer n > 0, let $\varphi_1, \ldots, \varphi_n$ formulas in the language of classical logic. These are our events of interest.

B publishes a book $\mathbf{b} = \{(\varphi_i, \beta_i) \mid i = 1, ..., n\}$ assigning to each event a value in [0, 1].

G chooses the stakes $\sigma_1, \ldots, \sigma_n \in \mathbb{R}$, and pays $\sum_{i=1}^n \sigma_i \beta_i$ to **B**.

Let now v be a possible state of world: formally, we can think of it as a boolean evaluation on the formulas $\varphi_1, \ldots, \varphi_n$. Then, in v, for any φ_i , **B** pays **G**

- 0 if φ_i is false in v
- σ_i if φ_i is true in v

The total balance of this bet in the possible world v is

$$\sum_{i=1}^n \sigma_i \beta_i - \sum_{i=1}^n \sigma_i v(\varphi_i) = \sum_{i=1}^n \sigma_i (\beta_i - v(\varphi_i)).$$

Many-valued coherence criterion

Replace classical logic with <u>kukasiewicz logic</u> and evaluations in $\{0,1\}$ with evaluations (=homomorphisms) in [0,1]...

Let *A* be an MV-algebra, $E = \{e_1, ..., e_n\} \subseteq A$ the set of events. $\beta \in [0,1]^n$, a book on *E*, is said to be coherent if for any choice of stakes $\sigma_1, ..., \sigma_n \in \mathbb{R}$ by **G**, there exists $h \in Hom(A, [0,1])$ such that

$$\sum_{i=1}^n \sigma_i(\beta_i - h(e_i)) \ge 0$$

The no-Dutch book theorem

Theorem

Let A an MV-algebra, $E = \{e_1, \dots, e_n\}$ a finite set of events and $\beta \in [0, 1]^n$ a book on E. TFAE:

- 1. β is coherent.
- 2. β can be extended to a convex combination of points at most n 1 points in hom(A, [0, 1]).
- 3. there exists a state $s \in S(A)$ such that $\beta_i = s(e_i)$.

Main point of the proof:

$$\mathcal{S}(A) = \overline{conv}(Hom(A, [0, 1]))$$

What about infinitary logic?

The main ingredient: RMV_{σ}

MV-algebras closed under scalar operation and countable suprema, endowed with σ -homomorphisms of Riesz MV-algebras.

We can think of algebras in RMV_{σ} as infinitary algebras: the countable suprema V is an operation of countable arity in the language

$$\oplus, \neg, \mathbf{0}, \bigvee, \{\alpha\}_{\alpha \in [\mathbf{0}, \mathbf{1}]}.$$

 $\mathsf{RMV}_{\sigma} = HSP([0,1])$

It is an infinitary variety of algebras! [Di Nola, Lapenta, Leuştean, 2018]

We defined a logical systems that it is standard complete wrt [0,1] and has, as intented semantics, RMV_{σ} .

Free algebras for countably-many generators in RMV_σ

Theorem (Di Nola, L., Lenzi, 2021 — Di Nola, L., Leuştean, 2018) The free κ -generated algebra in RMV $_{\sigma}$ is the algebra

 $Borel([0,1]^{\kappa}) = \{a: [0,1]^{\kappa} \to [0,1] \mid a \text{ is Borel-measurable}\},\$

generated by the projections π_i , $i \in \kappa$ and $\kappa \leq \omega$.

A privileged subclass

An algebra $A \in \text{RMV}_{\sigma}$ is σ -semisimple if, and only if, $A \in ISP([0,1])$. Equivalently, there exists $\kappa \leq \omega$ and $V \in \mathcal{BO}([0,1]^{\kappa})$ such that

 $A\simeq \operatorname{Borel}([0,1]^\kappa)|_V$

Conditional events and coherence

A conditional event in a σ -semisimple algebra A is a pair $(p, q) \in A \times A$.

Given conditional and unconditional events in A, a conditional book is the assignment

$$\beta \colon (p_1, q_1) \mapsto \alpha_1, \dots, (p_n, q_n) \mapsto \alpha_n, r_1 \mapsto c_1, \dots, r_m \mapsto c_m$$

where $\alpha_i, c_j \in [0, 1]$.

A book is said complete if for any q_i there exists a unique index j such that $q_i = r_j$, that is $\{q_1, \ldots, q_n\} \subseteq \{r_1, \ldots, r_m\}$ with no repetitions.

Conditional events and coherence

If $A \simeq \text{Borel}([0,1]^{\kappa})|_V$, the book β is conditionally coherent if, and only if, for any $\sigma_1, \ldots, \sigma_n \in \mathbb{R}$ and $\delta_1, \ldots, \delta_m \in \mathbb{R}$ there exists $x \in V$ such that

$$\sum_{t=1}^n \sigma_t q_t(\mathbf{x})(\alpha_t - p_t(\mathbf{x})) + \sum_{j=1}^m \delta_j(c_j - r_j(\mathbf{x})) \ge 0$$

The main result

Let V be a G_{δ} subset of $[0,1]^{\kappa}$ and $A \simeq \operatorname{Borel}([0,1]^{\kappa})|_{V}$.

Theorem

The complete book

$$\beta: (p_1, q_1) \mapsto \alpha_1, \ldots, (p_n, q_n) \mapsto \alpha_n, r_1 \mapsto c_1, \ldots, r_m \mapsto c_m$$

is conditionally coherent if, and only if, there exists a σ -state s on $A \simeq Borel([0,1]^{\kappa})|_V$ such that $s(p_i \cdot q_i) = \alpha_i s(q_i)$ and $s(r_j) = c_j$, for the obvious choices of the indexes.

Steps of the proof

- Reduce to the case of unconditional books
- Prove the analogous of de Finetti's theorem for MV-algebras→ the same proof strategy does not work!

An application: Logico-algebraic statistical models

 $\eta = (\eta_i)_{i \leq \kappa} \colon P \to \Delta_{\kappa},$

 $P\subseteq \mathcal{BO}([0,1]^d)$ and Δ_κ is the standard κ -dimensional simplex.

• $P \subseteq [0,1]^d$ is the set of states of the world, or parameters;

• $\eta = (\eta_i)_{i \leq \kappa} \colon P \to [0, 1]^k$ is our statistical model: to each parameter $x \in P$ it associates the tuple $(\eta_i(x))_{i \leq \kappa}$.

Coherent model

The model $\eta : P \subseteq [0,1]^d \to [0,1]^k$ is coherent with respect to the events $E = \{p_1, \ldots, p_k\} \subseteq \text{Borel}([0,1]^n)$ iff for any $x \in P$ there exists a state $s : \text{Borel}([0,1]^n) \to [0,1]$ such that such that $s(p_i) = \eta_i(x)$ for any $i = 1, \ldots, k$

An example

Let $k \in \mathbb{N}$ and let us consider a binomial model:

$$\eta = (\eta_0, \dots, \eta_k) \colon [0, 1] \to [0, 1]^{k+1},$$

 $\eta_i \colon [0, 1] \to [0, 1] \quad \eta_i(x) = \binom{k}{i} x^i (1-x)^{k-i}.$

k represents the iterations of an experiment,

 $\eta_i(x)$ is the probability of having *i* successes and k - i failures, given that the probability of success in one single trial is *x*.

Since $\sum_{i=0}^{k} \eta_i(x) = 1$, such a model is always coherent with respect to any set $\{p_1, \ldots, p_k\}$ that satisfies the following conditions: (1) $\bigoplus_{i \neq j} p_i = \neg p_j$ (2) for any *i*, there exists $x \in [0, 1]$ such that $p_i(x) = 1$.

Thank you!