

- What matters
- Type of inference problem
- Lower bound on content

Empirical information

- Verification
- Refutation
- Underdetermination
- Learnability
- Simplicity and Ockham's razor

- What matters
- Type of inference problem
- Lower bound on content

Reality

- Natural science vs. Data-science
- Miracles and Luck
- Negligibility

Empirical information

- Verification
- Refutation
- Underdetermination
- Learnability
- Simplicity and Ockham's razor

- What matters
- Type of inference problem
- Lower bound on content

Reality

- Natural science vs. Data-science
- Miracles and Luck
- Negligibility

Empirical information

- Verification
- Refutation
- Underdetermination
- Learnability
- Simplicity and Ockham's razor

- What matters
- Type of inference problem
- Lower bound on content

Three Topological Bases

Three Topologies

Three Topologies

Topology of real similarity

 \mathcal{M}^*

Topology of empirical similarity

Topology of relevant similarity

Context of Inquiry

 $\mathfrak{C} = (W, \mathcal{M}, \mathcal{E}, \underline{Q})$

1. EROTETIC BASIS

Erotetic Basis

- Elements of Q are answers to a question.
- Answers should be concluded eventually, if true.
- Q is a countable topological basis.
- 1. At worst, vacuous information W is requested.
- 2. Requests accumulate.
- 3. Requests are expressible.

Erotetic Basis

Allows for overlapping answers.

1. One-sided questions:

```
verification = \{A, W\};
refutation = \{\neg A, W\},
decision = \{A, \neg A\}.
```

- 2. Replace hopeless catch-all hypothesis with W.
- 3. Quantitative (estimation) questions have open intervals as answers.
- 4. Science writ large: answers accumulate across disciplines.

Erotetic Operators

Inquiry	Erotetic Topology
"You should conclude A"	int A
"You should deny A"	ext A
"You needn't deny A"	cl A
"You needn't decide A"	bdry A
"You needn't conclude A, even though it's true"	frnt $\neg A$

Erotetic Properties

Inquiry	Erotetic Topology
"A is positively relevant"	A is open
"A is negatively relevant"	A is closed
"A is relevant"	A is clopen

2. EMPIRICAL BASIS

Empirical Basis

• Elements of \mathcal{E} are empirical information states.

 \mathcal{E} is a countable topological basis.

- 1. At worst, vacuous information W is available.
- 2. Available information accumulates.
- 3. Scientific information is recordable.

 \mathcal{E}_w = the set of all empirical information states true/possible in w.

Serendipity

• $E \in \mathcal{E}_w$ says you might obtain E in w by luck.

Achievable Information

- $E \in \mathcal{E}_w$ says diligence will yield at least E in w.
- Familiar normative requirement on experimental results.

Empirical Modalities

Inquiry	Empirical Topology
"A will be verified"	int A
"A will be refuted"	ext A
"A will be decided"	¬bdry A
"A will never be verified"	$cl \neg A$
"A will never be refuted"	cl A
"A will never be decided"	bdry A
"A is false but will never be refuted" = Popper's problem	frnt $A = (= \operatorname{cl} A \setminus A)$
"A is true but will never be verified" = Hume's problem	frnt ¬A

Empirical Properties

Inquiry	Erotetic Topology
"A is verifiable"	A is open
"A is refutable"	A is closed
"A is decidable"	A is clopen
"A is verifutable"	A is locally closed

Ero-Empirical Modalities

Inquiry	Ero-Empirical Topology
"A will be irrelevantly verified"	$int A \setminus int A$
"The problem of induction arises relevantly for A"	$frnt \neg A \cap int A$
Etc.	

Learnability

Inquiry	Empirical Topology
"Q is answerable infallibly"	Each answer to Q is \mathcal{E} -open
"Q is answerable in the limit with elimination of false reasons"	Each answer to Q is \mathcal{E} -sigma-constructible (= countable union of differences of opens)
"Q is answerable in the limit with elimination of false answers"	Each answer to Q is \mathcal{E} -sigma-constructible and co-sigma-consructible.

Popper's Analysis of Simplicity

 $A \leq B$

iff every information state that falsifies *B* falsifies *A*.

iff
$$A \subseteq \operatorname{cl} B$$
. LOL, It's topological!

Two flaws.

- 1. W is strictly more complex than every other proposition, so mere suspension of judgment violates Ockham's razor!
- 2. Maybe *A* is simpler than *B* somewhere but not everywhere.

Empirical Simplicity

Improvement:

- $A \triangleleft B = "A$ is strictly simpler than B" = $A \cap \text{frnt } B$.
- A is Ockham given E iff
 no B is possibly simpler than A given E.

Prop. The following are equivalent.

- 1. A is Ockham given E.
- 2. A is closed (refutable) given E.

Ockham Necessity Theorem

Prop. Suppose that method *M*:

- answers Q,
- eliminates false reasons,
- never drops a true reason.

Then M concludes an Ockham reason for each answer.

3. METAPHYSICAL BASIS

Scientific Realism

Scientific realists think science can penetrate beneath the appearances.

To address realism, one must represent hidden reality.

Metaphysical Basis

- Worlds are more or less similar.
- ρ is the (dis-)similarity metric.

• \mathcal{M} is the set of all open metric balls.

Nice, but Hopeless

Which world is more similar to *c*?

Metaphysical Topology

- Hopeless comparisons are sidestepped by the induced topology \mathcal{M}^* .
 - Across models, discrete difference.
 - Within models, standard metric topology.
 - That determines the metaphysical topology uniquely.

Metaphysical Modalities

Inquiry	Topology
"A is securely true."	int A
"A is securely false."	ext A
"A has a secure truth value."	¬bdry A
"A is or is arbitrarily close to being false."	$cl \neg A$
"A is or is arbitrarily close to being true."	cl A
"A is brittle."	bdry A
"A is barely false."	frnt A
"A is barely true."	frnt $\neg A$

Metaphysical Properties

Inquiry	Metaphysical Topology
"A is natural" = "A cannot be barely true"	A is open

Natural:

- Open interval estimates (properly open).
- Models (clopen).
- Paradigms = countable disjunctions of models (clopen).

Unnatural:

- Arbitrary thresholds.
- Arbitrary quantitative models with no interpretation.
- Arbitrary parameter settings.

LINKS

Clockwise

Counter-Clockwise

Transitive Implications

Finite Precision	Λ	Relevant Reality	\Rightarrow	Data Retention
Finite Precision	Λ	Deductive Question	\Rightarrow	Natural Question
Relevant Reality	Λ	Deductive Question	\Rightarrow	Operationism
Operationism	٨	Natural Question	\Rightarrow	Deductive Question
Operationism	Λ	Data Retention	\Rightarrow	Relevant Reality
Data Retention	Λ	Natural Question	\Longrightarrow	Finite Precision

All Contexts

Realist Contexts

Deductive Contexts

Operationist Contexts

MIRACLES AND FINE-TUNING

Fine-tuning

- Truth of A teeters at the edge of a sea of falsehood.
- mir $A = A \cap cl$ int $\neg A$.

Miracles

• A is miraculous iff $A \subseteq \min A$.

Famous Scientific Miracles

- The morning star is on the same orbit as the evening star.
- Mars' epicycle is perfectly synchronized with the sun's deferent.
- Reflecting telescopes produce exactly the same illusions as refracting telescopes.
- Light is distinct from EM radiation, even though they have exactly the same speed.
- It matters whether the coil or the magnet is moving, even though the current is exactly the same.

NEGLECT

Realists Neglect Miracles

- Hidden realities go beyond all possible empirical information.
- Realism neglects miraculous possibilities of error.
- Anti-realism refuses to.

Metaphysical Negligibility

- A is nowhere dense iff int cl A = Ø.
- The nowhere dense propositions are a non-trivial ideal.
 - 1. Closed under subset.
 - Closed under finite union.
 - 3. Exclude W.
- So nowhere density is a concept of negligibility.
- Unlike prior probability, it is a semantic/metaphysical concept of negligibility.

Realism Theorem

Prop. *A* is nowhere dense iff *A* is miraculous.

So the miraculous propositions are exactly the negligible ones!

Example: Theoretical Identification

X = maximum elongation of Hesperus.

Y = maximum elongation of Phosphorus.

A = "the two planets are identical".

M = "they are different, but X = Y anyway".

Example: Theoretical Identification

M is miraculous/negligible, so unnatural.

A, $\neg A$ are open/natural, so not miraculous/negligible.

Natural question: $\{A, \neg A\}$.

Realism Vindicated

- M is empirically identical to A.
- But *M* is negligible and *A* is not.
- Neglecting M, Ockham's razor mandates A.

